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Car-following models have been studied for a long time, and many traffic engineers and researchers have devoted attention to
them. With the increase in machine learning, this paper proposes a fusion model based on the physics-informed deep learning
framework.*e purpose of this paper is to inherit the predecessors’ ideas, transform them to fit a new framework, and improve the
framework’s accuracy. *e IDM-D (intelligent driver model development) involves reenabling the effect of the following vehicle
to form a complementary model (not car-following model) with the IDM (intelligent driver model). *e pretreated NGSIM data
are used for calibration and validation. *e IDM and the IDM-D are combined with the LSTM under the framework of physics-
informed deep learning, and the results aremixed in a ratio to form the final result. Using test data for simulation, the results reveal
that the IDM-informed LSTM shows better performance than the LSTM and that the fusion model further improves the MSE
(mean square error) of the IDM-informed LSTM. *e fusion increases the accuracy during the deceleration process, which is
better than just a single IDM-informed LSTM. *e fusion model further explains drivers’ deceleration behaviors.

1. Introduction

As a typical traffic phenomenon, car-following (CF) be-
haviors have been studied since Greenshields’ pioneering
paper in 1935 [1], and other predecessors have also made
many achievements. Because there are many predecessors’
works, questions, such as why car-following behaviors
should be studied all the time and what motivates re-
searchers to proceed with the study, are asked. In the past,
predecessors wanted to explain the reason for CF behav-
iors, but for now, the background of the connected and
automated vehicles (CAVs) has an outcome and cannot
occupy the market in a short time. *is means that men-
driven vehicles (MDVs) have to coexist with CAVs for a
long time.*eMDVs cannot communicate with the CAVS,
leading to the uncertainty of man-driven vehicles. *is is a
risk to traffic safety and a cause for making traffic ineffi-
cient. Using car-following models to predict CF behaviors

is a possible solution. Researchers focus more on accuracy
rather than on the reasons. If the CAVS can learn the CF
behaviors of the MDVs, then the CAVs can also learn to
guide man-driven vehicles initiatively. *erefore, it is
necessary to keep the research about the CF models. As an
interdisciplinary subject, methods for studying CF be-
haviors are abundant. Merging technology, such as deep
learning, can handle big data and mine it. Now is the right
time for researchers to make a difference with a novel
method to overcome the new challenge. Simultaneously for
the multitransport modes, highway transport plays an
important part, but its efficiency is easily affected by the
traffic state, whereas the traffic state on the highway is
significantly affected by the trip demand and microscopic
traffic phenomenon [2].

As indicated in the literature, the CF phenomena are
categorized by three modes: models based on physical
theories [3, 4], models driven by data [5, 6], and models that
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combine physics and are data driven [7, 8]. Traditionally,
physics models take the basic inputs from reality, such as
velocity, space headway, and the difference, between the
preceding vehicle and objective vehicle. *ey are combined
with complicated mathematics computations to develop
formulas that are available for people with input data to
calculate the results. *ey always have strong theories to
support them in describing traffic phenomena [9, 10].

*e data-driven model outcomes with the rise of ma-
chine learning also need inputs that are the same as the
inputs of the physics model. Instead of using physics the-
ories, data-driven models focus on hidden information in
the data and pursue the logic between inputs and outputs.
*e physics model with the actual formula can be the white
box. With limited time training the models, data-driven
models can provide some outputs through the black box
process. *e black box process mines the relationship be-
tween the inputs and outputs [9, 10].

*ere are two types of fusion models. *e first kind of
fusion model combines the outputs of the physics models
and the outputs of the data-driven models in different ratios
[7]. *is concept is similar to bagging in ensemble learning.
*e second kind of fusion model absorbs physics theories
into machine learning, which means that the machine learns
the laws of physics [8].

But the works above are not enough for the new context
which pursues higher accuracy in simulating the car-fol-
lowing behaviors. To make sure the accuracy of the CAV
prediction to car-following behaviors, and making safe and
efficient decision for velocity change, a higher-accuracy
car-following model is necessary. It is also the reason for
the researchers in autonomous driving domains to con-
tinue to study the car-following behaviors. *e physic-
informed deep learning framework is proposed to make a
deep learning model to learn physics rules, and Mo et al.
take an implementation on studying CF behaviors. To
further study the CF behaviors, and continue Mo’s work to
explain it with more detail, this paper reintroduces the
following vehicle-related inputs to improve the accuracy
based on the acknowledged model by using the thought of
the fusion model and the framework of physics-informed
deep learning to form the new model with higher accuracy.
*erefore, the preceding vehicle in the previous research is
still the preceding vehicle, the following vehicle in the
previous research is the objective vehicle in this article, as
well as the follower of the following vehicle in the previous
research is the following vehicle in this article. To inherit
the predecessors’ ideas and fit the new framework, this
paper uses the model to describe the reason why drivers
continue to accelerate even if they have reached the ideal
velocity by considering the effect of the following vehicle.
*is passage evaluates the different results for using the
following vehicle-related inputs or not.

