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Vehicle path recognition is one of the key methods used in urban traffic research, such as traffic flow characteristics analysis.
Automatic vehicle identification (AVI) is often used for vehicle path recognition and is suitable for mixed traffic flow with
connected automated vehicles (CAVs). However, there still remain issues in overcoming the difficulty of vehicle path identi-
fication caused by the discontinuity of AVI data and solving the problem of low precision of AVI application. To model the vehicle
path, this paper selects the AVI system of Yicheng Town, Linfen City, Shanxi Province, as a test bed. +e travel modes of private
cars and taxis are discussed, and the quantified indicators of the model are determined. By combining the analytic hierarchy
process (AHP) with the entropy weight method (EWM) to get the weights of the indicators, the path recognition model under
incomplete AVI data is proposed. Finally, based on the path recognition model proposed in this paper, case studies are carried out
for the private car and taxi path recognition, respectively. +e validity of the path identification through practical studies and the
effect of the number of missing nodes of AVI equipment on the accuracy of the model are discussed. +e results show that the
recognition of the travel path using the proposed model is consistent with the actual travel path. +e accuracy of the proposed
model is more than 60% when the number of missing nodes is less than 7 in total 31 nodes. Considering the decision models for
private cars and taxis, respectively, the proposed model provides a method for vehicle path recognition based on incomplete
AVI data.

1. Introduction

With the prevalent traffic information and data mining
technology, it becomes possible to extract the complete path
information of vehicles from the collected data by the au-
tomatic vehicle identification (AVI) system in most cities.
+e AVI data is the most direct reflection of the urban traffic
travel law, and on the other hand, it also raises attention
from transportation engineers and researchers. With AVI
data, the complete path information of both human-driven
vehicles (HDVs) and connected automated vehicles (CAVs)
could be extracted uniformly, which is the groundwork for
the further study of the characteristics of mixed traffic flow
with CAVs. However, due to funding limitations, the system
is usually incomplete. +ese AVI devices had to be installed

at some critical places instead of all the places that require
the devices, which may result in some blind spots. +e
missing data then increased the difficulty of obtaining the
vehicles’ travel paths, whereas there is no current practical
model to solve this issue. With this consideration, it is
necessary to establish a vehicle path recognition method
under a set of incomplete AVI data, which would help to
exploit data and benefit both traffic police departments and
engineers.

Most of the research on AVI data originated from the
computer vision aspect, focusing on how to extract accurate
license plate information from an image or video system
[1, 2]. With the improvement of image recognition tech-
nology and computer computing efficiency, image pro-
cessing and license plate recognition functions are gradually
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added to the AVI system [3]. Ajanthan [4] built a license
plate recognition system under low-resolution surveillance
video, which is robust for environmental changes such as
illumination. Lee [5] developed a license plate recognition
method in the traffic monitoring scene and trained the
license plate data set through the deep convolution network
so that the license plate recognition accuracy could be higher
than the existing license plate recognition method.

For the application of AVI data, prevalent studies mainly
apply the data of the road network monitoring system to
obtain traffic parameters such as road network OD matrix
[6, 7], road traffic flow [8, 9], and road traffic time [10]. In
China, some scholars used AVI data to estimate the average
travel time of road segments [11], collect the traffic flow of
road sections [12], and calculate the average driving speed
under the signal progression [13, 14]. However, there is a
lack of research on vehicle trajectory reconstruction based
on AVI data. In recent years, some Chinese scholars used
AVI data to recover the vehicle trajectory. By fusing the fix-
point detector and signal timing data, Tang [15] invented a
vehicle trajectory reconstruction method based on traffic
wave theory and traffic simulation theory, which overcomes
the interference of roadside vehicles. Xiang [16] invented a
fusion of AVI devices and a fixed-point detector trunk
trajectory reconstruction method, which can improve the
accuracy of trajectory reconstruction. Yu [17] presented a
vehicle identification data-based trajectory reconstruction
method for signalized-link by constructing a phase-to-phase
backtracking framework and using the shockwave theory to
reconstruct vehicular trajectory segments involved in each
backtracking step. Lin and Yang [18, 19] collected the AVI
data and extracted vehicle travel trajectories. He also used
the data to analyze the pollutant emission sources and
emission intensity. Zhang [20] used AVI data at the sig-
nalized intersection to reconstruct the trajectory of the
vehicles and extract the delay information.

