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With the growth in global trade and its environmental footprint, sustainable modes of freight movement are increasingly
important in today’s globalized world. .is study focuses on on-dock rail, where the rail terminal is located within the marine
container terminal. On-dock rail has in recent years become an essential mode of transportation to move containers out of
congested marine container terminals. .is study contributes to the literature by presenting tailored exact solution algorithms for
a recently proposed optimization model to optimize the loading of double-stack trains. In particular, a 3-stage solution framework
is presented for the case when rail cars have a single well. A complementary solution algorithm for the case when a rail car has
multiple wells is also provided. Our results show that computational times can be drastically reduced, from 2+ hours to a matter of
seconds, rendering the model suitable for practical use.

1. Introduction

According to the UN Conference on Trade and Develop-
ment (UNCTAD), over 80 percent of global merchandise
trade by volume and more than 70 percent by value are
transported using the maritime mode of transportation. To
manage this (growing) trade volume, there is a critical need
to effectively manage the maritime transportation system,
including the rapidly growing containerized trade. .is has
in recent years led to numerous advances in improved ocean
container shipping management strategies (e.g., see [1–3]).

Rail, especially on-dock rail—where the rail terminal is
located within the marine container terminal—is increas-
ingly being recognized as a sustainable and necessary mode
of transportation to move containers in and out of congested
marine container terminals. .is trend fits within the
broader call in the maritime industry to reduce ocean
shipping’s carbon footprint [4]. In response to this call,
maritime researchers have examined a range of alternatives,
from the use of alternative fuels, to the setting of emission
standards, speed optimization, and the use of shore power
(e.g., see [5–7]).

To maximize rail’s capacity, it is critical to build trains
that are fully utilized when leaving the marine container
terminal. Our focus in this study was on double-stack trains.
For single-stack trains—that are subject to very different
loading constraints—the reader is referred to the literature
(e.g., see [8]). A limited number of studies have appeared in
the literature that examined the problem of loading double-
stack trains, with each study valid under its own set of
assumptions appropriate for the geography and operating
environment. To the best of our knowledge, Pacanovsky
et al. [9] was the first research appearing in the literature
discussing the problem of loading double-stack trains. In
their work, an inland rail yard was considered where con-
tainers arrive continuously and a location on a double-stack
train needs to be assigned immediately upon arrival. A
heuristic was used to assign the containers. Lai et al. [10]
presented an optimization model to optimize the aerody-
namics of intermodal freight trains carrying both containers
and trailers. It was noted that despite commercial decision
support software being available, deciding where to place
containers on (double-stack) trains was still “a largely
manual process” in practice. Lang et al. [11] examined the
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loading of double-stack trains in China. While one of their
goals was to maximize rail car maximization, their key focus
appears to be on keeping the vertical center of gravity low. It
is interesting to note that their loading constraints are very
different from the model considered in this study. .is is
most likely due to the different equipment designs in China.
For instance, they reported the possibility of loading two 20′
containers on top of two other 20′ containers, which is not
common practice in the United States. Upadhyay et al. [12]
presented a model for double-stack train loading tailored to
the practice in India. As Lang et al. [11], they reported the
possibility of loading two 20′ containers on top of two other
20′ containers. In addition to this key difference, Upadhyay
et al. [12] also considered other constraints and practices in
India that are uncommon in the United States. Most re-
cently, Ng and Talley [13] presented an integer optimization
model to load double-stack trains at marine container ter-
minals. Unlike other models discussed above, Ng and
Talley’s model is tailored to the practice at U.S. container
ports..e above-related works are summarized in Table 1, in
terms of two key variables: the country for which the model
was developed and whether the model has been developed
for marine container terminals.

