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(e rapid development of V2X communication has made it possible to optimize and control the trajectories of vehicles from the
whole traffic flow’s perspective and improve traffic performance. (erefore, this paper discusses the trajectories management
problem on highway facilitated with lanes exclusively for autonomous vehicles (AVs). (e paper proposes a model that aims to
search for optimal trajectories and minimize total travel time for AVs with multiple initial and target states while averting crashes
and conforming to vehicles’ kinetic. Dividing the time zone into discrete pieces, the model is analyzed as a large-scale discrete
problem influenced by the randomness of the sequence of vehicles. A two-phase algorithm combined with upper evolution
strategies and lower dynamic programming is developed to diminish stochastics and reduce computation step by step and solve
the trajectories optimization model. Numerical experiments validate that the proposed method is capable of generating optimal
trajectories for multiple AVs and approaching to system optimum by simultaneously solving all the spatial and temporal values of
the trajectories. (e two-phase algorithm can be applied efficiently in practice to obtain a feasible approximate solution for
trajectories optimization by presetting appropriate algorithm parameters.

1. Introduction

Autonomous vehicles (AVs) are likely to create a revolu-
tionary paradigm shift in the near future for real-time traffic
system automation and control. (e AVs can improve the
transportation system’s performance and reduce congestion,
emissions, accidents, and time consumption by delivering
system optimum travel strategies to vehicles with V2X
communication. Although it may take a long time to realize
a popular market occupancy, an intermediate step could be
achieved and bring significant improvements that AVs travel
on exclusive lanes in a special zone, such as autonomous
vehicle lanes [1–4] or autonomous vehicle areas [4–6]. It is
envisaged that while AVs enter into the specialized area [5],
the vehicle’s control is handed over to a central agent where
the cyber component (e.g., data and shared information
through vehicle-to-vehicle and vehicle-to-infrastructure
communication) can aim to optimally control the physical
entities (e.g., CAVs and non-CAVs); see [6]. (e agent

would guide it through the area (presumably by sending
detailed trajectories to the vehicle’s onboard computer).

(erefore, AV technologies allow vehicles to conform to
uniform and global optimum trajectories aided by the cloud
system’s central computation. For traditional human
drivers, numerous studies on travel behaviors or trajectories
choice have been conducted, including UE or SUE, pre-
departure route choice or en route revision, static or dy-
namic flow assignment, and macroscopic or microscopic
vehicles’ trajectories with various information [7–12]. (e
above-mentioned studies are based on the foundation that
travelers are selfish to reduce their consumption, and all
travelers are unfamiliar with each other. While the drivers
benefit much from traffic guidance to reduce congestion
with the development of information systems, the travel cost
still remains at a high level due to the users being unable to
observe others’ reflections on multiple information. (e AV
technologies could change this mode with the evolution of
communication and guide vehicles to respond immediately
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to preplanned trajectories. (e route choice or trajectory
solving is transformed into a mathematic optimization
problem with several constraints similar to railway or avi-
ation systems and different from the former choice behavior
models. In recent years, significant attention has been given
to AVs’ trajectories optimization, and a review can be
concluded as follows.

1.1. Review of AV Developments in Traffic Management.
Microsimulation models (cellular automata model and
followingmodel) have been used to develop the mixed traffic
flow basic diagram and the influence of automatic driving on
traffic flow [13]. Due to the difficulty in carrying out real
vehicle experiments, the research on the traffic flow theory of
connected and automated vehicles (CAV) is mainly focused
on the longitudinal control technology of assisted driving,
such as adaptive cruise and coadaptive cruise systems [14], as
well as the road intersection management of AVs [15].
Studies have also been conducted to smooth highway traffic
by controlling individual vehicles [16–18]. Since traffic
management focuses on the interactions between the ve-
hicles and resolving the conflicts that result from them, the
studies that exclusively deal with trajectory planning for a
single vehicle are not considered [19–23]. Liu et al. [24]
solved an optimal trajectory problem for one single vehicle
and used this trajectory as a template to control multiple
vehicles with variable speed limits. Ahn et al. [25] also
proposed a rolling-horizon individual CAV control strategy
that only considered the road geometries. To find optimal
trajectories for multiple AVs and improve the computational
efficiency, Lu et al. [26] subsequently developed a specialized
algorithm based on the rolling horizon approach (RHA) to
obtain the best approximate solution.

Despite relatively homogenous constraints and complex
algorithms, the studies mentioned above demonstrated great
potential in traffic management. (erefore, according to
multiple performance indicators (such as distance, time, and
energy), an optimal trajectory is generated from the initial
state to the final state, which has important research sig-
nificance in the field of intelligent vehicle motion planning.

1.2. Review of Vehicle Trajectory Optimization Models.
Vehicle trajectory optimization has been extensively studied
in a broader domain. According to the summary presented
by Betts [27], the path planning problem is discretized in
time by allowing the vehicle to only make decisions at
discrete time intervals. It is further discretized in space by
only allowing the vehicle to make a limited number of
choices at each time step. For multivehicle trajectories, the
vehicles move from the initial-boundary states to the final
states, which can be solved directly by using linear pro-
gramming or integer programming solver tools (CPLEX).
He et al. [20] introduced vehicle queue constraints into a
multiphase optimal control model to construct an ap-
proximation formulation that contained fewer decision
variables and was easier to solve. Furthermore, Wu et al. [21]
applied the model and the algorithm to obtain the trajec-
tories across intersections. In terms of car-following