+e above studies are applications of AVI data in vehicle
trajectory reconstruction, while these studies did not con-
sider the problem of incomplete AVI data, which leads to a
certain deviation between the traffic in the road network and
the actual situation. Some shortest path algorithms are used
to fill the path between the two missing nodes, but when
there are more missing nodes, the vehicle does not exactly
follow the shortest path, and it is impossible to depict the
specific travel path of the vehicle in the road network. Rao
[21] used a particle filter to estimate the probability of a
vehicle’s trajectory from all possible candidate trajectories
based on AVI data. Li [22] used the improved Dijkstra al-
gorithm to search for the shortest path of the first K bars
between two points by distance. Mo [23] developed a
Bayesian path reconstruction model to replenish the lost
information resulting from the recognition error and in-
sufficient coverage rate of the AVI system. Guo [24]
extracted road travel time based on AVI data.

Some scholars use multiobjective decision-making
methods to identify missing paths. Wang [25], Yang et al.
[26], Yang et al. [27], and Yang et al. [28] proposed using
multitarget decision-making methods to complete the ve-
hicle’s travel path, but they assumed that all vehicles use the

same indicators for multitarget path decision-making, which
did not consider the road network of different models of the
path selection factors and did not distinguish the weight
value of each indicator. Most studies use a single method to
determine the index weight in calculating the weight of the
indicator.+e idea of AHP-EWM combining the calculation
of the index combination weight has been partially applied
in other fields. But the AHP-EWM study combined with
path recognition is relatively scarce.

Based on the background of the above research, this
paper considers the different path selection indicators of the
two models (taxi and private car) under the background of
the incomplete AVI data and establishes a vehicle path
recognition model to solve the difficult path recognition
problem caused by the discontinuity of vehicle travel
records.

2. Problem Description

Vehicle travel path recognition refers to the path selection
behavior at the missing point. In the set of feasible paths
between the origin and the destination, the path matching
the actual vehicle travel path may include multiple decision
points.+e schematic diagram of the path selection behavior
is shown in Figure 1. +ere are three travel paths to choose
between OD: Path 1: link 3-link 8 (O–F-D); Path 2: link 1 -
link 4 - link 6 - link 7 (O-A-E-C-D); and Path 3: link 1 - link 2
- link 5 - link 7(O-A-B-C-D).

When there are more than two missing nodes between
travel origin and destination, it is difficult to complete the
path directly based on the neighboring intersections in the
road network. In previous studies, the shortest path algo-
rithm is mostly used to recognize the path between two
missing nodes. However, vehicle travel in the actual road
network is jointly influenced by a variety of factors, and
different types of vehicles are correlated with different
factors. So, the method of using the shortest path algorithm
to fill in the missing path cannot be adapted to all vehicle
types.

In small cities with incomplete public transit systems, the
number of taxis in the road network is gradually increasing
with the development of taxi services. +e proportion of
taxis in the traffic flow is gradually increasing. Private cars
travel mainly for commuters, while taxis travel mainly to
collect passengers for profit. Different travel purposes de-
termine different travel paths. If the travel paths of taxis in
the road network are recognized according to the path
recognition model of private cars, the received travel paths
often do not match the actual travel paths of taxis. If the taxis
in the road network are ignored, and only the travel paths of
private cars are recognized, it will cause errors in the traffic
volume of the road network.

In summary, it is difficult for the existing methods to
recognize all vehicles’ paths in the road network. In this paper,
we will determine the corresponding path decision indicators
for the different travel factors of taxis and private cars. A
multiobjective decision model considering different vehicle
types is proposed. +e missing paths of private cars and taxis
in the AVI data are recognized separately using this model.
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3. Methodology

3.1. Model Assumptions. +e following assumptions are
adopted to simplify the analysis:

(1) +e case of vehicles traveling back and forth between
ODs is not considered. +at is, there is no circular
path in the path.

(2) Vehicles travel only on primary roads, secondary
roads, feeder roads, and some other roads with wider
widths. Vehicles driving on abnormal segments (e.g.,
nonmotorized roads) are not considered.

3.2. Indicator Selection. To better describe the vehicle path
recognitionmodel, it is necessary to select the corresponding
indicators for the path recognition model of private cars and
taxis. Factors affecting vehicle routing [29] are generally
divided into 3 aspects: subjective factors of travelers, such as
gender, age, income, and familiarity with the road network;
travel purposes, such as commuting and entertainment;
environmental characteristics of roads, such as path length,
road grade, the number of signalized intersections on the
path, the number of turns on the path, the real-time traffic
status on the path, the nature of land use, and the effective
passage time of the path, etc.

All the data in this paper are based on the AVI data.
+ere is no additional survey to the data. +erefore, the data
of the traveler’s characteristics cannot be known, which is
temporarily not considered. Only factors of road environ-
ment characteristics are considered. Different vehicle types
have different preferences to choose the travel path. 1000
path data are randomly selected from the extracted complete
driving paths as the analysis sample. Combined with vehicle
travel data, the Pearson correlation coefficient is used to
analyze the path behavior of each indicator in private cars
and taxis in SPSS.