.e current research is inspired by Ng and Talley [13].
.e main focus in Ng and Talley [13] was on presenting a
model that captured real-world operating practice. (Before
proceeding, it is recommended that the reader reviews the
model by Ng and Talley [13], which is summarized in
Appendix A. For a more detailed discussion, the reader is
referred to the original work.) .e resulting model was
solved for small problem instances with an off-the-shelf
commercial solver. When the number of containers and rail
cars is more realistic, i.e., larger, it becomes computationally
prohibitive when using off-the-shelf solvers. (As we shall
demonstrate in Section 5, it can take more than 2 days to find
an optimal loading plan for practical instances of the
problem, when using off-the-shelf solvers.) Marine con-
tainer terminals need answers quickly for the model to be
useful in practice. In this study, we exploit the problem
structure to develop tailored solution methods for the rail
loading problem. As shall be demonstrated, computational
times will be drastically reduced, making the model suitable
for practical use.

.e remainder of this study is organized as follows. In
Section 2, a tailored, three-stage solution method is provided
to solve the optimization model. Section 3 considers an
extension of the model in which rail cars can have multiple
wells. A new solution framework is provided for this case.
Section 4 illustrates the proposed methods with detailed
computational results. Section 5 concludes the study.

2. Three-Stage Solution Approach for Single-
Well Rail Cars

To solvemodel (P) in Appendix A, a tailored 3-stage solution
approach is proposed in this section..e reader is advised to
study the model formulation and its notation in Appendix A
first before proceeding. .e proposed method decomposes
the problem into three stages. .e first two stages determine

an effective lower bound, while the final stage calculates a
sharp upper bound for the objective function in model (P).

2.1.)e First Stage. Note that the utilization of a rail car can
be either 100%, 50%, or 0%. In the first stage, we try to
maximize the number of 100% utilization cars. To this end,
the following procedure is followed:

(1) .e objective function is changed to
MaxZ1 � 􏽐j􏽐kyjk1 in model (P). Furthermore, an
additional constraint 1/2(􏽐i∈Ih

xik + 􏽐m∈Mh
vmk)

+ 􏽐j∈Jh
yjk2 � 􏽐j∈Jh

yjk1, ∀k ∈ K, is added to ensure
that there must be an upper-level container if the
lower level is loaded with containers. .is constraint
forces the rail cars to be loaded to 100% utilization.

(2) If the number of 100% utilization cars (say Q) is
equal to the number of available cars, i.e., Q � |K|,
then the optimal solution is 100%.

(3) On the other hand, if Q< |K|, then there is at least
one rail car that cannot be loaded to 100% utilization.
In this case, the containers that have not been
assigned a rail car will be transferred to the next
stage.

In other words, the first stage solves the following
program P1:

Z
1

� Max 􏽘
j

􏽘
k

yjk1
.

s.t.
(1)

Constraints (A.2)–(A.19).

1
2

􏽘
i∈Ih

xik + 􏽘
m∈Mh

vmk
⎛⎝ ⎞⎠ + 􏽘

j∈Jh

yjk2
� 􏽘

j∈Jh

yjk1
, ∀k ∈ K. (2)

As this formulation only finds 100% utilization cars, the
solution space is small. As will be shown in the numerical
experiment in Section 4, this formulation (or more accu-
rately, its linearized version) can be solved efficiently using
commercial optimization packages (i.e., CPLEX).

2.2. )e Second Stage. When Q< |K|, the solution method
enters the second stage. In this case, there must be at least
one rail car that cannot be loaded to 100% utilization. In this
second stage, we then try to maximize the number of 50%
utilization cars.

In this stage, the containers that have been assigned to
the rail cars and the rail cars loaded with 100% utilization in
the first stage are no longer considered. .e interest in the

Table 1: Summary of key studies of double-stack rail optimization.

Study Country Maritime
Pacanovsky et al. [9] United States No
Lai et al. [10] United States No
Lang et al. [11] China No
Upadhyay et al. [12] India No
Ng and Talley [13] United States Yes
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second stage is only in the remaining containers and rail cars
that have not been assigned/loaded.