*e rest of the paper is organized as follows: Section 2
introduces the related works, and Section 3 demonstrates the
framework used in this paper, as well as the related method.
Section 4 presents all steps of the experiment and analyzes
the results. Finally, Section 5 presents the conclusion and
discussion.

2. Related Works

2.1. Standard Inputs Model. *e car-following model has
been studied for a long time. As the pioneer in exploring car-
following behaviors, Reuschel [11] and Pipes [12] proposed
the stimulus-response car-following model. *e safe-�
distance theory was proposed in 1958 [13]. It claimed that
drivers kept a fine distance from the rear collision, and there
were some models inheriting this concept. A new car-fol-
lowing model was proposed considering the limitation of
drivers’ acceleration and deceleration rate [14], and the
predicted value was changed into velocity. As a famous
model, the optimal velocity model (OVM) was proposed by
considering the safe velocity of the drivers [3].*eOVMhad
a fatal error in the simulation, which resulted in unrealistic
deceleration and excessively high acceleration. *e short-
comings of the OVM have led more researchers to study
them and propose many improvements to the OVM. *e
generalized force model (GFM) [15] is proposed to solve the
problem brought about by the OVM.*e GFM set a term on
the right-hand side (RHS) to consider the effect of decel-
eration. To develop the GFM, the full velocity difference
model (FVDM) was proposed [16], and the FVDM con-
sidered both acceleration and deceleration effects. Another
well-known model, the intelligent driver model (IDM) [4],
was proposed, which set the upper limit of acceleration and
absorbed part of the safe-distance theory. *e IDM was a
comprehensive model that was widely used.

*e rise of machine learning also includes its application
to car-following situations resulting in data-driven car-
following models as documented in Table 1.

hobj(t) represents the space headway of the objective
vehicle, vobj(t) represents the velocity of the objective ve-
hicle, Δv(t) represents the velocity difference between the
objective vehicle and the preceding vehicle, Δv(t + Δt)
represents the velocity changed in the next moment, and
α(t + Δt) represents the acceleration in the next moment.
*ere is a specification that some data-driven models use
time sequence data as the inputs and this article uses a time
series of something in Table 1 to express it.

*e fusion models are divided into two types. *e first
kind of fusionmodel is decision fusion, meaning that using a
method to combine the outputs of the physics model and the
outputs of the data-driven model in a different ratio. Yang
et al. [7] proposed the Gipps-RF and Gipps-BPNN models.
*e Gipps-RF model combined the Gipps models with
random forest in different ratios, and the Gipps-BPNN
model was used as the same method when combined. Both
models improved their safe level and robustness. Li et al. [29]
used the improved Kalman filter to combine the IDM and
LSTM, and the result obtained field data, which reflected the
trajectory of vehicles. *e second kind of fusion model
embeds physics knowledge into machine learning. Yun et al.
[30] proposed a method to turn the physics model into
physics with regularization and embed it into a Gaussian
process (GP) to improve the accuracy of modeling.*en,Mo
et al. [8] proposed a physics-informed deep learning
framework (PIDL) based on a physics-informed neutral
network (PINN). *ey applied it to model car-following
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behaviors. *e method enabled the deep learning models to
learn physics theory. *is is also the point of this paper.

*emodel is talked about above usually uses the velocity,
velocity difference, and time gap as input; we call it standard
inputs model. *ere are also abundant inputs being not
mentioned like leader acceleration (on visual like braking
light), followers’ velocity, followers’ horn, and winkers
considering the limitation of the length and focal point of
this paper.

