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Traffic sign detection is an important component of autonomous vehicles. ,ere is still a mismatch problem between the existing
detection algorithm and its practical application in real traffic scenes, which is mainly due to the detection accuracy and data
acquisition. To tackle this problem, this study proposed an improved sparse R-CNN that integrates coordinate attention block
with ResNeSt and builds a feature pyramid to modify the backbone, which enables the extracted features to focus on important
information, and improves the detection accuracy. In order to obtain more diverse data, the augmentation method used is
specifically designed for complex traffic scenarios, and we also present a traffic sign dataset in this study. For on-road autonomous
vehicles, we designed two modules, self-adaption augmentation (SAA) and detection time augmentation (DTA), to improve the
robustness of the detection algorithm. ,e evaluations on traffic sign datasets and on-road testing demonstrate the accuracy and
effectiveness of the proposed method.

1. Introduction

Traffic sign detection based on computer vision plays a
crucial role in the autonomous driving system. ,e deep
neural networks have successfully applied in many fields,
such as computer vision, communications [1], and net-
working [2]. Applying detection algorithms based on deep
learning to autonomous vehicles has become a hot topic for
researchers. ,e traffic sign detection system can auto-
matically detect and recognize traffic signs in real traffic
scenes and then transmit the results to the decision-making
module to ensure that the vehicle drives safely in accordance
with traffic rules.

It remains challenging to detect and recognize traffic
signs in on-road scene due to their unstable features on
different occasions, such as illumination, weather, and noise.
,ese complex factors will reduce the detection accuracy of
traffic signs. ,e datasets used to train the detection model
also affect the detection accuracy due to the data collection
scenes, weather conditions, and time of data collection
problem.

To solve the problems mentioned above, the motivation
of this study is to enable the feature extraction process by
backbone more focused on the object and detect multiscales
objects. In order to improve the robustness of the detection
model, the dataset used for training should be as diverse as
possible, which can simulate traffic signs in complex traffic
scenarios.

,e transformer structure [3] has recently become a
hot topic due to its competitive performance especially
when vision transformer (ViT) [4] and DERT [5] are
proposed to make transformer applied in computer vi-
sion. ,e sparse R-CNN [6], which is inspired by the
transformer, is a purely sparse method for object detection
compared to the ordinary CNN models. It uses a series of
learnable proposal boxes and features to replace the
thousands of candidates generated by traditional region
proposal algorithm, such as selective search [7] in R-CNN
and region proposal networks (RPN) [8] in faster R-CNN.
,e proposed traffic sign detection method in this study is
based on sparse R-CNN.

,e contributions of this study are listed as follows:
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(1) ,e proposed method multiscale sparse R (MSR)-
CNN integrates coordinate attention block into the
backbone network ResNeSt [9], which can improve
themodel to find a region of interest in images.,en,
a feature pyramid network is used for multiscale
detection.

(2) ,e data augmentation driven by complex traffic
scenarios is used to make the dataset used in training
more diverse.

(3) In order to improve the detection accuracy in on-
road scenarios, this study designs self-adaption
augmentation (SAA) in front of the MSR and de-
tection time augmentation (DTA) module behind
the MSR.

(4) ,is study presents an annotated traffic sign dataset
called Beijing Union University Chinese Traffic Sign
Detection Benchmark (BCTSDB).

,e rest of this study is organized as follows: in the
related work section, we introduce object detection and
traffic sign detection algorithms in recent years. ,e details
of the proposed traffic signs detectionmodel are presented in
the proposed method section. ,e following section focuses
on its implementation and comparison with previous
methods.,e final section summarizes the proposedmethod
and looks forward to the future direction.

2. Related Work

Traffic signs are usually defined as eye-catching colors in the
design process to improve identifiability, so that traffic signs
can be distinguished from the environmental background.
Many traditional traffic sign detection methods rely on
extracting features from visual information such as color,
edge, and shapes.

Reference [10] proposed a traffic sign detection method
based on the HOG [11] feature and SVM [12]. Firstly, the
method segmented the image of traffic signs by the color
threshold to remove a lot of interference and then used the
maximum stable extremum region algorithm to detect the
connected region. Shape is another important feature of traffic
signs. Literature [13] used the shape-based method to com-
prehensively consider the shapes of triangle, circle, and square,
and the connected component was used for shape recognition
to remove the regions without traffic signs in the images.