It is to be noted that in the second stage no rail cars will
achieve 100% utilization. .at is, we can discard constraints
(A.8) and (A.12). Also, we eliminate constraint (2) from the
first stage because the remaining containers will be loaded on
the cars with a maximum utilization of 50% only and we
cannot force the car’s utilization to 100%.

In other words, the second stage solves the following
program P2:

Z
2

� Max
1

4|K|
􏽘
k

􏽘
i

xik + 􏽘
k

􏽘
m

vmk + 2􏽘
l

􏽘
k

􏽘
j

yjkl
⎛⎝ ⎞⎠,

s.t.
(3)

Constraints (A.2)–(A.7), constraints (A.9)–(A.11), con-
straint (A.13), and constraints (A.14)–(A.19).

As the first stage, this second-stage problem can be ef-
ficiently solved using CPLEX. Proposition 1 now is as
follows.

Proposition 1. Z1 + Z2 is a lower bound to model (P).

Proof. Since the first stage identifies 100% utilization cars
and the second stage the 50% utilization rail cars, the first
two stages together provide a feasible solution to the original
problem. Q.E.D. □

2.3.)e)ird Stage. Because of the sequential nature of the
first two stages, the loading plan thus far is generally sub-
optimal. To improve on the utilization, a third stage is in-
troduced. In the third stage, we first derive an upper bound
on the utilization. After that, we solve the original formu-
lation considering all containers and rail cars with an ad-
ditional constraint that bounds the value of objective
function. Before presenting the details, we introduce the
following notation.

(i) Z: the sum of the objective values from the first two
stages of the solution method, i.e., Z � Z1 + Z2.

(ii) ah: the numbers of 20′ laden containers destined
for hub h that are not loaded in the first two stages.

(iii) bh: the numbers of 20′ empty containers destined
for hub h that are not loaded in the first two stages.

(iv) ch: the numbers of 40′ containers destined for hub
h that are not loaded in the first two stages.

(v) n: the number of remaining rail cars that are not
loaded with any containers after the first two
stages.

(vi) a: a � 􏽐h∈H ah/2􏼄 􏼅, which represents the maximum
possible number of 50% utilization cars for the
remaining 20′ laden containers ah.

(vii) b: b � 􏽐h∈H bh/2􏼄 􏼅, which represents the maximum
possible number of 50% utilization cars for the
remaining 20′ empty containers bh.

(viii) c: c � 􏽐h∈Hch, which represents the maximum
possible number of 50% utilization cars for the
remaining 40′ laden containers.

Recall that |K| denotes the number of rail cars that can be
loaded. .e following result can then be derived.

Proposition 2. Z � Z +(m × 0.5/|K|) is an upper bound for
model (P).

Proof. Using the above notation, note that at most m �

min a + b + c, n{ } additional rail cars can be loaded with
containers after the first two stages of the solution method,
each with 50% utilization. .erefore, it follows that Z �

Z +(m × 0.5/|K|) is an upper bound. Q.E.D.
Based on the upper and lower bounds in propositions 1

and 2, we can introduce the following constraint to the
model (P):
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(4)
.en, we solve the following formulation P3 in this third

stage with all the original containers and rail cars as input:
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Constraints (A.2)–(A.19).

Z ≤
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(6)

As will be demonstrated in our numerical experiments,
constraint (6) is critical in finding optimal solutions with
limited computational effort. Figure 1 summarizes our 3-
stage solution framework. □

3. Case of N-Well Rail Cars

Model (P) assumes that rail cars have a single well.While this is
a possible scenario, what is more common in practice is to have
rail cars that consist of multiple wells N, with the most
common case being N� 5 (TTX, 2020) (https://www.ttx.com/
about/equipment/). Figure 2 shows a 5-well rail car. In this
case, the 3-stage framework no longer applies as it was tailored
to the single-well case. In this section, a new solution technique
is developed for the case of N-well rail cars, where N> 1.