+e correlation coefficient results of private cars and
taxis are shown in Figure 2.+e ordinate Y-axis in Figure 2 is
the correlation coefficient between each index factor and the
probability of path selection. When the value is positive, it
means that the indicator is positively correlated with the
probability of path selection. +e height of the ordinate in
the diagram represents the strength of the correlation.

As can be seen from Figure 2, the correlation order of
each indicator in the path selection of private cars is as
follows:

Consistency between actual and ideal travel time-
>Traffic operation> Left turn times> Path length-
>Number of signalized intersections>Road grade.

+at means, travelers are prone to choose the ideal
path with the shortest path time, no congestion, and
relatively smooth driving. At the same time, the corre-
lation between the nature of land use and the probability
of private car path selection is not very high, which is
almost zero.

+e correlation order of each indicator in the path se-
lection of taxis is as shown in Figure 3: Consistency between
actual and ideal travel time>Number of signalized inter-
sections>Traffic operation> Land-use> Left turn time-
s>Path length.

Different from private cars, taxis pay more attention to
land use when choosing the path, which is closely related to
the passenger-taking behavior of taxis. At the same time, the
number of signalized intersections is also considered be-
cause taxis tend to have smaller delays. +e significant
correlation level of each indicator canmeet the requirements
(p≤ 0.05).

In summary, the decision-making indicator of the pri-
vate car and taxi travel path is shown in Tables 1 and 2.

3.3. Modelling. +e consistency between actual and ideal
travel time, traffic operation, left turn times, path length,
the number of signalized intersections, and road grade are
selected as the decision indicators of the private car
impedance model. In the other side, the decision indi-
cators of the taxi path model include the consistency
between actual and ideal travel time, the number of
signalized intersections, traffic operation, land use, left
turn times, and path length. +e effective travel time,
traffic operation, left turn times, path length, and the
number of signal intersections are the common indicators
of the two types of vehicles. +e road grade is a special
indicator for private cars, and the land use is a special
indicator for taxis.

Path recognition for vehicles with missing nodes in the
AVI data is a process of determining the optimal path from
the set of reasonable paths obtained according to the path
search algorithm. +e vehicles always hope to obtain the
shortest path length and the shortest travel time, which is a
multiobjective decision-making problem.

Every indicator has a different degree of importance
because of its different logic system. +rough the no-di-
mension treatment of different indicators and the deter-
mination of the weight value, the multiobjective path
decision-making problem is transformed into the problem
of finding the optimal value of a single objective. +e vehicle
selects the overall most satisfactory path in the travel, and the
variables (ρ1, ρ2) are set:

ρ1 � 1 means that the traveling vehicle is a private car.
Otherwise, it should show ρ1 � 0. +e variable ρ2 � 1 in-
dicates that the vehicle is a taxi. Otherwise, the value should
be 0. +e vehicle path recognition model is constructed as
shown in formula (1), and formula (2) is the objective
function of the model.
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Figure 1: Path selection behavior diagram.
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Table 1: Correlation analysis of decision indicator and route selection probability of private cars.

Indicator p value Calculation method
Consistency between actual and ideal travel time .000 τrs

k � Tk
′ − Tk/Tk

Traffic operation .002 Crs
k � 􏽐a(i,j)∈Ela(i,j)ca(i,j)/Lrs

k

Left turn times .008 􏽐ψrps � Prp ⊗Pps

Path length .010 Lrs
k � 􏽐a(i,j)∈Ela(i,j)ξ

rs
a(i,j),k

Number of signalized intersections .011 Srs
k � 􏽐a(i,j)∈Ela(i,j)sa(i,j)/Lrs

k

Road grade .019 Drs
k � 􏽐a(i,j)∈Ela(i,j)da(i,j)/Lrs

k

Table 2: Correlation analysis of decision indicator and route selection probability of taxis.

Indicator p value Calculation method
Consistency between actual and ideal travel time .000 τrs

k � Tk
′ − Tk/Tk

Number of signalized intersections .001 Srs
k � 􏽐a(i,j)∈Ela(i,j)sa(i,j)/Lrs

k

Traffic operation .002 Ck � 􏽐a(i,j)∈Ela(i,j)ca(i,j)/Lrs
k

Land-use .003 Nk � 􏽐a(i,j)∈Ela(i,j)na(i,j)/Lrs
k

Left turn times .011 ψrps � Prp ⊗Pps � 1
Path length .021 Lrs

k � 􏽐a(i,j)∈Ela(i,j)ξ
rs
a(i,j),k
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Figure 2: Correlation analysis of private car and taxi.
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Figure 3: Road network map of Yicheng County.
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ca,k � ω1L
rs
k + ω2C