,e above detection methods are usually affected by il-
lumination, occlusion, distortion, and scale. When applied to
real traffic scenes, their slow detection speed and low accuracy
cannot meet the needs of autonomous driving systems. In
recent years, deep learning algorithms have been widely used
in object detection tasks for their competitive performance.

,e detection method based on deep learning is mainly
divided into dense algorithms and dense-to-sparse algo-
rithms [6]. ,e dense algorithms also called one-stage al-
gorithms, such as the you only look once (YOLO) series
[14–17], single-shot multibox detector (SSD) [18], and
RetinaNet [19], which directly output the location and
category of densely bounding boxes from features in a

single-shot way. ,ey directly predict anchor boxes or key
points [20] densely covering spatial positions, which are
built on dense candidates, and each candidate will be
classified and regressed, respectively. Especially in anchor-
based algorithms, for each position in the feature map (H ×

W), k anchor boxes need to be set, which leads to H × W × k
anchors. ,ese candidates are assigned to ground-truth
object boxes in training time and then are needed non-
maximum suppression (NMS) to remove redundant pre-
dictions during inference time. ,e dense-to-sparse
algorithms are also known as two-stage algorithms. ,is
kind of algorithm first uses region proposal algorithm (e.g.,
selective search [7] and RPN [8]) to select a small set of
foreground regions proposals from preset dense candidates
in the first stage, and then region proposals are put into the
subsequent network for classification and position regres-
sion in the second stage, such as R-CNN [7], fast R-CNN
[21], and faster R-CNN [8]. More researchers began to use
deep learning methods for traffic sign detection. Yang et al.
[22] used adversarial machine learning to generate adver-
sarial examples in order to improve the detection robustness
of autonomous vehicles but did not consider the effect of the
environment on the detection. He et al. [23] presented a
traffic sign detection using CapsNet [24] based on visual
inspection. However, it extracts HOG feature from images,
which does not contain semantic information. Dewi et al.
[25] use YOLOv4 with synthetic training data to detect
traffic signs. Domen et al. [26] propose an improved mask
R-CNN [27] to address the full pipeline of detection with
end-to-end learning, which cannot detect small and mul-
tiscale traffic signs. Cao et al. [28] improved faster R-CNN
through the high-resolution backbone network [29] and
prime sample strategy [30]. Xie et al. [31] proposed im-
proved cascade R-CNN [32] for traffic-sign detection. ,e
above methods all use a two-stage-based algorithmwith high
computational complexity to detect traffic signs. ,ese
methods have improved the performance of the algorithm,
but the used backbone networks were designed for classi-
fication such as VGG [33] and ResNet [34], which cannot
extract deeper semantic information and contextual infor-
mation due to the limited receptive field size and lack of
cross-channel interaction.

,e sparse R-CNN method proposes a new object de-
tection paradigm called sparse algorithms [6], which avoids
RPN and replaces it with a set of N-learned object proposals.
N is much smaller than the number of anchor boxes used by
the dense algorithms or dense-to-sparse algorithms in the
first stage. Unlike the two-stage algorithm, this method has
no RPN structure and the proposal boxes are generated by a
set of preset learnable parameters.

,e comparisons of these methods are listed in Table 1. It
can be summarized from this table that the current algo-
rithms applied in traffic sign detection are not fully inte-
grated with attention, multiscale, and data augmentation,
which results in a decrease in the detection accuracy of the
model trained on the dataset in on-road testing. In this
study, our work will incorporate these three factors into the
process of detecting traffic signs based on sparse R-CNN to
improve the accuracy of traffic signs detection.
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3. Proposed Method

In order to improve the detection accuracy of traffic signs,
the proposed framework is illustrated in Figure 1. It consists
of two phases: training and inference. Our main contribu-
tion is the following three parts: (a) MSR including two
parts: integrating coordinate attention block with backbone
network ResNeSt and building a feature pyramid for mul-
tiscale detection. (b) Data augmentation for complex traffic
environment. (c) ,e designed SAA and DTA modules are
used to improve on-road detection accuracy.

3.1. Pipeline. In our proposed framework, as depicted in
Figure 1, xtr represents the training images, and xin rep-
resents the testing images.

In the training phase, there are two modules that process
images xtr synchronously as follows: (1) the first module is
MSR. Images xtr are first augmented by the data augmen-
tation method and then sent to the MSR to detect traffic
signs. In MSR, the features are extracted using our proposed
backbone network. In the feature extraction process, the
acquired five-scale pyramid feature is denoted by
C1, C2, C3, C4, C5 . ,e results obtained by the coordinate
attention block and a 3 × 3 convolution kernel are
P1, P2, P3, P4, P5 . ,en corresponding proposal boxes and
proposal features are input into the dynamic head to gen-
erate object features, finally, the loss value is calculated, and
back-propagation training is carried out to obtain the final
model. (2) ,e second module is SAA. It is a classifier that
learns to divide illumination into low-, normal-, and high-
light classes in the training phase.