To ensure that all well cars that are part of the rail car are
dispatched toward the same hub, an additional constraint is
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introduced. In particular, for an N-well rail car (N> 1), this
additional constraint is as follows:

􏽘

Nm+N

i�Nm+1
u

h
i � Nu

h
Nm+1h ∈ H,

m � 0, 1, . . . ,
K

N
􏼖 􏼗 − 1􏼚 􏼛.

(7)

For example, suppose N � 5, then constraint becomes
􏽐

5m+5
i�5m+1u

h
i � 5uh

5m+1. Note that m indexes the number of
N-well rail cars. For example, if there are three N-well rail
cars, then the index m takes on the values 0, 1, and 2.

Unfortunately, including constraint (7) does not allow
the resulting optimization problem to be solved efficiently.
To alleviate this, we derive an upper bound (UB) on the
utilization as follows. In Section 4, we will demonstrate that
the UB derived is very sharp and can significantly reduce the
computational efforts required to solve the formulation.
Recall from Section 2 that ah, bh, and ch represent the
number of 20′ laden, 20′ empty, and 40′ containers to hub h,
respectively. Further, let Fh and Hh be the minimum
numbers of fully loaded (i.e., 100% utilization) and half-
loaded (i.e., 50% utilization) rail cars for hub h, respectively.
.en, the following three steps can be used to calculate the
UB on the utilization when constraint (7) is present.

Step 1. (estimate the minimum number of cars required).
In the first step, we ignore the weight limit and attempt

to load all containers with the minimum number of cars. In
particular, we create groups for each two randomly selected

20′ laden containers and groups for each two randomly
selected 20′ empty containers. As the 20′ containers can only
be placed in the lower level, we load these groups to the cars
first. .erefore, the minimum number of cars required to
load the 20′ containers can be estimated as ai/2􏼄 􏼅 + bi/2􏼄 􏼅, as
the weight limit is not considered in this step..en, we try to
load the 40′ containers on top of the groups of 20′ containers
without considering the weight limit. Two scenarios are
possible.

(i) ai/2􏼄 􏼅 + bi/2􏼄 􏼅≥ ch

Because the number of 20′ containers required to
load the cars with only 20′ laden and empty con-
tainers ( ai/2􏼄 􏼅 + bi/2􏼄 􏼅) is greater than the number
of 40′ containers (ch), in this case, the number of cars
that can be fully loaded Fh is equal to the number of
40′ containers ch. .e remainder of the cars can only
be half-loaded, and the number of this type of cars
Hh is ah/2􏼄 􏼅 + bh/2􏼄 􏼅 − ch. .erefore, Fh � ch and
Hh � (ah/2) + (bh/2) − ch in this scenario,
respectively.

(ii) ah/2􏼄 􏼅 + bh/2􏼄 􏼅< ch

In this case, the number of 20′ containers is not
enough to create the cars with 100% utilization using
the combination of 20′ and 40′ containers..ere can
be multiple cars with only one 40′ container in the
lower level of cars. We can estimate Fh＝( ah/2􏼄 􏼅 +

bh/2􏼄 􏼅) + ch − ( ah/2􏼄 􏼅 + bh/2􏼄 􏼅)/2􏼄 􏼅, where the first
term ah/2􏼄 􏼅 + bh/2􏼄 􏼅 is the number of fully loaded
cars with a combination of 20′ and 40′ containers. In
the second term, ch − ( ah/2􏼄 􏼅 + bh/2􏼄 􏼅) is the
remaining 40′ containers that cannot be combined
with 20′ containers to form 100% utilization cars.
.erefore, ch − ( ah/2􏼄 􏼅 + bh/2􏼄 􏼅)/2􏼄 􏼅 represents the
number of 100% utilization cars with only 40′
containers, since only when two 40′ containers are
loaded to a car can that car have a utilization of
100%. Further, the minimum number of half-loaded

The Third StageThe Second StageThe First Stage

Replace the objective function with
Equation (1), the function related to 100% 

utilization cars.

Report the incumbent solution

Remove constraints related to 100% 
utilization cars.