rs
k + ω3S

rs
k + ω4 􏽘ψrps

+ ω5τ
rs
k + ρ1ω6D

rs
k + ρ2ω7N

rs
k ,

(1)

min ca,k, (2)

where ca,k is the satisfaction value of the path k. ωj is the
combined weight value of the j indicator. Lrs

k is the path
length of the path k between r and s.Crs

k is the road operation
condition of the path k between r and s.Srs

k is the number of
signalized intersections of the path k between r and s.􏽐ψrps

is the number of left turns at the path k. τrs
k is the accordance

rate of the theoretical transit time of path k between r and s
with the actual transit time. Drs

k is the road grade of the path
k between r and s.Nrs

k is the land-use indicator of the path k
between r and s.ρ1 is the private car representative indicator.
ρ2 is the taxi representative indicator.

+e constraint of the model is 􏽐ωj � 1，ensuring that
the sum of weights is always 1.

4. Model IndicatorWeightCalculationBasedon
AHP-EWM Method

AHP method is a method of determining weights that
combines quantitative and qualitative analysis, and it is the
principle that the decision maker’s thinking and decision-
making process can always be consistent in this paper.
However, since expert scoring is used in weighting indi-
cators in the decision-making process of the AHPmethod, it
leads to the subjective orientation appearing in the decision-
making process. +e single use of the AHP method will have
an impact on the evaluation results, leading to more sub-
jective factors in the path selection. +erefore, to avoid
subjective decision-making, the EWMmethod is introduced
to correct the weight of the indicators, then the path rec-
ognition process is more consistent with the actual situation.

Assuming that there are n evaluation indicators for the k
alternative paths of a certain type of vehicle. yij is the
evaluation indicator j for the scheme i, where
i � 1, 2, . . . . . . , k， j � 1, 2, . . . . . . , n. +e calculation steps
of the EWM method to correct the weight value are as
follows.

Step 1. : Standardized processing. +e purpose is to elim-
inate the interaction of dimensions and orders of magnitude
between the indicators. And it is necessary to standardize the
indicator yij in the original data. +e common methods to
eliminate the dimension are the extreme-range method and
the Z-score method. +e Z-score method will result in a
negative entropy value due to the accumulation of errors,
which is not following the entropy principle.

In this paper, the extreme-range method is considered to
eliminate the dimensional problem between the indicators.
+e correlation analysis between the indicators and the
probability of path selection shows that the two indicator
values of road grade and land use are positively correlated
benefit indicators, and all other indicators are negatively
correlated cost indicators.

For the benefit indicator, the extreme-range formula is as
follows:

yij
′ �

yij − ymin

ymax − ymin
, (3)

where ymax and ymin are the maximum andminimum values
of the indicator j.

For cost indicators, the extreme-range formula is as
follows:

yij
′ �

ymax − yij

ymax − ymin
. (4)

However, the extreme-range method will cause the
maximum and minimum boundary values to be zero after
the elimination of dimensions, which will affect the sub-
sequent calculation of entropy. To avoid the problems, the
shift operation is adopted after the standardization of the
indicators so that:

yij
″ � yij
′ + 0.001. (5)

Obtain the standardized decision matrix after the di-
mensionless processing of the indicators Y″ � yij

″􏽮 􏽯
k×n

,
which is as follows:

Y″ �

y11″ y12″ · · · y1n
″

y21″ y22″ · · · y2n
″

⋮ ⋮ · · · ⋮

yk1″ yk2″ · · · ykn
″

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Step 2. : Calculate the proportion of each indicator value in
the standardized matrix zij, which is as follows:

zij �
yij
″

􏽐
k
i�1 yij
″

. (7)

Step 3. : According to the definition of information entropy,
calculate the information entropy value of each indicator j,
namely:

ej � −
1

ln k
􏽘

k

i�1
zij ln zij j � 1, 2, . . . . . . , n. (8)

Step4. : Determine the weight of the indicator, which is as
follows:

ωE,j �
1 − ej

n − 􏽐
n
j�1 ej

j � 1, 2, . . . . . . , n. (9)

To make the analysis results reflect the subjective factors
and objective reality of the travelers, the weight values of
each index obtained by the two methods are combined and
calculated by using the Lagrangemultiplier method based on
the principle of minimum information entropy. Based on
the AHP-EWM method, the weight vector ω is as follows:
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ωj �

�������ωA,iωE,j

􏽰

􏽐
n
j�1

�������ωA,iωE,j

􏽰 j � 1, 2, . . . . . . , n. (10)

5. Case Study

5.1. Experimental Design. To verify the accuracy of the
vehicle path recognition model, take the incomplete path
set (remove some nodes from the full path) as the testbed
and make a comparison of real vehicle path data and ex-
perimental results. Figure 3 is a map of the actual road
network in a town. +e node represents the major inter-
section in the road network, each intersection has AVI
equipment, but due to the unstable system conditions,
some equipment cannot do the real-time collection to the
vehicle information.