behavior, Chen et al. [1, 5] proposed a time-dependent
model to optimally deploy AV lanes on a general network
consisting of both CVs and AVs. In the network [28], AVs
and HDVs (human-driving vehicles) in the road links were
managed to use exclusive lanes (common lane and AV lane).
In this case, no interference between the two different types
of vehicles existed in the links, so the advantage of AV
technology would be fully utilized. Ghiasi et al. [29] obtained
the optimal number of AV exclusive lanes under some
common vehicle spacing settings. Kakimoto et al. [3] also
studied the influence of CAVs on single-lane expressways
based on different time intervals. Actually, there will be a
long period of the mixed traffic flow by AVs and HDVs
temporarily. For lane changing, Zhang [30] decomposed
complex maneuvers into two submaneuvers, that is, lane
change and lane keeping. (us, the trajectory planning was
simplified mainly based on lane-change maneuvers. Luo
et al. [22] proved that vehicles could perform real-time
calculations and update the lane-changing track before
completing lane changing. Li et al. [15] studied the problem
of simultaneous lane changing of multiple vehicles through
the cooperation of multiple vehicles. Lu et al. [26] subse-
quently developed a mathematical model with safety and
car-following constraints. (is paper also assumes that the
vehicle’s lane changing is instantaneous. (e assumption
would hold if AVs have sufficiently high autonomy and
maneuverability; the travel time reduction of en route lane
change could be offset.

1.3. Review of Vehicle Trajectory Optimization Methods.
From the perspective of optimization methods, these
problems are all nondeterministic polynomial-time-hard
(NP-hard). (e traditional methods for trajectory optimi-
zation include analytical approaches that can only solve
simple problems with special structures and numerical
approaches [31]. A vehicle trajectory is essentially an
infinite-dimensional object in which the state (e.g., location,
speed, acceleration) at each time spot can be varied. In the
optimization model established by [32, 33], the traditional
genetic algorithm has a small processing scale and is difficult
to effectively deal with optimization problems with higher
dimensions.

It is challenging to obtain one single vehicle’s trajectory,
particularly under nonlinear constraints. (erefore, Barnier
and Brisset [34] adopted a new optimization method
combining the genetic algorithm with the constraint satis-
faction solving technology. (e main idea was to deal with
the subdomains of variables through the genetic algorithm,
which is used for combinatorial optimization problems.
Zhou et al. [35] devised a heuristic algorithm satisfying the
need for formulating high-dimensional objects or complex
system constraints, which could efficiently construct a
smooth feasible trajectory vector with limited control pa-
rameters. Several studies have attempted to improve the
algorithms by reducing the computation time. Gong’s [36]
numerical experiments showed that the original algorithms
in Koshal et al. [37] and their convergence analysis often led
to small step lengths and slow convergence. While the two
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algorithms achieve the same numerical accuracy and con-
vergence, the computation time of the modified algorithm
was nearly reduced by half. Several recent studies have
improved the results by approximating the trajectories with
a simple piecewise quadratic function [35–38]. However,
these approaches are heuristics and cannot guarantee the
exact optimal solutions.

(rough Lu’s mixed-integer program (MIP) formula-
tion, the feasible set may be tightened by rewriting some of
the constraints or adding more valid constraints [26]. (e
RHA seems promising but requires further development to
address the scheduling and equity constraints. Rios-Torres
and Malikopoulos [39] presented an optimization frame-
work and an analytical closed-form solution to find the
optimal sequence and trajectory of vehicles. Wang et al. [40]
proposed a distributed consensus protocol approach.
However, the approach manages CAV based on relevant
rules and does not use the optimization method to optimize
the vehicle timing and trajectory as a whole.

As concluded above, significant progress has been made
in resolving the trajectories issues. One approach is estab-
lishing multiple models in various circumstances, such as
planning tracks at sections, ramps, working zones, and other
special areas. (e goals are aimed to maximize capacity,
reduce time cost, and fuel emissions with diversiform re-
strain. (e other approach is adopting a mathematical al-
gorithm or car-following simulation to decrease the
computation time. However, there are several problems:

(1) Models of trajectory optimization for multiple ve-
hicles operating in distinct lanes are typically sim-
plified for two reasons: first, it is challenging to solve
the resulting nonlinear optimization problems in-
volving a large number of decision variables (note
that we often). Second, it is generally accepted that
modeling errors do not significantly contribute to the
loss of objective values when long planning time
horizons are considered [41]. However, this central
issue has not been fully addressed in the literature
[42–45], and conventional research suffers from two
limitations. First, numerical methods alone (e.g., Liu
et al. and Ahn et al.) do not provide sufficient an-
alytical knowledge, intuitive understanding, or
fundamental insight into the structure of problems
and solutions, which may obstruct the discovery of
some potentially useful management insights in real-
world applications. Second, the trajectory generated
by these methods [20, 21] may not be smooth and
comfortable enough for the vehicle to follow in
practice. Compared to previous research, to address
this gap, this paper focuses on determining the
optimal trajectory for each vehicle over the entire
setting time horizon with a variety of initial and final
states. In this paper, the spontaneous idea is to de-
compose the problem into a two-phase model. In the
first phase, a commonly used strategy, evolutionary
strategy (ES) algorithm is designed to define the lane-
change slot and the lane occupation for each interval
combined with lane-change rules. In the second

phase, a mixed integrated linear model constituted
by constraint conditions is solved, and the objective
function is the fitness of the first phase. (e algo-
rithm can solve optimum trajectories satisfying all
the constraints in an acceptable running time. (e
trajectories are relatively smooth while simulta-
neously conforming to car-following, lane-changing
behaviors, and maintaining steady speeds.

(2) A modified algorithm is established to reduce the
computation time: most existing studies [30, 46, 47]
either oversimplified the trajectories’ constraints,
adopted ad hoc heuristics [35, 38] without optimality
assurance, or relied on complicated numerical
procedures [48–50] that are unsuitable for real-time
applications. In this paper, the ES can reduce the
large scale of lane-change spots and rapidly search
for optimum results by gathering a series of indi-
viduals’ advantages. In the second phase, cutting
invalid vehicles’ orders reserves sufficient optimum
results and speeds up the solving process in the
dynamic programming for fitness computation. (e
evolution strategy is capable of reducing the large
scale of lane-change spots and searching for opti-
mum results. Cutting invalid vehicles’ orders at each
stage reserves sufficient optimum results.