Let m be the maximum number of cars
that can be loaded with containers after the
first two stages. Calculate the upper 
bound: 

If number of 100% utilization cars
is equal to number of available

cars?

Solve the first stage program P1.

No Solve the third stage program P3.

Solve the second stage program P2.Introduce additional constraint Equation
(2) to ensure 100% utilization of cars.

Determine the lower bound Z = Z1 + Z2

Goal: maximize 100% utilization cars
Input: all cars and containers

Goal: maximize 50% utilization cars
Input: remaining cars and containers 

from the first stage

Goal: maximize the overall utilization
Input: all cars and containers

Yes

Z = Z +
|K|

m×0.5

Figure 1: .ree-stage solution framework.

Figure 2: A 5-well rail car.
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cars is Hh � (ch − ( ah/2􏼄 􏼅 + bh/2􏼄 􏼅))mod 2. If
Hh � 1, there can be a 50% utilization car with one
40′. Hh � 0, otherwise.

Step 2. (bounding the number of N-well cars).
In this step, we bound the number of N-well cars and

subsequently determine how to distribute the single-well
cars to these N-well cars.

(i) Let B be the number of N-well cars (N> 1) and S be
the number of remaining unloaded single-well cars.
.en, B � K/N⌊ ⌋, S � K − N × B (i.e., if N � 5,
B � K/5⌊ ⌋, S � K − 5 × B), where K represents the
number of total single-well cars. If a single-well car
is with 100% utilization, we choose to load it first to
theN-well car. Let Mh be the number of fully loaded
N-well cars for hub h and Uh,i be the utilization rate
according to different loading approach i for par-
tially loaded N-well cars for hub h. .e following
procedure estimates the number of N-well cars. If
Fh ≥N and B> 0, we want to know how many fully
loaded cars can be sent for each hub h.
In this case, for each hub, we want to know how
many fully loaded cars can be sent. Let
Mh � min (Fh/N), (K/N)􏼈 􏼉, and we can update
Fh←Fh − N × Mh and B←B − Mh.

(ii) If Fh <N

Since Fh is the remaining full car and Hh is the
remaining half-loaded car to hub h, we can update
Uhi as follows:

For h � 1 to |H|

{
For i � 1 to Fh + (Hh/N)

{
Uhi �

(1 × Fh + 0.5 × min N − Fh, Hh􏼈 􏼉)/(N)

Fh←Fh − Fh

Hh←Hh − min N − Fh, Hh􏼈 􏼉

}
}

In the equation Uh,i � (1 × Fh + 0.5×

min N − Fh, Hh􏼈 􏼉)/(N), the term 1 × Fh is the
utilization contributed by the 100% utilization cars
in the N-well car. .e term 0.5 × min N − Fh, Hh􏼈 􏼉

is the utilization contributed by the rest of the cars
in the N-well car.

(iii) Let Nn ∀n � 1, 2, . . . , R be the utilization for N-well
cars that are not fully loaded. We sort Uh,i in
descending order and assign cars into the big cars
accordingly. .en, Fh � 0, Hh � Hh

− min N − Fh, Hh􏼈 􏼉.

Step 3. (calculate the UB).
.e last step calculates the UB. If the number of fully

loaded cars is greater than or equal to the number of single
cars that need to be assigned (􏽐hFh ≥ S),

UB � ZN � (S × 1 + N × 􏽐hMh + N × 􏽐nNn)/(K). .e
terms S × 1, N × 􏽐hMh, and N × 􏽐nNn are the utilization
contribution of single cars, the utilization contribution of
fully loaded N-well cars, and the utilization contribution of
partially loaded N-well cars, respectively.