2.2. ,e Following Vehicle Domain-Related Inputs Model.
Scholars are not always set on traditional thought, and some
specific inputs have been proposed. *is part of the paper
focuses on the specific inputs proposed by other researchers.
Hayakawa and Nakanishi [31] proposed an improved OV
model that considered the space between the following
vehicle and the objective vehicle. Hasebe et al. [32] proposed
an improved OV model that considered the k preceding
vehicles and the k following vehicles. Ge et al. [33] continued
Hasebe’s research and set a ratio for the preceding vehicle
and the following vehicle. *ey noticed that the driver
looked forward differently than when looking backward.
*ey also inspired this paper.

*e above model had specific inputs based on the
preceding and following two vehicles, which also had a
shortcoming to a certain extent, but it still inspired the
following study. Returning to 1950, Reuschel’s paper de-
scribed the platoon operation, most car-following models
avoided the effect of following vehicles and set the as-
sumption. However, vehicles always operate in platoons in
the real world, and the effect of the third vehicle should be
discussed. Some scholars have explored the effect of the third
vehicle. *e vehicles were affected by the following vehicle.
Zeng et al. [34] used an OVM to conduct a simulation to
explore the effect of the vehicle and found that the driver of
the preceding vehicle focused more on the information of
the following vehicle with less instability in the traffic flow.
*e predecessors had done much research on it, and this
paper describes continuing the works of the predecessors to
apply them to the new framework.

In summary, it is clear that predecessors have done great
work with different models. Physics models express drivers’
behaviors, data-driven models show great accuracy for
human-driven vehicle trajectory data, and fusion models

show outstanding performance when fusing the two types of
models. In addition, other inputs have been conducted as the
new inputs, which made some difference in the past.
However, the new method in recent years seems to default
the inputs and does not consider more conditions for several
reasons. *erefore, this paper uses the following vehicle
effect as extra inputs and transforms it to fit the new method
to propose a model with higher accuracy.

3. Methodology

In this section, we consider the reality road state and propose
a complementary model to append the traditional IDM
model which is called IDM-D. *e IDM-D model is set as
the key to connecting the new methodology which is pre-
sented in Section 2.1 and the past idea which is presented in
Section 2.2. *e LSTM and the framework of physically
informed deep learning (PIDL) are introduced briefly.

With the key applied in the new method, a new model
called IDM-D-informed LSTM is obtained. In the way of
linear combination with fixed constant coefficient, the IDM-
informed LSTM and IDM-D-informed LSTM are formed
into the fully expressed IDM-informed LSTM hybrid model
(FEHM).

3.1. IDM Model and IDM-D Model. Before we talked about
the model, the car-following events in this paper should be
declared. *e preceding vehicle in the traditional car-fol-
lowing events is still the preceding vehicle, the following
vehicle in traditional car-following events is defined as
objective vehicle in this paper, while the following vehicle
refers to the follower of the following vehicle in traditional
car-following events.

*e IDM model has been widely applied for simulating
human driving behaviors and expressing car-following be-
haviors in past studies [4, 11, 30, 35]. Compared to other
behavioral models, the IDM is beneficial for input nor-
malization with data-driven models, and the IDM fits the
field data better in Mo’s experiment [4]. *e IDM model is
shown as follows.

α(t + Δt) represents the acceleration at t + Δt, αmax
represents the max acceleration, vobj represents the ob-
jective vehicle velocity, vi de al represents the ideal velocity
of the objective vehicle, s∗ represents the objective vehicle

Table 1: *e review of the data-driven model.

Method Inputs Outputs Study

Neutral network
hobj(t), vobj(t) Δv(t + Δt) Kehtarnavaz et al. [17]

hobj(t), vobj(t),Δv(t) α(t + Δt) Ma [18]
hobj(t), vpre(t) v(t + Δt) Panwai et al. [19]

SVM hobj(t), vobj(t),Δv(t) v(t + Δt) Wei et al. [20]; Zhang et al. [21]
RNN hobj(t), vobj(t),Δv(t) α(t + Δt) Zhou et al. [6]

LSTM
A time series of hobj(t), vobj(t),Δv(t) v(t + Δt) Wang et al. [22]; Gu et.al. [23]; Lin et.al. [24]

hobj(t), vobj(t),Δv(t) v(t + Δt) Huang et al. [25]
A time series of hobj(t), vobj(t),Δv(t) A time series of α(t + Δt) Ma et al. [26]

DRL hobj(t), vobj(t),Δv(t) α(t + Δt) Zhu et al. [27]
GAIL hobj(t), vobj(t),Δv(t) α(t + Δt) Kuefler et al. [28]
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safe space headway to the preceding vehicle, sobj represents
the objective vehicle space headway, s0 represents static
safety distance, T represents safe time headway, Δv repre-
sents the velocity difference between the objective vehicle
and the preceding vehicle, and bmax represents the max
deceleration.