(e remainder of this paper is organized as follows.
Section 2 discusses the hypothesis of automatic traffic flow in
an exclusive area and the objectives and constraints of
trajectory management. Section 3 introduces and analyzes a
trajectory optimization model. Section 4 proposes a two-
phase solution algorithm that utilizes upper evolution
strategies and lowers dynamic programming to reduce the
stochasticity associated with lane-change slot and vehicle
order. Section 5 summarizes the results of a numerical
experiment and presents the results of a controlled exper-
iment designed to verify the algorithm’s effectiveness. Fi-
nally, Section 6 summarizes the findings, implications, and
limitations and suggests some future research directions.

2. Analysis of Automatic Traffic Management

(is section proposes an AV trajectory optimization
problem on a single exclusive highway segment. All the
vehicles on the segment consisting of three lanes are au-
tomatic, which could be comprehensively organized, aiming
to uniform objectives. Mixed traffic management with
HDVs is the next research topic. Unlike the existing HDV
management theories, the AV trajectory problem is a travel
behavior optimization program instead of human-driven
habits’ approximate simulation. (e main purpose is to
determine each vehicle’s optimum trajectory along the
whole setting time horizon with various initial and final
states.

2.1. Hypothesis of Automatic Traffic Flow. (e research
problem and the details of the hypothesis are presented as
follows:
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(1) Trajectory optimization is strictly a time-continuous
problem. However, in reality, the velocity, acceler-
ation, or deceleration are impossible to change
continuously due to the constraints of vehicles’
mechanical properties and reaction time. (erefore,
in this paper, the time horizon is initially divided into
identical segments denoted by k and Δt is each in-
terval’s duration (k � 1, 2, . . . , K). For the consid-
eration of optimization efficiency and computation
consumption, the interval’s duration should be set as
a proper value to obtain a satisfying result and reduce
the computational complexity as much as possible.

(2) (e driven road is set as a highway or freeway and not
as an urban network, as depicted in Figure 1. Vehicle
characteristic parameters include entry time, velocity,
acceleration, entry lane, and objective exit lane. If the
entry does not conform with the exit lane, the vehicle
must change the lane at the optimum interval. Some
rules for lane-changing are explained as follows:

① (e objective lane of the lane-changing vehicle
must be the adjacent lane close to the final exit
lane. Specifically, the vehicles are forbidden to
travel across two lanes in one interval.

② In this paper, compulsory lane-change induced
by nonconformity of entry and exit lanes is the
sole concern. However, en route lane change due
to lanes’ travel time difference is not considered.
(is assumption could be reasonable in automatic
traffic management. For AVs, the trajectories are
controlled and optimized comprehensively, and
the travel time reduction of en route lane change
could be offset. (is explanation is different from
the HDVs, whose trajectories are decided by the
drivers’ self-strategy, and lane-change for shorter
travel cost is obvious for individuals.

③ Lane changes of vehicles can be completed during
a time interval. In other words, if a vehicle’s lane-
change time spot is k, then the vehicle will drive on
the objective lane during the whole interval k. It
will hold since the lane-change preparation and
space adjustment are already accomplished before.

(3) In reality, incoming flow to the highway segment is
continuous along the time axis.(erefore, a discrete-
time horizon is set in this paper for the optimization
section. (e spatial-temporal segmentation and
rolling promotion are credible and efficient for traffic
management complex systems. (erefore, the pro-
posed model and theory can be utilized in a con-
tinuous system.

2.2. Trajectory Management Objectives and Constraints.
Under the above assumptions, the proposed solution aims
to obtain the vehicle’s velocity, acceleration/deceleration,
position for each interval, and travel time on the segment.
(e optimal objective includes but is not limited to all
vehicles’ total time cost, fuel consumption, emission, and
driven comfort. (ese indexes are all vital and closely

correlate to the vehicle’s maneuvers. In the proposed
model, a minimum travel time is simplistically established
for the unique objective of efficiency. Similarly, others
could be utilized just by adopting various index calculation
methods.

Vehicles’ trajectories are subject to many constraints: (1)
ensuring no collisions and safe space for each lane during the
time horizon, (2) guaranteeing the vehicles travel on the
exact lane before exiting from the road segment, and (3)
restricting the lane-change maneuvers to the above hy-
pothesis and avoiding crashes on the current and objective
lanes simultaneously. (e following section will explicitly
explain the optimization problem and establish a mathe-
matical model based on the above analysis.

3. Trajectory Optimization Model

3.1. Model Notations and Variables. (e road segment is
denoted as R(xo, xd); the symbols xo, xd are location
stamped as origin and terminus; and road length is L.
Notation i(1≤ i≤C) represents vehicle’s number ordered by
entering time, where C is the total number of vehicles. (e
artery consists of three lanes denoted as l � 1, 2, 3. lsi, lei are
set as the initial and final lanes for vehicle i, respectively.
Other variables are listed in Table 1.

3.2. Objectives and Constraints. In this paper, vehicles’ total
travel cost traversing the road is the unique objective for
trajectory optimization.