In the inference phase, the test images are first sent to SAA
trained on the training images to classify the illumination of
xin. According to the obtained image category from SAA, the
nodes in the data augmentation channel were activated for
data augmentation.,ese extended samples are input into the
MSR to obtain detection results, and the final output results
contained the target probability, category probability, and
position information, which are processed by the DTA.

3.2. Detector

3.2.1. Sparse R-CNN. Sparse R-CNN avoids the manual
setting of a large number of hyper parameters for candidate
boxes and many-to-one label assignments. More

importantly, the final prediction result can be directly output
without NMS as illustrated in Figure 2. ResNeSt was used as
the backbone network for feature extraction in the proposed
framework.

In the proposed sparse R-CNN, we use the CIoU [35]
loss for bounding box regression. CIoU solves the
problem of not being able to directly optimize the parts
where the bounding box and ground truth do not overlap.
,e distance between the two boxes, overlap rate, scale,
and penalty terms are all taken into consideration, making
the target box regression more stable. ,is can also
prevent divergence in the training process. ,e loss
function of CIoU adds an impact term α] based on the loss
function of DIoU [35], which considers the length-to-
width ratio between the predicted and ground-truth
boxes.

,e CIoU loss function is defined as follows:

LCIoU � 1 − IoU +
ρ2 b, b
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where α is a trade-off parameter, and ] is a parameter used to
measure the consistency of the aspect ratio. Furthermore,
ρ(.) is the distance between the central points of the two
boxes, and c is the diagonal length of the smallest enclosing
box covering the two boxes.

Starting from a sparse set of learnable proposals, a sparse
R-CNN generates proposal boxes to extract the region of
interest (ROI) and proposal features to learn ROI features.
Both are learnable parameters.,e dimensions of a learnable
proposal box are N × 4, where N represents the number of
object candidates, generally ranging from 100 to 300, and
there are four boundaries of the object box.,e network sets
a fixed number of boxes as learning parameters. ,e di-
mension of the learnable proposal feature is N × d, where d
represents the dimension of a feature, which is generally 256.
,e ROI feature extracted by the proposal boxes generates a
one-to-one interaction to supplement high-level feature
information such that the features of the ROI are more
conducive to location and classification. ,e interaction
design is called a dynamic instance interactive head. It binds

Table 1: Different traffic sign algorithms.

Methods Framework Attention Multiscale Data augmentation

Traditional algorithms Yao et al. [10] HOG+SVM – – –
Yildiz et al. [13] HOG+SVM – – –

Dense algorithms
Yang et al. [22] Adversarial network – – ✓
He et al. [24] HOG+CapsNet – – –
Dewi et al. [25] YOLOv4 – ✓ ✓

Dense-to-sparse algorithms
Domen et al. [26] Mask R-CNN √ – –
Cao et al. [28] Faster R-CNN – ✓ ✓
Xie et al. [31] Cascade R-CNN ✓ ✓ –

Sparse algorithms Sun et al. [6] Sparse R-CNN – – –
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the proposal box, ROI, and feature vector and detects each
ROI separately without an NMS operation. ,us, the can-
didate boxes can be sparse, and the interactions between
features can also be sparse. ,e backbone network extracts a
feature map, and each proposal box and proposal feature are
fed into its exclusive dynamic head to generate the object
feature.

,e matching cost is defined as follows:

Lattr � λcls · Lcls + λL1 · LL1 + λciou · Lciou,

Ljoint � 
m

i�1
αi
L

i
attr.

(2)

Here, Lcls and LL1 are the focal loss and L1 loss, respec-
tively. Moreover, Lciou represents the CIoU loss, and λcls,

λL1, and λciou are the coefficients of each component. ,e
final loss Ljoint is the sum of all pairs normalized by the
number of objects inside the training batch.

Sparse R-CNN can be seen as a new detection paradigm
that has changed the framework of the dense detector and
the dense-to-sparse detector by abandoning the concepts of
anchor boxes or reference points.