α(t + Δt) � αmax 1 −
vobj(t)

videal
􏼠 􏼡

δ

−
s∗ vobj(t),Δv(t)􏼐 􏼑

sobj(t)
⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

s∗ vobj(t),Δv(t)􏼐 􏼑 � s0 + Tvobj(t) +
vobj(t)Δv(t)

2
�������
amaxbmax

􏽰 .

(1)

By disassembling the IDM formula in two parts,
αmax(1 − (vobj(t)/videal)δ) is obtained as Part 1, which
represents the willingness of the driver, and
αmax(− (s∗ (vobj(t),Δv(t))/sobj(t))2) is obtained as Part 2,
which represents the constraint from the preceding vehicle.

By considering the effect of the following vehicle, the
origin preceding vehicle is turned into an objective vehicle,
and the origin objective vehicle is turned into the following
vehicle. We assume that the objective vehicle has reached the
ideal velocity without the preceding vehicle constraint, and
the following vehicle that continues accelerating decreases
the distance between the two vehicles. *is situation makes
the objective driver feel uncomfortable, but he cannot ac-
celerate because each part of the IDM model cannot express
this phenomenon. *erefore, we follow the idea of the IDM
and propose a complementary model and call it IDM-D.

α(t + Δt) � αmax 1 −
vobj(t)

videal
􏼠 􏼡

δ

+
s∗ vfol(t),Δv(t)􏼐 􏼑

sfol(t)
⎛⎝ ⎞⎠

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦,

s∗ vfol(t),Δv(t)􏼐 􏼑 � s0 + Tvfol(t) +
vfol(t)Δv

2
�������
amaxbmax

􏽰 ,

(2)

where s∗ represents the objective vehicle safe space
headway to the following vehicle and Δv represents the
velocity difference between the objective vehicle and the
following vehicle.

IDM-D is also divided into two parts as follows: αmax(1 −

(vobj(t)/videal)δ) is the same as the IDM in Part 1. Part 2 is
changed as follows: αmax(s∗ (vfol(t),Δv(t))/sfol(t))2,
which represents the driving power of the following vehicle.

It needs to be declared that the IDM-D is not a car-
following model but more like a chasing-effect model to
reveal some human psychology.

Vehicles always operate in the form of platoons when the
traffic flow is tremendous.*e state of traffic can be shown as
in Figure 1. Traditionally, the IDM can explain the behaviors
in the platoon in most situations, but the assumption
proposed in this paper cannot be expressed. *e IDM-D is
proposed to express the behaviors of the leader when the
leader is willing to consider its follower, that is the IDM
cannot be expressed in this paper. *e leader and the tail are
special because the leader has no preceding vehicle and the
tail has no following vehicle. Traditional CF models assume
no effect of the following vehicle, but the effect of the

following vehicle is considered and is taken as the as-
sumption in this paper. *erefore, members in the platoon
are affected by both the preceding vehicle and the following
vehicle. By combining the IDM and the IDM-D in ratio, the
willingness of the driver is retained, and the effect of both the
preceding vehicle and the following vehicle can be controlled
by the ratio. In this way, the behaviors of the members in the
platoon can be expressed under the assumption in this
paper.

3.2. LSTM. *e physics model can explain the CF be-
haviors, but it has a poor performance in fitting the field
data. *erefore, data-driven models are needed. Long
short-term memory is an improved recurrent neural
network (RNN) that is proposed to solve the vanishing
gradient problem. In contrast, from the structure of the
RNN, the LSTM has two lines for working. *e main line
recording the long-term memory is called the cell state
and the subline recording the working memory is called
the hidden state. *e cell state keeps the long-term in-
formation from avoiding the vanishing gradient, and the
hidden state works the same as hidden state of the RNN.
*e output gate lets the result from the short-term analysis
to output. *e procedure is shown as follows and the
structure is shown in Figure 2.