Z � min 
i∈C

k
out
i − k

in
i . (1)

A binary variable θik is induced to indicate whether the
vehicle i still travels on the segment. If xik − xd ≥ 0, θik � 0;

otherwise, θik � 1. θik is subject to the constraints as de-
scribed below:

θik − 1(  × M<xd − xik ≤ θik × M, (2)

if k< k
in
i , θik � 0, xik+1 � 0, (3)

where M is a large positive real number. If θik � 1, equation
(2) reads 0<xd − xik ≤M and means xd >xik; otherwise, if
θik � 0, equation (2) reads xd <xik. (us, formulas (2)∼(3)
explain the variable δik exactly, and objective Z could be
reconstructed as follows:

Z � min 
i∈C


1≤ k≤K

θik × Δt. (4)

(e vehicles’ movement on the segment is constrained to
a series of conditions:

3.2.1. Velocity and Acceleration Constraints

− d
max
i ≤ aik ≤ a

max
i , 1≤ i≤C, (5)

0≤ vik ≤ v
max
i , 1≤ i≤C, (6)
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vik � vik + aik × Δt, (7)

xik � xik− 1 + vik × Δt +
1
2

× aik × Δt2. (8)

dmax
i , amax

i and vmax
i are the limited deceleration, accel-

eration, and velocity for vehicle i, respectively. Equations (7)
and (8) explain the recurrence relation among variables aik,
vik, and xik and can hold in a short time duration.

3.2.2. Collision Avoidance Constraints. Two binary auxiliary
variables, δijk and θik, are defined to construct the safety
constraints. If vehicle i is the former vehicle of j on the
identical lane k, δijk � 1; otherwise, δijk � 0. (e position
relationship can be imposed as follows:

0≤ δijk −
xik − xjk

M
< 1, (9)

where xik − xjk > 0 and variable δijk � 1; otherwise, δijk � 0.
(erefore, equation (9) is consistent with the meaning of
δijk.

Constraint 1. Safety constraints for vehicles in the same
lane. If vehicle i is the former one, i and j are not intended to
change lanes:

xik+1 − xjk+1 ≥ th × vjk+1. (10)

such that lik � ljk, k≠Ni1, Ni2, Nj1, Nj2, where th is the
reaction time for driving straight. Ni1, Ni2, Nj1, Nj2 are
vehicles’ lane-change intervals. If 1≤ k≤Ni1, lik � lsi; if
Ni1 + 1≤ k≤Ni2, lik � lsi ± 1. To indicate the vehicle se-
quence and lane occupation, equation (10) becomes

1 − δijk  − θik − θjk +2  × M + xik+1 − xjk+1 ≥th × vjk+1.

(11)

It can be proved that equation (11) is equivalent to
equation (10). If θik � 0 or θjk � 0, equation (11) is not
validated. When θik � 1, θjk � 1; if δijk � 0, vehicle i is not
following vehicle j, and equation (11) is not validated; if
δijk � 1, equation (11) is active and consistent with
equation (10).

Constraint 2. Safety constraints at a lane-change time in-
terval. When vehicle i intends to the objective lane at slots
Ni1, Ni2, a shorter reaction time th′ and safety space th′ ×

xik+1 could be accepted. Meanwhile, collisions on the current
and objective lanes must be avoided simultaneously.

For the vehicles in the current lane, equation (11) can be
amended as follows:

1 − δijk  − θik − θjk +2  × M + xik+1 − xjk+1 ≥th’ × vjk+1

(12)

such that lik � ljk, k � Ni1, Ni2.
For the vehicles on the target lane l’ik, equation (12) can

be repeated such that l’ik � lik ± 1; ljk � l’ik; k � Ni1, Ni2.

3.2.3. Compulsory Lane-Change Constraints. When vehicle i

leaves out the road segment, it is ensured that the current
lane is identical to the final objective lane. In other words,
lane change is guaranteed to accomplish before the desti-
nation. (e following constraint should be satisfied:

xiNimi
< xd, (13)

where mi is the total lane-change number and Nimi
repre-

sents the last lane-change interval.

3.3. Model Properties

Claim 1. (e established model is an NP-hard problem.(e
size of the model can be estimated as follows:



C’

i�1
T − NCi

′ − C′ − i + 1(  ∗ C
’
− i ∗

C

3
+ 1 ∗C∗T,

(14)

Initial lanes

lsi=1

lsi=2

lsi=3

XiK

lei=1

lei=2

lei=3

Exit lanesdsafe V*th

L

Figure 1: Illustration of vehicle trajectories.

Table 1: Description of variables.

Variables Description
xik Position of vehicle i at interval k

aik Acceleration/deceleration of vehicle i at interval k

dik Deceleration of vehicle i at interval k

vik Velocity of vehicle i at interval k

lik Occupied lane of vehicle i at interval k

Ni1, Ni2, . . . Lane-change intervals of vehicle i

kini , kouti Entering and exiting time of vehicle i
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where C and C′ represent the total numbers of vehicles and
“lane-changing” vehicles, respectively; Ci

′ is the i-th lane-
change vehicle with ascending order; and NCi

′ is the i-th lane-
change interval.

(e proposed model is equivalent to the traveling
salesman problem (TSP). (e variable described as “lane-
changing time” is the critical element bringing out the
uncertainties of vehicles’ order in the same lane. For safety
constraints in equations (9)–(12), the adjacent vehicles i, j

cannot be determined that deduces the computational
complexity of the model.

In equation (14), for any Ci
′, summed as (C′ − i), the

feasible lane-change interval can take any integer value
between (NC’

i− 1
+ 1) and (T − (C′ − i)). (eminimum value

coincides with Assumption (2), and the maximum value
guarantees time possibility for the subsequent vehicles.(us,
just considering lane-changing time, the complexity can be
expressed as ((T − (C′ − i)) − (NC’

i− 1
+ 1)∗ (C′ − i)).

For considering entering into multiple vehicles’ gaps,
roughly C/3 vehicles can be counted on the target lane with
((C/3) + 1) gaps. (us, the total number of vehicle orders
can be expressed as follows:


C’

i�1
T − NCi

′ − C′ − i + 1(  ∗ C
’
− i ∗ ((C/3) + 1). (15)

For a stationary vehicle order, the model employs C∗T

variables to define acceleration for every vehicle at each time
interval. (erefore, the size of the model is


C′
i�1(T − NCi

′ − (C′ − i + 1))∗ (C′ − i)∗ (C/3 + 1)∗C∗T.
It is obvious that the computation complexity increases
exponentially with C′ and T and quadratically with C.