3.2.2. Backbone Network. Convolutional neural networks
are originally designed for image classification. Although
they have competitive performance in the classification task
for the limited receptive field size and lack of cross-channel
interaction, these networks will be limited in the field of
object detection and image segmentation. Object detection
networks with cross-channel representations can solve these
problems. Reference [9] proposed a ResNeSt-based split-
attention blocks. Compared to the ResNet, it does not re-
quire additional calculations. ResNeSt draws on the idea of
the ResNeXt network [36], dividing the input into k pieces,
each marked as cardinal 1−k, and then splitting each car-
dinal into R pieces, marked as split 1−r; hence, there are
G� k × R pieces in the total group. ,e structure of ResNeSt
is shown in Figure 3.

In the proposed method, average pooling with a kernel
size of 3 × 3 was used to reduce the spatial dimensions, and
the 7 × 7 convolution was replaced by three 3 × 3 convo-
lutions, which ensured that the receptive field remained the
same and reduced the number of parameters. A 2 × 2 average
pooling is added before the 1 × 1 convolution with a step size
of two in the jump connection.

We construct a pyramid with a five-scale feature map
C1, C2, C3, C4, C5 , where the subscript indicates the
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pyramid level. Each time, the level is increased by one, and
the resolution size is reduced by half.,e feature maps were
extracted by top-down convolution to reduce the degra-
dation that occurred as the depth of the convolutional
layers increased, and all maps had 256 channels. ,e five
features at different scales are processed by the multiscale
coordinate attention block to enhance attention to the
traffic signs. ,en, the outputs are processed by a 3 × 3
convolution to obtain feature maps P1, P2, P3, P4, P5 ,
which contain both high-resolution spatial information
and low-resolution semantic information. Figure 4 illus-
trates the structure of the multiscale attention backbone
network.

3.2.3. Multiscale Coordinate Attention. Existing attention
methods in computer vision, such as SENet [37], BAM [38],
and CBAM [39], only consider local area information or do
not consider spatial information. ,erefore, in the proposed
method, we used the multiscale coordinate attention method
[40]. It uses two one-dimensional global pooling operations
to aggregate the input features along the vertical and hor-
izontal directions into two separate direction-aware feature
maps. ,en, the two feature maps with the embedded
specific direction information are coded into two attention
maps, each of which captures the long-distance dependency
of the input feature map along that spatial direction. ,e
location information can be saved in the generated attention
map. ,en, the two attention maps are applied to the input
feature maps by multiplication to emphasize the represen-
tation of the attention region.

,e specific structure of the coordinate attention block is
illustrated in Figure 5. In the proposed method, we use the
coordinate attention block to extract the pyramid features
and obtain the traffic sign features of different scales. As
shown in Figure 6, the first column is the original image, the
second column is the feature map without the attention
mechanism, and the third column is the featuremapwith the
attention mechanism. Using the attention mechanism can
help the network to find the region of interest in images.

3.3. DataAugmentation. Deep convolution neural networks
have been successfully applied in the field of computer vi-
sion. ,is type of method is data driven and requires a large
amount of training data. As the network architecture be-
comes deeper, more parameters need to be learned. More
data are required to allow the model performance to become
superior. In a complicated traffic environment, especially in
China, many factors affect traffic sign detection, such as

Cardinal 1

Split Attention Split Attention

Concatenate

Conv, 1x1

Split 1 Split r Split 1 Split r

Cardinal k

Input

Conv
1 × 1

Conv
1 × 1

Conv
3 × 3

Conv
3 × 3

Conv
1 × 1

Conv
1 × 1

Conv
3 × 3

Conv
3 × 3

Figure 3: ResNeSt block.

Attention

Figure 4: Backbone network.

Journal of Advanced Transportation 5



illumination, weather, and noise. However, traffic sign
datasets are not diverse enough, which do not contain data
from different seasons, different times, and different
weather, and only include traffic signs under certain
conditions. ,is will affect the detection effect of the
system in the actual environment. In the proposed
method, we use data augmentation to improve the ro-
bustness of the model.

Dan and Dieterich [41] used data augmentation methods
such as adding noise and blur in their proposed framework,
but these methods are not suitable for the environment of
autonomous driving. ,erefore, the data augmentation
method used in this study mainly simulates the complex
environment of autonomous driving to make the detection
model more stable.

Twenty data augmentation methods were used in the
proposed method, as shown in Figure 7.,ey can be divided
into two categories: pixel-level and spatial-level methods.
Pixel-level methods change the input image, leaving other
properties such as bounding boxes and the spatial position of
the object unchanged.,e spatial-level method changes both
the spatial information and object position of the input
image. ,e main purpose of this kind of augmentation
method is to simulate the interference factors in complex
traffic scenarios.