*e Xt denotes the input vectors, Ct denotes the cell
memory, and Ht denotes the output LSTM units at a time t.
Ft, It, and Ot denotes the gating vectors, respectively, for
different gates, σ and tanh denote formula (3) and (4), re-
spectively. *e Wfx, Wfh, Wtx, Wth, Wcx, Wch, Wox, and
Woh denote different weights, respectively, and the bf, bi, bc,
and bo denote different biases, respectively.

sigmoid(x) �
1

1 + e
− x, (3)

tanh(x) �
e

x
− e

− x

e
x

+ e
− x . (4)

*e forget gate is set to determine whether the cell state
forgets the information from the last cell state by using a step
signal, which is the parameter Ft calculated by the formula as
follows:

Ft � tanh WfxXt + WfhHt− 1 + bf􏼐 􏼑. (5)

*e input gate decides whether the features extracted
from new inputs are used to update the cell state by using a
step signal, which is the parameter It calculated by the
formula as follows:

It � sigmoid WixXt + WihHt− 1 + bi( 􏼁. (6)

*e extracted features come from formula (7).
􏽥Ct � tanh WcxXt + WchHt− 1 + bc( 􏼁. (7)

*e cell state is updated in formula (8) as follows:

Ct � Ft ⊙Ct− 1 + It ⊙ 􏽥Ct. (8)
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*e output gate lets the result from the short-term
analysis output. *e result is combined with the cell state’s
result to form the new hidden state.

Ot � sigmoid WoxXt + WohHt− 1 + bo( 􏼁,

Ht � Ot ⊙ tanh Ct( 􏼁.
(9)

3.3. Physics-Informed Deep Learning Framework. A physics-
informed neural network (PINN) is proposed to make the
neural network learn the physics theory and solve the for-
mula to obtain the result by adding a penalty function to the
loss function of the neural network based on the physics
theories [36]. In order for the PINN to be trained, the penalty
function is taken as a part of the loss function. When the
training is finished, a neural network (NN) that contains the
physics theories is proposed. PINN has been used in many
domains, which proves its feasibility.

PINN is adopted to fit the car-following issue, and a
paradigm was proposed by Mo et al. [8]. *e structure of the
paradigm is shown in Figure 3, and it is called physically
informed deep learning (PIDL). αobserved indicates the
change in the observed velocity in 0.1 s. αoutput1 indicates the
predicted change in the observed velocity in 0.1 s. αoutput2
indicates the predicted change in the physics velocity in 0.1 s.
αphysics indicates the change in the physics velocity in 0.1 s.

PIDL provides a new method for fusing physics theory
and data-driven machine learning, and it is applied in car-
following behavior research, which provides a new direction
for researchers to explore. With a brilliant paradigm, we
develop it with a new physics formula and consider more
conditions.

3.4. FEIDM-LSTM Hybrid Model (FEHM). *e FEIDM-
LSTM hybrid model is a fully expressed IDM-informed
LSTM hybrid model. *e FEHM is formed by the IDM,
IDM-D, and LSTM under the framework of PIDL. *e
details of the FEHM are shown in Figure 4. *e final a(t +

Δt) is obtained by combining the results of the IDM-in-
formed LSTM and the IDM-D-informed LSTM in different
ratios. β is the gain from the result of the IDM-informed
LSTM.

In this passage, the PIDL framework is used twice. In-
spired by [34],the first framework combines the IDM and
the LSTM, which is called the IDM-informed LSTM. *e
second framework combines the IDM-D and the LSTM,
which is called IDM-D-informed LSTM. Finally, the results
of the two frameworks are combined with a ratio to forecast
the acceleration of the objective vehicle as

afin(t + Δt) � β∗ aI DM− LSTM(t + Δt)

+(1 − β)∗ aI DM− D− LSTM(t + Δt),
(10)

where afin(t + Δt) represents the final acceleration in the
next moment, aI DM− LSTM(t + Δt) represents the accelera-
tion in the next moment predicted by IDM-informed LSTM
, and aI DM− D− LSTM(t + Δt) represents the acceleration in the
next moment predicted by IDM-D-informed LSTM.

*e physical model in this paper like IDM or IDM-D,
plays an important role in training the LSTM. In other
words, LSTM needs a penalty to mimic human driving, this
penalty is a driver (not the man who drives the vehicle, but
the result in section 4.3 shows it is not good enough for only
IDM as penalty in deceleration, therefore we push out a
IDM-D to boost the LSTM to learn to act more likely as

Input : Xt

Hidden_state:
Ht−1

Cell_state:
Ct-1

Forget_gate:
Ft

Input_gate:
It

Output_gate:
Ot

σ σ σtanh

tanh

Ct

Ht

+

Figure 2: *e details of the LSTM cell.