We randomly select two complete travel paths of private
cars and taxis between node 3 and node 14. +e diagram of
the actual travel paths of private cars and taxis is shown in
Figure 4. +e paths chosen by the two types of vehicles are
different. To obtain the incomplete paths, we erased all links
between node 3 and node 14, retained node 3 and node 14,
and recomplete the path according to the vehicle path
recognition model.

+e actual travel records of private cars are shown in
Table 3.

+e actual travel records of taxis are shown in Table 4.

5.2. Calculation Process

5.2.1. Generate Reasonable Path. According to the
K-shortest algorithm and the deletion algorithm, the rea-
sonable path set of private cars and taxis between node 3 and
node 14 is obtained. +e direction of private cars at node 14
is from West to East. It can be inferred that the upstream
intersection is node 13 in the West. Search for the first five
shortest paths with the fixed upstream intersection of the
end node and delete the paths with loops and detours. Fi-
nally, the first four alternative paths
Rcar

k � Rcar
1 , Rcar

2 , Rcar
3 , Rcar

4􏼈 􏼉 for private cars are selected.+e
detailed alternative paths for private cars are shown in
Table 5.

Similarly, the first three alternative paths
Rtaxi

k � Rtaxi
1 , Rtaxi

2 , Rtaxi
3􏼈 􏼉 for taxis are selected. +e detailed

alternative paths for taxis are shown in Table 6.

5.2.2. Calculation Process of the Path Recognition Model.
+e path recognition process of a private car is taken as an
example to verify the calculation process. +e attribute value
of each indicator, according to the quantitative calculation
formula of the attribute value of each path, is calculated to
obtain the indicator matrix Y � yij􏽮 􏽯4×6 (Formula (3)). +e
rows of the matrix represent the path number (Table 3), and
the columns from left to right each represent the value of an
indicator, such as the consistency of passing time, road
operation, number of left turns, path length, number of
signalized intersections, and road category.

Y �

1.55 2.76 1 2.13 4 6.37

4.37 4.56 0 2.07 3 5.26

8.50 2.95 2 2.34 4 5.85

5.12 3.73 1 2.27 4 5.24

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

5.2.3. Indicator Weight Calculated by AHP Method. By
constructing the indicator comparison matrix, the weight
value vector of each indicator is obtained.

ωA � 0.3894 0.2125 0.1035 0.0335 0.0659 0.1952( 􏼁.

(12)

+e maximum eigenvalue is as follows:

λmax � 6.58 6.3276 6.5926 6.3738 6.6484 6.2146( 􏼁.

(13)

+e consistency indicator CI � 0.074< 0.1, which passes
the consistency test. +erefore, the indicator weight meets
the requirements.

5.2.4. Calculate Indicator Weight by EWM Method. After
range standardization and shifting 0.001 units to the right,
the standardized matrix Y″ � yij

″􏽮 􏽯4×6 is calculated.

Y″ �

1.001 1.001 0.501 0.781 0.001 1.001

0.591 0.001 1.001 1.001 1.001 0.021

0.001 0.891 0.001 0.001 0.001 0.531

0.491 0.461 0.501 0.261 0.001 0.001

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

+e weight value vector of each indicator is obtained.

ωE � 0.1274 0.1472 0.1273 0.1595 0.2434 0.1951( 􏼁.

(15)

5.2.5. Calculate Combination Weight. According to formula
(10), the weight values of each indicator obtained by the two
methods are combined and calculated to obtain the weight
vector ω based on the improved weight calculation by the
AHP-EWM method.

ωcar
� 0.245 0.1945 0.1263 0.0804 0.1393 0.2146( 􏼁.

(16)

5.2.6. Calculate the Most Satisfactory Path. Substitute the
weight calculation result into the model formula (1) to
calculate the value of ca,k.

c
car
a,k � 3.1374 3.6713 4.9079 3.9704􏼂 􏼃,

min c
car
a,k � 3.1374.

(17)

+e result means that the first path is the actual shortest
path calculated by the model, as the path where the private
car is finally recognized.
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Similarly, the most satisfactory path for taxis is
calculated.

c
taxi
a,k � 3.912 4.112 4.832􏼂 􏼃,

min c
taxi
a,k � 3.912.

(18)

+e result means that the first alternative path is the path
where the taxi is finally recognized.

5.3. Results and Discussion. +e calculation results of the
model are consistent with the actual results, and the most
satisfactory path is also consistent with the actual path.