We also design a box-level data augmentation to sup-
plement the traffic sign data that appear less in the dataset. It
replaces the objects in the bounding box and blurs the
border. It uses transformT tomix the two images Ib and Io to
create a new image Ia.

T � Io × M + Ib ×(1 − M),

Ia � α(T(x, y)).
(3)

In the formula, Io is the object image, Ib is the back-
ground image, and M is a binary mask of object using
ground-truth annotations. Ib and Io are selected images
from datasets. ,e proposed method extracts the object
region from Io and proportions it to the object region in Ib.
,is result in a gradient at the junction, and the method
further uses Gaussian kernel α to blur this junction and
alleviate abnormal fitting caused by drastic gradient changes.
,e box-level augmentation and results are shown in Fig-
ure 8 and 9.

3.4. Inference Phase

3.4.1. Self-Adaption Augmentation (SAA). In order to re-
duce the influence of illumination factors in the on-road
detection stage, we proposed the SAA module.

Residual

X Avg Pool Concat
+

ConvY Avg Pool
BN

Conv

Conv

Sigmoid

Sigmoid Reweight

Figure 5: Coordinate attention block.

(a) (b) (c)

Figure 6: Visualization of feature maps. (a) ,e original image, (b) w/o. attention and (c) w/. attention.
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,e illumination is the greatest influence factor on the
processing of traffic sign detection. In the proposed
framework, a VGG-16 neural network was trained to classify
the illumination of the input image. ,e illumination is
divided into low-, normal-, and high-light classes. In the on-
road test stage, when the image is input to the SAA module,
it classifies the input image according to the illumination. If
the image is under low- or high-illumination conditions, the
brightness of the image is adjusted and then processed by the
DTA module. We adjusted the original image to two dif-
ferent degrees according to the light intensity (Figure 10).
Figure 10(a) is the original image, whereas Figure 10(b) and
10(c) shows the results of different adjustments of the

original image. ,e specific process is shown in Figure 11,
where three enhanced sample images are generated by SAA.
,en, the augmented samples are input to the detector for
processing. Specifically, if the image is under normal illu-
mination, the trained detection model will be directly used
for detection.

3.4.2. Detection Time Augmentation (DTA). ,e trained
detection model used in real traffic scenarios may output
false or missed detections, which will cause autonomous
vehicles to make wrong decisions and cause traffic accidents.
To increase the robustness of the model, we propose a DTA

Sepia Gray Blur Channel Dropout CLAHE

Color Jitter Glass Blur Gaussian Blur Horizontal Flip Perspective

Rain Random Erasing Snow Mosaic Fog

Brightness Contrast Gamma Sun Flare Shadow Low light

Figure 7: Examples of data augmentation.

Transform T Gaussion α (x,y) Aug Ia

Figure 8: Box-level data augmentation.
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method for traffic sign detection, as illustrated in Figure 12.
It first applies SAA to the input image to generate multiple
samples. ,en, the augmented images are processed by the
trained model, and different results are obtained, which can
be divided into three parts: the probability that the image
contains the object P(obj, x), the category probability of the
object P(cls, x), and the location information of the
bounding boxes (w, h, x, y).

,e framework proposed in this study uses a voting
mechanism for the output results, determines whether the input
image contains the detection object, and outputs the result:

Obj �

1, 
A

i�1
obj X

i
 ≥ ⌊

A

2
⌋,

0, 
A

i�1
obj X

i
 <⌊

A

2
⌋.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Here, Xi is the i-th augmented image, and A indicates the
augmentation methods used in the proposed framework.

If the augmented image contains the object, obj(·) is 1;
otherwise, it is 0. ,e final Obj value depends on the
statistical results of each augmented sample image, as
follows:

Cls � Argmax(f(c))
c∈C

, cls≥ threshold. (5)

,e object category Cls is obtained according to the
above equation, where C is the total category trained in the
detection model, and f(c) is used to count the categories
of detected objects in the augmented image based on
whether cls is larger than the preset threshold. ,e final
bounding box coordinates are calculated from the average
coordinates of the same detection object on different
images, as shown in the following equation. Finally, Lj

represents the coordinate position of the same object on
different images:

Bbox � Avg 
A

j�1
Lj

⎛⎝ ⎞⎠. (6)

Io Ib Ia Io Ib Ia

Figure 9: Results of box-level data augmentation.