LeaderMember 1Member 2Member 3Tail

Figure 1: Vehicles operating in the platoon.
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human; we admit IDM-D got its shortcoming but it can
make LSTM learning to perform better on mimicking hu-
man driving in the deceleration).

4. Numerical Experiment

In this section, we use the NGSIM dataset to calibrate the
IDM parameters and train our IDM-informed deep learning
model. *e results are then compared with the LSTMmodel
and some machine learning methods.

4.1. Data Preparation. In contrast to the common machine
learning methods, deep learning is more complicated and
confused with many parameters to calibrate. *us, massive
data are needed. *e NGSIM datasets meet the above
conditions and are available for us. *erefore, we decide to
use it for observed data.

*e NGSIM datasets were collected from a segment of
Highway I-80 in the USA by a camera placed on the top of a
high building. *e recorded segment contained five lanes in
the main lane, along with an auxiliary lane between an on-
ramp and off-ramp. *e datasets recorded the traffic flow
and its time interval was 0.1 s. To leverage the effect of lane
changing and capture as many car-following behaviors as
possible, the median lane (lanes 1, 2, 3, and 4) vehicles’
trajectories without lane changing were used.

After investigating the relevant research [35, 36], we
decide to use the reconstructed I-80 dataset provided by
Montanino and Punzo because their methods improve the
accuracy of the NGSIM dataset and make it available for
researchers to study the traffic phenomenons.

A total of 357650 samples (lanes 1, 2, and 4) are used for
training, and 175658 samples (lane3) are used for testing.We
show the details of the training data and test data in
Tables 2–4.

*e allocation data are also an important part of the
PINN and represent unobserved data calculated by physical
formulas. *e difference between allocation data and ob-
served data as the inputting part is shown in Figure 5. *e
orange points represent allocation points, which are also
called unobserved points, and the blue points represent
observed points.

IDM-informed
LSTM

IDM-D-informed
LSTM

Δα (t + Δt)

IDM LSTM LSTMIDM-D

× β × (1-β)

Figure 4: *e structure of the FEHM.

V h

LSTM

V' h'

αoutput1 αoutput2

Physics Formulas
Computing

αphysicsαobserved

MSEphy MSErealLoss

MIN
Loss

?

αfin-op

N

Y
Updating LSTM

allocation dataobserved data

× a × (1-a)

Last state of
allocation data

Time series Time series

ΔVo-p ΔV'o-p

Figure 3: *e details of the physics-informed deep learning framework.
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4.2. Model Training and Evaluation Method. *e inputs of
the model IDM are the objective vehicle velocity, the relative
velocity (the objective vehicle velocity minus the preceding
vehicle velocity), the space headway, and the allocation data.

*e inputs of the model-IDM development are the
objective vehicle velocity, the relative velocity (the objective
vehicle velocity minus the following vehicle velocity), the
space headway, and the allocation data.*e time steps are set
to 1 s (10 intervals of 0.1) by considering the time steps used
in other papers [29]. To avoid overfitting, we set the learning
rate to 0.001 and divide the training data into three parts. For
part 1, we let each time step overlap 70% of the information
and then overlap 30% in part 2. Finally, we set time steps
without overlapping. Each part of the information over-
lapping uses one dimension as input, for example, and is
shown in Figure 6.

*e format of the training data has been changed to be
more flexible. In a traditional case, like Figure 7, the format
of training data makes less utilization of data (each vehicle is
used for once). We transform the objective vehicle to the
following vehicle and transform the preceding vehicle to the
objective vehicle, which means we double the data for
training. It is shown in Figure 8.

*e whole framework was structured by Keras with
TensorFlow as the backend. *e CPU is i7-10700K. *e
structure of the LSTM is considered by reference [29] and it
contains five hidden layers, which we set as 60, 100, 200, 300,
and 100 neurons for each layer. Behind each layer, we set the
dropout layer (0.2) to avoid overfitting. By considering the
operation time and the accuracy, the epochs of training for
each model are set to 25, and the mean training time for each
epoch is 61 s.

Table 2: Detailed information on the velocity of objective vehicles in different lanes.

Velocity of objective vehicle Lane 1 Lane 2 Lane 3 Lane 4
Max (m/s) 27.094 17.736 16.320 15.197
Min (m/s) 4.622 0.000 0.000 0.000
Mean (m/s) 16.178 7.1040 7.1062 6.387
Median (m/s) 16.238 7.3423 7.3529 6.432
STD variance 3.534 2.5318 2.3170 2.598

Table 3: Detailed information on the velocity of the preceding vehicle in different lanes.