From the above analysis, for vehicle i, lane-change in-
tervals Ni1, Ni2, . . . , Nimi

Nimi
are the core variables to

generate uncertainty of lane occupation and vehicle order,
resulting in large model size. (e spontaneous idea is to
decompose the problem into a two-phase model to reduce
the computational complexity.

In the first phase, a commonly used strategy, ES is
designed to define the lane-change interval and lane oc-
cupation combined with lane-change rules.

For example, if vehicle i on the initial lane lsi needs to
change lane at k � Ni1, Ni2(Ni2 >Ni1) to enter into the final
lane lei, the following can be defined:

If k
in
i ≤ k<Ni1, then lik � lsi, (16)

If Ni1 ≤ k<Ni2, then lik � li1 ± 1, (17)

If Ni2 ≤ k
out
i , then lik � lei. (18)

In the second phase, a mixed integrated linear model
constituted by equations (1)–(13)is solved, and equation (4)
is the fitness of the first phase. With the determination of
lane occupation’s time, the mixed integrated linear model’s
complexity is reduced drastically. However, the vehicle
orders dependent on chosen gap are also discrete random
variables that can be further reduced in the solution space
and illustrated in Section 4 explicitly.

(e proposed strategy focuses on the lane occupation
and vehicle sequence and decomposes the complex problem
into two phases. On the one hand, the maneuver reduces the
size of variables and constraints. On the other hand, the
lane-change define solution is a commonly used and ma-
turely developed algorithm that can rapidly obtain a satis-
factory scheme.

4. Two-Phase Algorithm for
Trajectory Management

4.1. 4e First Phase. Lane-change interval optimization.
Evolution strategies are search procedures aiming to
mimic the natural evolution of the large-scale stochastic
and reduce the feasible solutions using elimination
mechanisms based on objective function and mutation,
crossover, and selection operations. (is method is used
for the upper level to determine the optimal lane-
changing interval.

4.1.1. Coding for Individual Representation. It should be
noted that the multidimensional coding combined with
lane-change time and vehicles’ order is not used. Although
the multidimensional coding has the advantage of a simple
points search operation, the critical defect is that the points’
feasibility is not guaranteed. In the evolution process, a large
number of infeasible solutions cause the loss of solutions’
diversity. (erefore, the ES methods just eliminate one
random element, and the vehicle orders’ diversity is
remained to solve in the second phase.

Implementing the ES for the trajectory optimization
model requires the representation of the potential so-
lution, which is a point in the feasible search space. Each
solution is a vector consisting of integer variables,
denoted as N11, N12, . . . , N1m1

· · · Nn1, Nn2, . . . , Nnmn
N1m1

Nn1, Nn2Nnmn
. In the expression, Nij represents the j-th

lane-change slot of vehicle i, and mi is the number of total
maneuvers. (e lane-change slots coding by integer
representations can be defined with a series of require-
ments as follows:

(1) Coding Approach Coding approach: for each vehicle
i, the coding variables Ni1, Ni2, . . . , Nimi

Nimi
satisfy

Ni1 <Ni2 < · · · <Nimi
. It is obvious that the posterior

lane change is later than the former one. Sponta-
neously, two coding methods can be utilized to re-
alize variables’ feasibility. Table 2 introduces and
compares the two approaches. In this paper, Ap-
proach 1 is chosen for variable coding by generating
new individuals to eliminate duplicate ones and
augment diversity. Approach 2 is prone to cause the
latter variable to be out of range due to a large
frontier value, and the individual representation is an
unfeasible solution. (erefore, Approach 2 is
abandoned.

(2) Variables range constraints: Nij <Ni(j � 1, 2,

. . . , mi), where Ni is preset to ensure that vehicle i

completes changing lanes before driving out.
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(3) Initialization: a random value in the boundary range
is assigned to each decision variable for every in-
dividual of the initial population.

N
0
ij � k

in
i + r and(0, 1) × Ni − k

in
i . (19)

4.1.2. Mutation. At generation g, for each parent vector
N

g
11, N

g
12, . . . , N

g
1m1

, . . . , N
g
n1, N

g
n2, . . . , N

g
mnn

N
g
1m1

N
g
n1, N

g
n2,

N
g
nmn

in the population, introduce indexes r1, r2 (r1 ≠ r2) to
stamp different locations of vectors. (e corresponding mu-
tational vector is translated by three common strategies as
follows:

First strategy: interconverting values at two random
points

N
g+1
r1

� N
g
r2

,

N
g+1
r2

� N
g
r1

.
(20)

Second strategy: permute the variables located in the
interval [r1, r2] in reverse order

N
g+1
j � N

g

r1+r2− j, r1 ≤ j≤ r2. (21)

(ird strategy: insert variable located at the spot r1 into
spot r2

N
g+1
r2

� N
g
r1

, (22)

N
g+1
j � N

g
j+1, r1 ≤ j< r2. (23)

Random numbers r1, r2 are required to ensure that the
two variables correspond to disparate vehicles. Reranking
the new created vector is a subsequent maneuver to obtain a
feasible solution.

(e above three strategies can be repeated at stated times,
aiming to search for better individuals in the neighbor re-
gion for each parent vector.