For private car: the path selection order sorted by model
results is Rcar

1 > Rcar
2 > Rcar

4 > Rcar
3 . However, if we sort the

path selection order by its length, Rcar
2 is the shortest path.

Considering the traffic condition of the link Rcar
2 , sections 3-

7 have lower road categories and poor traffic conditions.
Congestion is likely to occur due to the increased travel
activities during the evening peak. +e result shows that it is
consistent with the actual situation analysis and can ob-
jectively reflect the actual situation.

For taxi: the path selection order sorted by model results
is Rcar

1 > Rcar
2 > Rcar

3 . +e road conditions of sections 5-11 are
better than sections 6-12. However, both paths of model
results and actual results contain sections 6-12 instead of
sections 5-11. Based on actual investigations, sections 6-12
are in a commercial area with large shopping malls and
stores. Combining the travel time periods, the commercial
area is the preferred destination for taxis, no matter whether
the taxi is carrying passengers or not.

Table 5: Alternative paths for private cars.

Alternative paths number Rcar
1 Rcar

2 Rcar
3 Rcar

4

Path sequence {3, 4, 5, 11, 13, 14} {3, 8, 9, 13, 14} {3, 4, 10, 11, 13, 14} {3, 8, 9, 10, 11, 13, 14}

Table 6: Alternative paths for taxis.

Alternative paths number Rtaxi
1 Rtaxi

2 Rtaxi
3

Path sequence {3, 4, 5, 6, 12, 15, 14} {3, 4, 5, 11, 12, 15, 14} {3, 8, 9, 10, 11, 12, 15, 14}
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Figure 4: Diagram of the actual travel path of private cars and taxis.

Table 3: Actual travel records of private cars.

Number Spot location Direction Departure time
1 3 West to east 16：11：56
2 4 West to east 16：12：33
3 5 South to north 16：13：11
4 11 South to north 16：15：56
5 13 West to east 16：17：32
6 14 West to east 16：18：34

Table 4: Actual travel records of taxis.

Number Spot location Direction Departure time
1 3 West to east 11：15：11
2 4 West to east 11：15：59
3 5 West to east 11：17：12
4 6 South to north 11：19：06
5 12 West to east 11：22：32
6 15 South to north 11：23：04
7 14 South to north 11：24：07
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+rough the above analysis, it can be concluded that the
actual path chosen by travelers is not necessarily the shortest
distance path, which is also compatible with the K-Shortest
Paths (KSP) problem. For the same OD, the actual path
results of private cars and taxis are different, as well as the
path results obtained through the path recognition model
are also different and consistent with the actual situation. It
is proved that the model can accurately identify the vehicle
travel path to a certain extent, which shows that the model
established in this paper is effective for identifying the
missing paths in the AVI data.

6. Influence of the Number ofMissing Nodes on
Model Accuracy

6.1. ExperimentDesign. To increase the test sample capacity,
the road network is expanded to the central area of Yicheng
County. +e model assumes that vehicles driving in ex-
tremely narrow alleys are not considered, so the road net-
work is simplified into a network composed of main trunk
roads, secondary trunk roads and slip roads, as shown in
Figure 5. +e black solid nodes in the road network map are
intersections with AVI device, and the white nodes are
virtual.+ere is little AVI data at some intersections, and the
phenomenon ofmissing vehicle detection is common.When
the distribution density of the AVI devices in the road
network is equal to that of the nodes in the road network, it is
easy to obtain the travel records of the vehicles and analyze
the traffic characteristics by mining the complete AVI data.
However, due to the imperfect equipment and low coverage,
the travel path cannot be obtained directly from the in-
complete AVI data.

For the three paths with different distances, 100 private
car paths and 50 taxi paths are randomly selected as the test
data set. +e actual paths of the vehicle are shown in
Figures 6–8. To compare the experimental results with the
real situation and analyze the error, three groups of ex-
periments are designed according to the number of missing
nodes. Remove some nodes in the complete path, and
complete the path between the start and end nodes of the
missing path according to the path recognition model.

+e short-distance path represents the path shorter than
1 km, the medium distance path represents the path within 1
to 2 km, and the long-distance path represents the path
longer than 2 km.

According to the number of missing nodes, the exper-
iment is divided into three groups, as shown in Table 7.

+e first group: 20% of the nodes are missing.
+e second group: 50% of the nodes are missing.
+e third group: all nodes are missing except for the

origin and destination.
+e method for selecting missing nodes is to generate

random numbers in percentage from the sequence numbers
of other nodes on the path except the start node and delete
the corresponding node records.

+e procedure is as follows.