Velocity of preceding vehicle Lane 1 Lane 2 Lane 3 Lane 4
Max (m/s) 26.997 15.751 15.205 14.456
Min (m/s) 4.622 0.102 0.100 0.100
Mean (m/s) 16.527 7.144 7.0643 6.314
Median (m/s) 16.547 7.417 7.280 6.332
STD variance 3.445 2.545 2.323 2.542

Table 4: Detailed information on the gap of the objective vehicle.

Space headway of objective vehicle Lane 1 Lane 2 Lane 3 Lane 4
Max (m) 303.525 80.221 76.769 73.578
Min (m) 4.098 0.121 0.071 0.278
Mean (m) 33.673 13.372 13.676 12.477
Median (m) 27.731 11.817 12.195 10.880
STD variance 22.765 7.337 7.420 7.323

Allocation_data

Observed_data

300
250
200
150
100
50
0

30

20
15

10
V(m

/s)
5

0302010delta_V(m/s)

-10-20-30

0

H (m)

Figure 5: *e descriptions of the allocation data and the observed data.
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*e LOSS is adopted as an evaluation indicator for
determining the parameter values of the model IDM and the
model IDM development. It is formed by indicators
MSEphy and MSEreal, which illustrate the physical and
realistic error between the trajectories and the field data,
respectively. *e α is set 0.7 following reference [8].

aobserve
i indicates the observed acceleration in 0.1 s.

asim− real
i indicates the predicted change in the observed

velocity in 0.1 s. a
sim− phy
i indicates the predicted physics

acceleration in 0.1 s. aallocate
i indicates allocation data’s

acceleration in 0.1 s.

MSEphy �
1
N

􏽘

N

i�1
a
allocate
i − a

sim− phy
i􏼐 􏼑

2
,

MSEreal �
1
N

􏽘

N

i�1
a
observe
i − a

sim− real
i􏼐 􏼑

2
,

LOSS � αMSEphy +(1 − α)MSEreal.

(11)

It is needed for declaring that the parameter in IDM and
IDM-D is shared in our assumption. *e parameters are
shown in Table 5.

4.3. Analysis and Improvement. We use some machine
learning methods to compare with our model. *e ANNwas
constructed by Keras. It contains one input layer with three-
dimensional inputs, one hidden layer with 64 neurons, and

one output layer with one dimension.*e data are converted
by the “Max_Min_scale.” *en, we split it into training and
testing data with the “train_test_split” of the “sklearn.” *e
model is fitted, and test data are evaluated.

*e KNN is realized by “KNeighborsRegressor” in py-
thon. To consider fairness, the dataset is cut by vehicle IDs.
*is means that the train data do not have an identical ID
vehicle in the test data. *e ratio of the training data and the
testing data is almost 2 :1, and the neighbors’ number is set
to 10 according to [5].

*rough the indicator loss, we can determine that the
IDM-informed LSTM model is better than the other ma-
chine learning algorithm in Table 6.

As we consider the effect of the following vehicle, the
IDM-D-informed deep learning is combined with the IDM-
informed LSTM to conduct a fusion model. We assume that
the IDM-informed LSTMmodel learns the willingness of the
driver and the effect of the preceding vehicle. Additionally,
the IDM-D-informed LSTM model learns the same will-
ingness of the driver as the IDM-informed LSTMmodel and
the effect of the following vehicle. *rough the simple linear

Preceding vehicleObjective vehicleFollowing vehicle

Figure 7: Traditional training data considering the effect of the following vehicle.

Preceding vehicleObjective vehicle Following vehicle Objective vehicle
Transform

Figure 8: *e transformation to fit the model in this passage.

Time
Step i

Time
Step i

Time
Step i

Time
Step i+1

Time
Step i+1

Time
Step i+1

Part I

Part II

Part III

Figure 6: *e details of the training process (taking one-dimension inputs as an example).

Table 5: *e ground truth value of each parameter.

Parameters Value
α(m/s2) 0.73
T(s) 1.5
videal(m/s) 30
S0(m) 2
b(m/s2) 1.63
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relation, we try to find a balance to fit the effect of the
following vehicle and the preceding vehicle on the driver.
*e formula and result are shown as follows:

Rfin � βRI DM − LSTM

+(1 − β)RI DM − D − LSTM,
(12)

where Rfin represents the final result, RI DM − LSTM

represents the result of the IDM-informed LSTM, RI DM −

D − LSTM represents the result of the IDM-D-informed
LSTM, and β is a coefficient between 0 and 1.