4.1.3. Crossover. Introduce indexes r1, r2, r3 (r1 ≠ r2 ≠ r3).
Two random parent vectors N

g
1 , N

g
2 , . . . , N

g

Σ∀imi
N

g


∀i

mi

and

M
g
1 , M

g
2 , . . . , M

g
Σ∀imi

M
g


∀i

mi

at generation g are selected to

generate new vectors using the following scheme:

N
g+1
j � N

g
j , M

g+1
j � M

g
j , 1≤ j< r1,

or r2 ≤ j< r3,
(24)

N
g+1
j � M

g
j , M

g+1
j � N

g
j , r1 ≤ j< r2,

or r3 ≤ j≤ 
∀i

mi.
(25)

4.1.4. Selection. Only if the new-created vector yields a
better fitness value, then update the parent individual.
Otherwise, retain it.

4.1.5. Stopping Criterion. (e search process is to break up
when one of the two conditions is satisfied: (1) a maximum
consuming time of iterations is reached and (2) improve-
ment of the fitness value is not found for a preset number of
generations. |Fg+Δg − Fg|< τ, where τ is a small positive
number.

Table 2: Reranking and construction coding methods.

Approach 1: reranking Approach 2: construction
Coding
process

Rank coding variables Ni1, Ni2, . . . , Nimi
Nimi

with ascending sort
for each i to constitute a new feasible individual.

Denote Nij+1 � Nij + εij, where εij is a random integer
number, and generate a valid individual by coding εij.

Advantage Easily practicable and code value restricted in variable range by
simple constraints.

Guarantee individuals’ diversity, which is the shortage
of approach 1.

Disadvantage
Reduce diversity. For example, code

Ni1, Ni2, . . . , Nimi
Ni1, Ni2Nimi

is identical with
Nimi

, Ni2, . . . , Ni1Ni1.
Difficult to satisfy variables’ value range

Time Interval

[0,3]

[3,5]

[5,11]
1

1 1

2,3,4

1,3 3,1

3 3

1,3 3,1
2,4

2,4

4,2 4,2

4,2

2,4

3,2,4 3,4,2
1 1

[11,14]

[14,T]

Lane 1
Lane 2

Lane 3

1
2

3,4

1,2 2,1
3,43,4

Figure 2: Demonstration example of order states on lanes.
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Generate a initial population

Fitness computation

Input the next stage

Get an effective state
Input acceleration, velocity and position

Use toolbox “linprog” to
solve linear programming

Output Zn for the state

No

Yes

Yes

Yes

Out put the optimal solution

Lane-changing time and trajectories
No

Generate a new population

Selection Crossover Mutation

No

If it is the last
effective state

If it is the last
state

Out put the solution
Max {ZSn}

Complying with the
stoping criterion

Figure 3: Computational flowchart.

(1) Input: initial velocity, acceleration, entering time, occupied lane, terminal lane, maximum acceleration and deceleration for each
vehicle; road’s length;

(2) Output: trajectory including acceleration, velocity, position, and an occupied lane for each interval;
(3) Main loop:
(4) Outer iteration: Evolution strategy
(5) Initialization: set k � 1, generating the first population of random individuals;
(6) While the stopping criterion is not satisfied, do:
(7) Fitness computation: for each individual, enter into inner iteration to obtain the individual’s fitness;
(8) Inner iteration: Fitness computation
(9) Divide time zone T into D segments, d � 1;
(10) While d≤D, for each terminal vehicles’ order, do:
(11) Update position, velocity, acceleration, occupied lane, and vehicles’ sequence using results of stage d − 1;
(12) Use MATLAB toolbox “lapdog” to solve linear programming;
(13) Repeat solving linear programming for each state and select effective states to enter into stage d + 1;
(14) �en update d � d + 1; repeat steps 10 to 13;
(15) When d � D + 1, iteration ends, output: individual’s fitness max ZSn

 ; break inner iteration; enter into outer iteration;
(16) Perform mutation, crossover, and selection strategies on the kth generation of individuals to obtain the (k + 1)th generation;

then set k � k + 1; repeat Steps 6 to 15;
(17) When the stopping criterion is satisfied, the two-phase algorithm ends, output: the optimum individual corresponding to

vehicles’ lane-changing time, acceleration, velocity, and position at each time interval.

ALGORITHM 1: Two-phase algorithm.
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4.2.4eSecondPhase. Fitness Computation. To diminish the
vehicle sequence’s stochastics on the identical lane, compute
fitness for each coding individual. Dynamic programming is
introduced as follows:

(1) Reorder the variables N11, N12, . . ., N1m1
,. . ..

Nn1, Nn2, . . . , Nnmn
Nnmn

in ascending order and
determine vehicles’ sequence on each lane. To ex-
plain the entire process and list all the order states,
Figure 2 presents a simple example of four vehicles
coded as [3 5 11 14], corresponding to vehicles [1 2 3
3] with initial lanes [1 2 3 3] and terminal lanes [2 3
1 3]. It can be observed that the entire process has 48
different states, and the fitness for coding indi-
viduals [3 5 11 14] is the optimum one in the various
states. Noticeably, the order state remains stable in
the time range between two sequential lane-change
spots.

(2) (e second-part model will be solved as dynamic
programming. Divide the entire process into a few
stages according to lane-change spots. (e status of
vehicle order and the status transition for each stage
can be confirmed as shown in Figure 2. Solving a
maximization problem will obtain other statuses,
including velocity, acceleration, and position. In
equation (1), the objective is to minimize the total
travel time. Conversely, the benefit function Zs∈Sd

of
state s at stage d can be defined as follows:

Zs∈Sd
� max 

i∈C

k∈d

xik. (26)

(e above expression aims to maximize vehicles’
total travel distance at each stage. It can be regarded
as equal to the original objective, which can be
guaranteed by setting proper lane-changing
boundaries that vehicles cannot drive out at stage d.