Step1：Use Dijkstra and deletion algorithm to obtain
the alternative path set of the missing path in each case

combined with the driving direction of the vehicle and
determine the attribute indicator values on the path.
Step2：Calculate the weight value of each attribute
indicator according to the analytic hierarchy process,
use MATLAB to calculate the entropy weight value of
each attribute indicator, and then calculate the com-
bined weight and the model result.
Step3：Compare the quantity ratio of the model cal-
culation results that are consistent with the actual path,
and calculate the accuracy of the model.

+eoretically, the model calculation results should be
consistent with the actual travel path. However, due to the
different traffic operations in different periods, some paths
may have high similarities with the theoretical path (path
calculated by the proposed model). +e length of the
common substring Public(Rk, Ractual) represents the num-
ber of common sections of actual paths and theoretical
paths, where Rk represents the kth alternative path in the
alternative path set and Ractual represents the theoretical
travel path as well as the actual path.+en the accuracy of the
model could be expressed as follows:

cj �
􏽐

m
i�1 Public Rk, Ractual( 􏼁

m
× 100%. (19)

6.2. Results Analysis. +rough the analysis of the above
experimental results, we can get the path decision-making
results and accuracy of the three groups of experiments.

6.2.1. 20% of the Total Number of Nodes in the Path Were
Missing. We assume that path (a) missed the data of node 3,
whose front node is a six-legged intersection with complex
flow directions. So, node 3, as the first intersection after
turning, plays a key role in path selection. +e results show
that 95 percent of private car experimental paths are con-
sistent with the actual paths; 100 percent of taxi experi-
mental paths selections are consistent with the actual paths.
Node 4 is lost in the long-distance path (c). +e results show
that all vehicles in the test path set of private cars and taxis
choose the path consistent with the actual path. Since node 4
is between node 3 and node 5, when the number of missing
nodes is low, the vehicle driving direction is clear, and there
will not be too many path selection behaviors on short-
distance sections, which is in line with the actual travel
situation.

In conclusion, the model has good robustness when the
number of missing nodes in the path is less than or equal to
20 percent of the total number of nodes on the path. +e
experimental results are shown in Table 8.

6.2.2. 50% of the Total Number of Nodes in the Path Were
Missing. +e short-distance path (a) missed nodes 3 and 4.
Node 1 is a six-legged intersection, at which it is hard to
know the vehicle’s movement direction. So the vehicle needs
to make a path decision after node 1. +e results show that
there are 13 vehicle paths in the private car test path set

8 Journal of Advanced Transportation



inconsistent with the actual path. Besides the actual path, the
most selected path is {2-1-8-9-13-11-5}. Although the dis-
tance of this path is longer, other attributes of the path have
certain advantages, such as high road grade and short travel
time. In addition, through the actual survey, traffic con-
gestion occurs on the link {3-4-5} during the peak period,
which is also one of the reasons for vehicles to select other
paths. 16 percent of the taxi test paths chose other paths.

+e medium distance path (b) missed node 9 and node
13. Node 9 is the key node of this path, where the vehicle may
have decision behavior. +e results show that 90 percent of
the private car test paths are the same as the actual paths, as

shown in Table 9. Because this path has good performance
and fewer decision nodes, the alternative paths have poorer
performance than the actual paths. 80 percent of the taxi test
paths are consistent with the actual paths.

+e long-distance path (c) missed nodes 3,4,5, and 6 as
the key node of the path, the vehicle at node 1 has a greater
possibility of decision making. According to the movement
direction of the vehicle at node 12, the position of the
previous node can be known, which can narrow down the
search for alternative paths.

6.2.3. All Nodes in the Path are Missing Except for the Origin
and Destination. +ree key nodes are missing between the
origin and destination of the short-distance path (a). Since
the vehicle has node 1 as the only direction of movement
after leaving node 2, this experimental condition is similar to
the second set of experiments in which path (a) missed 2
nodes. +e calculation results are also similar, as shown in
Table 10.

Four nodes were missed between the origin and desti-
nation of the medium distance path (b). Similar to the path
(a), the downstream intersection of node 2 is determined as
node 1 based on the uniqueness of the direction after leaving
node 2. Multiple path decisions are possible at node 1. +e
top 5 paths are selected based on the K-shortest path
problem, and the front node position can be known
according to the vehicle’s moving direction at node 14, to
reduce the path search range. +e results are shown in
Table 10.

Seven nodes were missed between the origin and des-
tination of the long-distance path (c). Similarly, the path
search range of the K-shortest path problem can be nar-
rowed down, and the actual number of missing nodes is 5.
+e results are shown in Table 10.+e accuracy of the results
is decreased due to the accumulation of errors when the
vehicle makes path decisions at nodes.

Meanwhile, the shortest path algorithm (Shortest Path,
SP) is selected to compare with the path decision model in
this paper, and the selected metric is the accuracy rate.