(a) (b) (c)

Figure 10: Illumination of augmentation results.
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4. Datasets

Traffic sign detection is an important task in the field of
autonomous driving. Although some general image datasets,
such as VOC, ImageNet, and MSCOCO, contain images of
traffic signs, these data cannot be used to train traffic sign
detection models. ,e accuracy and robustness of a network
trained with different traffic sign datasets in an actual en-
vironment are different. ,e widely used German Traffic
Sign Detection Benchmark (GTSDB) [42] contains three
types of traffic signs (mandatory signs, warning signs, and
prohibitory signs) and consists of 900 images with a size of
1360 × 800. ,e dataset published by the Laboratory for
Intelligent and Safe Automobiles (LISA) [43] includes 47
types of US traffic signs, with 7,855 images and 6,610 signs
ranging in size from 6 × 6 to 167 × 168 pixels taken from
American traffic video frames. ,e traffic signs contained in
these datasets are quite different from Chinese traffic signs in
color and shape; hence, models trained with datasets such as
GTSDB or Lisa cannot be directly applied to the recognition
of Chinese traffic signs.

Tsinghua–Tencent 100K (TT-100K) [44] is a public
dataset collected in China, containing 16,000 images and
consisting of 27,000 traffic sign instances divided into 211
categories. ,e Chinese Traffic Sign Dataset (CTSD) pub-
lished by the Chinese Academy of Sciences contains 1,100
images divided into 700 training images and 400 testing
images with sizes of 1024 × 768 and 1280 × 720. ,e CSUST
Chinese Traffic Sign Detection Benchmark (CCTSDB) [45]
expands the CTSD by adding 5,200 images collected from
the highway with a size of 1000 × 350. Models trained on

these public datasets cannot be applied to real traffic
scenarios.

In this study, we present a collected and annotated
dataset of traffic signs named Beijing Union University
Chinese Traffic Sign Detection Benchmark (BCTSDB). ,e
autonomous vehicle used to collect data equipped with
sensors is shown in Figure 13.,e sensing system consists of
a millimeter-wave radar, monocular camera, lidar, infrared
camera, GPS receiver, and ultrasonic radar. ,e monocular
camera is used to record traffic scenes video.

,is dataset includes 15,690 images and 25,243 anno-
tations with image sizes of 1024 × 768, 1280 × 720, 1000 ×

350, and 912 × 684. Figure 14 shows the sample images from
this dataset. ,e label categories are prohibitory, mandatory,
and warning, with 12,705, 8,193, and 4,345 instances in the
dataset, respectively. ,ese data were collected from fifteen
cities of China: Beijing, Changshu, Nantong, Yiwu, Tianjin,
Shenzhen, Baoding, Shijiazhuang, Yan, Anyang, Zhengzhou,
Kaifeng, Jingzhou, Shanghai, and Fuzhou. ,e image data
were collected for different scene types such as urban streets,
highways, and viaducts. ,e dataset is available at https://
github.com/ltjcherry/BCTSDB.

5. Experiments

5.1. Experimental Setup. ,e experimental parameters of the
proposed model are summarized in this section. ,e
computer configuration included two NVIDIA TITAN V
graphics cards, with a total of 24GB VRAM. Pytorch was
used to implement the network structure. Adam was used as
an optimizer with a weight decay [46] of 0.0001. ,e initial

SAA
MSR DTA

ŷ

VGG Augment

Figure 11: Self-adaption preprocessing.

Input Self–adaption Augment Network Model Estimate Output[1st part | 2nd part | 3rd part] ×n

1×M×N k×M×N k×M×N R×n R

ŷ

Figure 12: DTA.
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learning rate was set to 2.5×10−5. ,e backbone network
was initialized using pretrained weights from ImageNet [47]
and Xavier [48] for new layers. ,e default number of
proposal boxes, proposal features, iterations, and SAA were
100, 100, 6, and 3, respectively. Our method was evaluated
on the BCTSDB and TT-100K. We replace BN with SynBN
to accelerate model training, and the training parameters are
no longer affected by the number of GPUs, which has been
successfully used in MegDet [49].

5.2. Performances onBCTSDB. ,e experiment used average
precision (AP) to compare different models and their ac-
curacies. Both recall and precision are considered in the

calculation of the AP, which takes the average value of the
precision rate at each recall point from 0 to 1. Precision is the
ratio at which the original object is accurately detected, and
recall is the proportion of labeled objects in the image that
are detected correctly.