3

2

1
0

5
10

15
Time(s)

Vehicle1 position Position(m)
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Vehicle3 trajectory
Vehicle4 position
Vehicle4 trajectory
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Vehicle1 trajectory
Vehicle2 position
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Vehicle6 position
Vehicle6 trajectory
Vehicle7 position
Vehicle7 trajectory
Vehicle8 position
Vehicle8 trajectory

Vehicle9 position
Vehicle9 trajectory
Vehicle10 position
Vehicle10 trajectory

Figure 4: Optimal vehicles trajectories.

Table 3: Parameters values.

Variables Description Value
[le1, le2, . . . , le10] Initial lane vector [1 2 3 1 2 3 1 1 2 3]
[ls1, ls2, . . . , ls10] Terminal lane vector [1 2 3 1 3 1 2 2 2 3]
amax

i (e maximum acceleration 3m/s2

vmax
i (e maximum velocity 30m/s

dmax
i (e maximum deceleration 3m/s2

th/th′ th’ Reaction time/short reaction time 0.3 s/0.2 s
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Figure 5: Continued.
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(3) At stage d, for each state s ∈ Sd, the terminal states set
of stage d (the initial state of stage d + 1) can be
assured, and stage benefit with variables of each
interval is to be computed by solving linear pro-
gramming with objective (26) and constraints
(2)–(13). (e binary variables δijk can be removed,
and the constraints significantly decrease for the
determined vehicle order.

(4) Define effective states to reduce the computation
complexity. As illustrated in Figure 2 and equation
(14), if C′, T, and C are large, the states will dra-
matically increase. (eoretically, the lane-change
vehicle is likely to insert into the space between any
two adjacent vehicles at the end of the stage.
However, it is time-consuming for several states; for
example, in the condition that vehicle i located as xi

chooses to insert into the gap [xj, xj− 1], xi≪ xj or
xi≫ xj− 1, maximum velocity deceleration must be
enforced to satisfy the lane-changing criteria.
Definition of effective states: For state sdi

∈ Sd, Sd is
states set in descending order by states’ fitness at
stage d. For kk � max(i|Zs1

− Zsdi
≤ εd) or kk is a

preset value, sdi
(i≤ kk) is defined as effective states at

stage d, and the other states can be removed from Sd.
(5) For each coding N11, N12, . . ., N1m1

, . . .

Nn1, Nn2, . . ., Nnmn
, the time zone T is divided into D �


n
i�1 mi segments. At stage d, the linear programming is solved

by the simplex algorithm to compute each effective initial state’s
objective. Individual’s fitness is the maximum value among all
the effective states at the terminal stage. (e pseudocode of the
two-phase algorithm for trajectory optimization is described in
Algorithm 1. And a computational flowchart is presented in
Figure 3 to display the algorithm more clearly.

5. Numerical Example and Results

In this section, experiments are conducted to validate the
proposed model and algorithm on a road segment consisting
of three lanes, similar to Figure 1. (e main targets are as
follows: (1) optimize vehicles’ trajectory on a numerical ex-
ample and (2) compare with the no optimized case. All ex-
periments were implemented using MATLAB and conducted
on a PC workstation runningWindows 10 with an Intel Xeon
e5 3.5GHz processor and 64GB of main memory.

5.1. Optimized Vehicles’ Trajectory. A road length
L � 1800m, 10 vehicles with an initial entering time kin
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Figure 5: Vehicles trajectories on lane 1: (a) 2–10 s, (b) 10–18 s, (c) 18–22 s, (d) 22–54 s, and (e) 54–80 s.
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0 0 2 4 4 4 6 6 6] ss will be optimized. To ensure that all
vehicles can drive out, the time horizon is T � 80 s, and
coding boundary in the ES algorithm is preset 60 s (which
is estimated by maximum velocity), discretized into 40
and 30 intervals of equal duration, where each interval is 2
seconds due to precision deficiency and warranty of lane-
change completeness. A reasonable spatial and temporary
division is necessary for continuous traffic flow to realize
discretization.

(e values of other parameters are listed in Table 3. In
each generation, 10 individuals are produced, and the entire
algorithm is executed in the 60 s. To select effective states in

the inner dynamic trajectories programming, kk � 2. (e
results are shown in Figures 4–6 .

Vehicles trajectories are displayed in Figure 4. Lane-
change times are 22 s (vehicle 5), 10 s (vehicle 6), 18 s (vehicle
6), and 54 s (vehicle 7). It is observable that all vehicles drive
on the target lane before the exit positioned at 1,800m. (e
safe distance between the adjacent vehicles along the whole
time zone is guaranteed (the vehicle’s gap is larger than the
rear vehicle’s velocity multiple reaction time).

Figure 5 presents vehicles trajectories on lane 1 as a
demonstration sample and shows the occupied lanes vari-
ation with time interval. All the vehicles are able to exit
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Figure 8: Comparison of vehicle trajectories on lane 1: (a) 2–8 s, (b) 8–56 s, (c) 56–58 s, (d) 58–62 s, and (e) 62–100 s.
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before interval 33, which indicates that the coding range [0
30] is reasonable. (e trajectory lines are smooth, and just
several inflection points exist at lane-changing intervals.(is
phenomenon validates the results availability ensuring the
vehicles are driven steadier. To analyze the influence of ES
randomness, the algorithm was rerun 28 times repetitiously,
setting the programming running time as 1min. Figure 6
shows that the optimum fitness values’ variation range re-
mains within 600m for 10 vehicles, and the randomness is
acceptable in practical application.