When the number of missing nodes is low, the accuracy
of the results calculated by the algorithm in this paper and
the shortest path algorithm is close, which indicates that
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Figure 5: Simplified road network map of Yicheng County.
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Figure 8: Long-distance path c.
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Table 7: Experimental design table.

Path number Group 1 Group 2 Group 3
Short distance(a) Missing node 3 Missing node 3, 4 Keeping node 2, 5
Medium distance(b) Missing node 1 Missing node 9, 13 Keeping node 2, 14
Long distance(c) Missing node 4 Missing node 3, 4, 5, 6 Keeping node 2, 14

Table 8: +e first group of experimental results.

Path no.
Private car Taxi

Sample size Consistent number Accuracy (%) Sample size Consistent number Accuracy (%)
(A)

100
95 95

50
50 100

(B) 93 93 49 98
(C) 100 100 50 100

Table 9: +e second group of experimental results.

Path no.
Private car Taxi

Sample size Consistent number Accuracy (%) Sample size Consistent number Accuracy (%)
(A)

100
87 87

50
42 84

(B) 90 93 40 80
(C) 69 77 43 86

Table 10: +e third group of experimental results.

Path no.
Private car Taxi

Sample size Consistent number Accuracy (%) Sample size Consistent number Accuracy (%)
Short distance(a)

100
81 81

50
40 80

Medium distance(b) 73 73 37 74
Long distance(c) 55 69 35 70
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Figure 9: Accuracy of taxis and private cars on short-distance path.
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vehicles generally choose the shortest path to travel when the
travel distance is short. When the number of missing nodes
increases, the accuracy of both methods decreases, but the
decision results of the model are significantly better than
those of the shortest path algorithm.

+e number of missing nodes in short-distance paths is
generally less than or equal to 5. In Figure 9, it can be seen
that the sensitivity of private cars and taxis to missing nodes
is close in short-distance travel. +e accuracy of the model is
also close to the results of the shortest path algorithm.

For medium-distance paths, the performance of private
cars and taxis is close, as shown in Figure 10.+e accuracy of
the decision results of the model in this paper has a relatively
stable accuracy rate. When the number of missing nodes for
medium distance and long-distance paths is over 4, the
accuracy of the shortest path algorithm drops sharply, and
the accuracy of the results of the model in this paper still
maintains around 80%.

For the long-distance path decision, the accuracy of
the proposed model decreases significantly, as shown in
Figure 11. When the number of missing nodes exceeds 3,
the accuracy of the shortest path algorithm starts to drop
sharply, and when the number of missing nodes exceeds 4,
the accuracy of the shortest path algorithm falls below
50%, but the accuracy of the proposed model is still
around 80%.

In all, the accuracy of the model in this paper is better
than the shortest path algorithm overall. In the short-dis-
tance missing paths, the accuracy of the model calculation
results can still maintain a good level as the number of
missing nodes increases. In the medium-distance missing
paths, the accuracy of the model calculation results decreases
slightly as the number of missing nodes increases. In the
long-distance missing paths, the accuracy decreases as the
number of missing nodes increases.

7. Conclusion

+is paper established a vehicle path recognition model
based on the road network of small cities with low coverage
of AVI devices and data deficiency, considering the dif-
ference in travel path selection indicators of private cars
and taxis. +e method of decision indicators is defined, and
the AHP-EWM combination method is used to get the

indicator weights to carry out the path recognition. Firstly,
the quantitative calculation methods of decision indicators
are defined. +e AHP-EWM combination method is used
to get the indicator weights to carry out the path recog-
nition. +rough the validation of the validity and accuracy
of the model, it is proved that the travel path recognized by
the model is basically consistent with the actual travel
paths.

However, with the increase of the number of missing
nodes (when the number of missing nodes is more than 7),
the accuracy of the model may further decrease.

Considering the actual deployment of the AVI system in
road networks, this paper draws the following conclusions.

(1) In small cities with low coverage of AVI devices,
when themissing records in the AVI data are serious,
the vehicle travel paths of private cars and taxis can
be identified separately according to the path rec-
ognition model in this paper. +e results can ef-
fectively characterize the actual situation of vehicle
travel paths, which could provide data resources for
analysis of the characteristics of mixed traffic flow
with CAVs.

(2) +rough the analysis of the number of missing nodes
in the AVI system, the following conclusions can be
drawn. Within a certain area, it is not necessary to
deploy the AVI devices in all sections. +e model of
this paper can effectively identify the travel path of
vehicles, which could save system construction and
equipment maintenance costs.

(3) Considering the different travel factors of taxis and
private cars, the travel paths of vehicles are recog-
nized separately and consistent with the travel be-
havior of vehicles in the actual road network.
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