*e training loss curves for the two models are shown in
Figure 9. When the ratio β is set as 0.7 in Table 7, the test loss
is the lowest. When the ratio β reaches 0.7, the loss changes
slightly. To improve the generalizability of our model, we
decide to use 0.7 as the value of β.

For example, for the ID 21 vehicle in Figure 10, the
fusion result shows better performance when the objective
vehicle struggles with the deceleration process and better fits
the origin velocity difference. *e IDM-informed LSTM
shows that the vehicles’ deceleration is greater than the
origin without considering the following vehicle, and the
FEHM effect, to some extent, prevents the vehicle from
decelerating and fitting the origin deceleration.

Table 6: *e results of different models.

LSTM IDM-informed LSTM ANN KNN
MSE/LOSS 0.00931 0.00704 0.04924 0.01809

0

0.0
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0.4

0.6
Lo
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20 40 60
Epoch

80 100

train_po
train_of

Figure 9: *e train loss curves.

Table 7: Results of the different ratios in the test.

Different ratio β in test Loss in test
0 0.01048
0.1 0.00933
0.2 0.00847
0.3 0.00772
0.4 0.00715
0.5 0.00673
0.6 0.00648
0.7 0.00638
0.8 0.00644
0.9 0.00666
1 0.00704
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Figure 10: Car-following sampled acceleration of ID 121 generated
by IDM-informed LSTM and fusion model.
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5. Conclusions and Discussion

To better capture and mimic human decisions on car fol-
lowing, an IDM-informed LSTM and IDM-D-informed
LSTM fusion model (FEHM) is proposed in this paper. *e
fusionmodel incorporates the historical driving information
powered by the LSTM and temporal driving decisions
powered by the physics models. NGSIM I-80-reconstructed
dataset is used to validate the fusion model.

Applying the physics-informed deep learning frame-
work proposed by the predecessor, this paper has repro-
duced the brilliant results of the predecessor. However, this
paper is not satisfied with the result, according to the
principle of closely simulating the real manual driving data
as much as possible, this article further improved the ac-
curacy of the PIDL car following model. *erefore, this
paper reenables the effect of the following vehicles and
attempts to realize the effect based on the concept of the
IDM. By proposing the IDM-D without a traditional val-
idation, this paper expects it to work in expressing the
acceleration of the objective vehicle caused by the following
vehicle when chasing the objective vehicle. *is phe-
nomenon cannot be expressed by the IDM, and thus,
physically informed deep learning lost the support of the
theory. *e IDM-D is applied in the experiment. By
combining the results of the IDM-informed LSTM and the
results of the IDM-D-informed LSTM in different ratios,

the final results show that the FEHM’s result is better than
that of the IDM-informed LSTM alone with a lower MSE.

*e result of the IDM-informed LSTM shows worse
performance in predicting the deceleration process. *e solo
IDM-informed LSTM has studied the effect of preceding
vehicles without considering the following vehicles.
*erefore, the prediction of its deceleration is out of the
range of observed deceleration without considering the
following vehicles, although it did receive a following ve-
hicle. *is proves the effect of the following vehicles and the
feasibility of the IDM-D, even though it is imperfect. More
details can be shown in Figure 11.

Furthermore, the IDM-D will be expected to be im-
proved, and the ratio will be calculated by the reasonable
formula instead of the rough estimation. *e nonlinear
relationship between the 2 models is expected to be studied.

*e purpose of this paper is not to propose a new and
advanced method; instead, this paper inherits predecessors’
ideas and realizes the ideas based on the new technique. It is
a great honor for the beginner to help the predecessor to
improve and realize their ideas under a new framework.

Data Availability

*e data used to support the findings of this study are in-
cluded within the article. *e researcher can use the con-
structed dataset is website link in the article to get the origin
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Figure 11: More examples of comparisons of the IDM-informed LSTM and the fusion model (vehicle_ID: 670,1073,1729,2189).
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data; by following the process in the article, the data used in
the article will be obtained. *e researchers can obtain the
dataset in https://www.dropbox.com/s/
hyo0slm816m06hx/Reconstructed%20NGSIM%20I80-1%
20data.zip?dl�0.
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