5.2. Comparison with Unoptimizable Situation. In this sec-
tion, the proposed trajectory programming is compared with
an unoptimizable situation in which drivers follow the
preceding car with intelligent driver model (IDM) and
change lanes by self-decision as follows:

(e IDM details can be expressed as follows:

aik � a
max
i 1 −

vik

vmax
i

 

δ

−
sk
′

Dik

 

2
⎡⎣ ⎤⎦, (27)

sk
′ � s0 + max 0, thvik +

vikΔvik

2
�����
a
max
i b

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (28)

xik+1 � xik + vikΔt + 0.5aikΔt
2
, (29)

where Dik � xik − xi+1k is the headway gap to the pre-
ceding vehicle (m), s0 is the minimum safe gap for congested
flow (m) computed by reaction time th, Δvik is the velocity
difference (m/s), and b is the comfortable deceleration (m/
s2). In this part, b� 3m/s2; other parameters are identical to
the values in Section 5.1. (e self-decision lane-change
strategy can be described as follows:

(1) If the following constraints are simultaneously sat-
isfied, change to the adjacent lane directly:

xik − xjk ≥xjk × th’ , (30)

xj− 1k − xik ≥xik × th′ , (31)

where xj− 1k and xjk are the positions of the pre-
ceding and the subsequent vehicles on the target
lane, respectively.

(2) If the gap conditions in equations (30) and (31) are
not satisfied, the following two cases can exist:

Case 1: If xd − xik >L′(L′ <L), a long distance is
acceptable to await safe gap; vehicles choose IDM to
follow cars
Case 2: If xd − xik < L′, a speed adjustment mode
will be activated to enlarge the vehicles’ gap

If equation (30) is not satisfied,

ajk+1 � max
− amax, (vmin − vjk 

Δt
⎛⎝ ⎞⎠. (32)

If equation (31) is not satisfied,

aik+1 � max
− amax, vmin − vik( ( 

Δt
 . (33)

(e common parameters and the initial settings are
assigned with identical values as in Section 5.1, executing the
entire process in the same running environment. Vehicles’
trajectories and other meaningful results are shown in
Figures 7–9. Consistent with Section 5.1, the vehicle tra-
jectories are presented in Figure 7, and the trajectories on
lane 1 are illustrated in Figure 8. It can be seen that lane-
change time spots are 58 s (vehicle 5), 56 s (vehicle 6), 62 s
(vehicle 6), and 8 s (vehicle 7), different from the results in
Section 5.1. Similar conclusions can be found that a safe gap
is provided throughout the process, and all vehicles exist out
of the target lanes.

Compared with Figure 4, more inflection points and
longer periods of speed adjustment appear in the trajectory
lines in Figure 8. (e speeds of human-driven vehicles are
depicted in Figure 9. As illustrated in Figure 9, speeds
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fluctuate significantly throughout the time zone, particularly
around lane-change intervals. In contrast, the speeds are
significantly smoother in the AV trajectories depicted in
Figure 5. (is indicates that the proposed algorithm may
improve driving stability, thereby lowering fuel consump-
tion and gas emissions.

(e reason is that when the HDVs intend to change
lanes, they slow their speed to satisfy the safe gap in the
shortest time, simultaneously inducing a significant speed
oscillation range. But, for AVs, speed adjustment is dis-
persed in the whole time zone through global optimization.

Figure 10 shows that each vehicle spends more travel
time on the whole journey in the contrastive example. (e
total time cost is saved by 20%, and the average speed is
increased by 18%. (e road length is longer, and the tra-
jectory algorithm will obtain more significant optimum
results for the entire process.

6. Discussion and Conclusions

(is study studies the trajectory optimization problem for
autonomous vehicles on particular roads with communi-
cation facilities. (e objective of the proposed model is to
search for optimal trajectories for autonomous vehicles.
Meanwhile, the trajectories are restrained by some incor-
porating constraints, including safe gaps for collision
avoidance, vehicle kinematic requirements, and occupied
lane variations. Due to the diversity of lane-change spots and
the order of the vehicles in each lane, a two-phase algorithm
is proposed to diminish the uncertainties and improve the
computation efficiency. A numerical example and a com-
parative experiment indicate the following meaningful
findings:

(1) (e proposed two-phase algorithm is able to solve
optimum trajectories satisfying all the constraints in
an acceptable running time. (e trajectories are
relatively smooth while simultaneously conforming
to car-following, lane-changing behaviors, and
maintaining steady speeds.

(2) Solving the trajectory problem has high computation
complexity, and the required running time is relative to
the total vehicles, time scope, and section’s length. (e
evolution strategy can reduce the large scale of lane-
change spots and search for optimum results. Cutting
invalid vehicles’ orders at each stage reserves sufficient
optimum results and speeds up the solving process in
the dynamic programming for fitness computation.

(3) (e proposed two-phase algorithm demonstrates
favorable computational performance, while some
optimal solutions are lost. Due to the large scale and
high stochastic in reality, it is reasonable and
practical to locate a satisfactory solution in a limited
time range.

(4) (e comparative experimental results show that
vehicles’ lane-change spots positions are close to the
road exit unless the target lane has low-density flow
and provides a suitable vehicle gap. It can be

explained that the drivers are opposed to speed
adjustment and tend to wait for an opportunity for
an adequate gap until driving near the exit. Also, the
solution efficiency has been significantly improved
by decreasing the total travel time in the proposed
algorithm. It is observable that the AVS’ trajectories
approach system optimum by global optimization.
Otherwise, the comparative experimental results are
users’ manual decisions through communication
and just realize user optimum at a discrete-time
interval.

As a result of the preceding discussions and conclusions,
it can be concluded that the proposed model and algorithm
can be used to manage traffic in an AV-only zone. A cost-
effective and smooth trajectory scheme will be computed
and transmitted to vehicles via a central system in a timely
manner. It is anticipated that it will be used in congested
areas. (ere are, however, some limitations. Notably, if the
vehicles are not evenly distributed relative to one another in
each lane at the entrance, the algorithm will be combined
with a pretrip lane selectionmaneuver to achieve satisfactory
results. Moreover, the ES algorithm yields an approximation
result. Parameters and stopping criteria should be dynam-
ically adjusted.
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