We randomly divided the BCTSDB into 14,591 training
set images containing 23,440 annotated labels and 1,099 test
set images containing 1,803 annotated labels. Figure 15
shows the detection results of BCTSDB. ,e top part of
the figure is the original image, and the bottom part is the
detection result, which displays the detected bounding box
on the images. It can be clearly seen in Figure 15 that the
method proposed in this study can effectively detect traffic
signs.
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Figure 13: Autonomous vehicle sensors’ layout.

Figure 14: Example images of BCTSDB dataset.
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,e loss curves of the different methods with respect to
the training epoch are shown in Figure 16. It also shows that
our proposed model converges faster and has a lower loss
value.

,e experiments in this study proved that DTA can
effectively improve the accuracy and robustness of the
model. For instance, in Figure 17, the upper image shows
that the network has missed detections without the DTA
module, and the lower image shows the detection result after
using DTA, revealing that our method can detect all traffic
signs in the image.

To verify the effectiveness of each proposed module, we
conducted ablation experiments. To the MSR baseline, data
augmentation, multiscale attention, DTA, and SynBN were
gradually added. ,e same parameters and training schemes
were used for each ablation experiment. ,e result of ab-
lation studies for the BCTSDB is listed in Table 2. ,e AP50
and AP75 of our proposed method obtain 3.3% and 3.7%
improvement, respectively, based on the sparse R-CNNwith
ResNeSt101.

We further evaluate the effectiveness of commonly used
data augmentation and box-level data augmentation, as
listed in Table 3. Experiments have proved that both the
commonly used data augmentation methods and box-level
augmentation can improve the detection accuracy of the
model.

Comparisons among the different methods are pre-
sented in Table 4, which lists the detection results based on
RetinaNet, YOLOv3, YOLOv5, faster R-CNN, cascade
R-CNN, and sparse R-CNN with different backbones. Our
method can obtain more competitive results, with AP50 and
AP75 values of 99.1% and 96.2%, respectively, which are
better than the results of other methods. Compared to the
original sparse R-CNN with ResNet101, our model can
improve AP50 and AP75 by 4.4% and 12%, respectively. It
can also be seen that the method proposed in this study

improves the detection accuracy and has little impact on
FPS.

5.3. Performances on TT-100K. We also evaluated the
method proposed in this article on the TT-100K data, using
6,103 images containing 16,524 labeled boxes as the training
dataset and 3,067 images containing 8,181 labeled boxes and
221 categories of traffic signs as the test dataset. It can be seen
from the comparison results as Table 5 lists that the detection
accuracy of the proposed method is greatly improved
compared with the existing algorithms. Compared to the
original sparse R-CNN with ResNet101, our model can

Figure 15: Traffic sign detection results on BCTSDB dataset.
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Figure 16: ,e loss curves of different methods.
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improve AP50 and AP75 by 7.9% and 8.9%, respectively and
run at 18 fps using our proposed backbone network.,e TT-
100K dataset itself has the problem of an uneven distribution
of image categories, and hence the current detection algo-
rithm results are generally low for TT-100K.,e bottom row
of Figure 18 illustrates the detection results of the proposed
method on TT-100K.

5.4. On-Road Testing. To further evaluate the model per-
formance in real traffic scenarios, we assemble the model
into the autonomous vehicles. ,e autonomous vehicles
used for the on-road testing are shown in Figure 19. And the

on-road test area is illustrated in Figure 20. ,is area is the
urban road environment competition in China’s Intelligent
Vehicle Future Challenge. ,e area includes many types of
intersections, urban road traffic signs, and road markings.

In this part, we used the maximum detectable distance to
evaluate our proposed method and calculated the average
distance with the standard deviation as the error according
to the images collected during the autonomous driving
mode. In Figure 21, the box represents the quartiles, the line
inside the box represents the median of the distance, and the
ends of the boxes represent the minimum and maximum of
each set of distances. It can be concluded from the exper-
imental results that our method can detect traffic signs up to

Figure 17: Traffic sign detection results with DTA.

Table 2: Ablation studies on each component in our method.

Data augmentation SynBN Attention DTA AP50 AP75
95.8 92.5

✓ 98.1 94.2
✓ ✓ 98.4 94.8
✓ ✓ ✓ 98.7 95.3
✓ ✓ ✓ ✓ 99.1 96.2

Table 3: Comparisons with data augmentation.

Method Backbone Augmentation Box-level augmentation AP AP50

RetinaNet ResNet101
– – 61.3 92.7
Y – 63.8 94.8
Y Y 64.1 95.2

Faster R-CNN ResNet101
– – 70.2 94.7
Y – 72.4 96.1
Y Y 72.7 96.5
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Table 4: Detection result on BCTSDB.

Method Backbone AP AP50 AP75 FPS
RetinaNet ResNet50 59.7 89.4 71.2 24
RetinaNet ResNet101 61.3 92.7 73.5 18
YOLOv3 Darknet53 59.5 92.7 70.4 33
YOLOv5 CSPDarknet 72.3 97.3 90.3 45
Faster R-CNN ResNet101 70.2 94.7 86.0 18
Cascade R-CNN ResNet101 75.8 96.7 92.5 13
Cascade R-CNN ResNeXt101 77.2 97.3 93.8 13
Cascade R-CNN ResNeSt101 77.8 97.5 94.1 10
Sparse R-CNN ResNet50 67.6 94.2 83.8 25
Sparse R-CNN ResNet101 69.8 94.7 84.2 22
Sparse R-CNN ResNeXt101 73.4 95.1 91.4 23
Sparse R-CNN ResNeSt101 76.5 95.8 92.5 20
Ours Multiscale ResNeSt101 78.9 99.1 96.2 18
,e meaning of the bold values is the accuracy of the proposed detection algorithm (%).

Table 5: Detection result on TT-100K.

Method Backbone AP AP50 AP75 FPS
RetinaNet ResNet101 17.5 32.3 16.9 18
YOLOv3 Darknet53 16.1 30.5 13.2 33
YOLOv5 CSPDarknet 26.7 34.8 28.6 45
Faster R-CNN ResNet101 39.8 50.0 47.6 18
Cascade R-CNN ResNet50 23.5 29.7 27.9 17
Cascade R-CNN ResNet101 28.2 34.7 33.0 13
Cascade R-CNN ResNeXt101 27.4 34.4 32.2 13
Cascade R-CNN ResNeSt101 30.9 37.0 36.2 10
Sparse R-CNN ResNet101 33.9 45.2 39.8 22
Sparse R-CNN ResNeSt101 38.6 50.0 45.4 20
Ours Multiscale ResNeSt101 42.2 53.1 48.7 18
,e meaning of the bold values is the accuracy of the proposed detection algorithm (%).

Figure 18: Traffic sign detection results on TT-100K dataset.
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200meters away, which provides more processing time for
the decision-making module and control module of the
autonomous driving system.

6. Conclusion

Traffic sign detection can achieve high accuracy in an ideal
environment, but when applied to autonomous vehicles, the
detection accuracy will be reduced due to complex traffic
scenes. In this study, we contribute to this gap through an
improved sparse R-CNN method. ,e main contribution of
this study is to integrate the attention mechanism and
feature pyramid into the backbone network, so that the
extracted features can focus on useful information. ,e data
augmentation method is used to simulate complex traffic
scenes. We also present a traffic sign dataset BCTSDB. ,e
use of SAA and DTA modules can make the on-road traffic
sign detection of the autonomous vehicle more robust. ,e
experimental results on the BCTSDB and TT-100K datasets
verify the effectiveness of the method in this study.,e AP50
and AP75 of proposed method are 99.1% and 96.2% for
BCTSDB, and 53.1% and 48.7% on TT-100K, respectively,
which indicates that our proposed method achieves state-of-
the-art results.

In the future, our work will focus on how to improve the
high accuracy detection algorithm to achieve fast detection
speed. ,e XAI [50] development may provide a quick
solution to this problem. While consider applying HD map,
V2X and 5G technologies to autonomous driving are a way
to accelerate the industrialization.

ABBREVIATIONS

AM: Attention module
AP: Average precision
BCTSDB: BUU Chinese Traffic Sign Detection Benchmark
CIoU: Complete IoU
CTSD: Chinese Traffic Sign Dataset
DIoU: Distance-IoU
DTA: Detection time augmentation
GIoU: Generalized IoU
GTSDB: German Traffic Sign Detection Benchmark
HOG: Histogram of oriented gradients
IoU: Intersection over union
Lisa: Laboratory for Intelligent and Safe Automobiles
MSR: Multiscale sparse R-CNN
NMS: Nonmaximum suppression
ROI: Region of interest
SAA: Self-adaption augmentation
SIFT: Scale-invariant feature transform
SSD: Single-shot multibox detector
SVM: Support vector machine
SynBN: Synchronized BN
TT-
100K:

Tsinghua–Tencent 100K

YOLO: You Only Look Once.

Data Availability

,e image data used to support the findings of this study are
available from the corresponding author upon request.

Figure 19: Autonomous vehicles for on-road testing.
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