Otherwise, if the number of fully loaded cars is less than
the number of single cars that need to be assigned
(􏽐hFh < S), UB � ZN � 1 × 􏽐hFh + 0.5 × min S{ − 􏽐hFh,

􏽐hHh } +N × (􏽐hMh + N × 􏽐nNn)/(K). In this case,
1 × 􏽐hFh, 0.5 × min S − 􏽐hFh , 􏽐hHh􏼈 􏼉, N × 􏽐hMh, and
N × 􏽐nNn are the utilization contributions of 100% utili-
zation single car, 50% utilization single car, fully loaded N-
well car, and partially loaded N-well car, respectively.

To summarize, when N-well rail cars are present (with
N> 1), the following optimization problem is solved:

Z � Max
1

4|K|
􏽘
k

􏽘
i

xik + 􏽘
k

􏽘
m

vmk + 2􏽘
l

􏽘
k

􏽘
j

yjkl
⎛⎝ ⎞⎠.

(8)

s.t.
Constraints (A.2)–(A.19) and constraint (7) and

1
4|K|

􏽘
k

􏽘
i

xik + 􏽘
k

􏽘
m

vmk + 2􏽘
l

􏽘
k

􏽘
j

yjkl
⎛⎝ ⎞⎠≤Z

N
. (9)

4. Numerical Demonstration

4.1. Single-Well Rail Cars. To validate the proposed solution
approach, we generated weights for the containers and
weight limits of the rail cars according to real-world em-
pirical distributions. (For a more detailed discussion of the
weight data, see [13].) .e cargo weight and car weight limit
are between 10,000 and 100,000 and 140,000–180,000, re-
spectively. .e tolerance factor of a rail car is set to 1 in all
cases (cf. Appendix A). .e proposed 3-stage solution ap-
proach was implemented in the C# programming language.
.e numerical experiments were conducted on a Windows-
based machine with an Intel 3.40GHz CPU and 16GB of
memory.

Table 2 lists representative results for the 3-stage solution
approach for 8 different instances of the problem. .e
CPLEX column shows the objective values found by CPLEX
and the CPU time used when CPLEX is used to solve the
problem instance. (All optimization problems are linearized
first using the same techniques as in Ng and Talley [13]
before CPLEX is applied.) For example, in Instance 1 the
optimal utilization is 60%, and it took over 2562 seconds
(42.7 minutes) to find this solution. .is would make this
“brute force” approach unacceptably slow for practical
purpose.

When using the proposed 3-stage solution approach, the
computation time can be drastically reduced. (Each of the
stages is solved using CPLEX, applied to the respective
linearized problems.) For example, for Instance 1, the col-
umn “Stage 1” shows the solution found after the first stage
of the solution approach: a utilization of 50% (i.e., an
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optimality gap of 16.67% compared with the optimal uti-
lization of 60%). .is required just 0.039 seconds, i.e., a
reduction of essentially 100%. To further improve this so-
lution, the column “Stage 2” shows the solution after the
second stage. As can be seen, the utilization has improved to
60% (recall that this is the optimal solution). .e second
stage took 0.182 seconds to find, which is a 99.99% reduction
compared with the CPLEX column. While in this specific
instance, the optimal solution was found after 2 stages,
sometimes stage 3 is required (see column “Stage 3”), as was
the case in Instance 3 in Table 2. In Instance 3, the utilization
improved from 0.5 to 0.6 to 0.617, which is the optimal
solution.

It is interesting to note that for 5 of 8 problem instances
(instances 2, 4, 5, 7, and 8), CPLEX failed to find the optimal
solution after 2 hours (172,800 seconds), which is the

maximum computational time that was allotted to each
instance. (In these instances, no objective values have been
reported in Table 2.) On the other hand, our 3-stage solution
approach was able to solve each of the instances to optimality
within seconds.

4.2. N-Well Rail Cars. Since N � 5 is the most common in
practice, we will present empirical results for this case in this
section. .e same problem data as for the single-well ex-
periment in the previous section have been used. .e results
are summarized in Table 3. Note that we have repeated the
optimal utilization from the single-well model for com-
parison purpose.

.ere are a number of interesting findings. First, com-
pared to the single-well case, the 5-well rail car model can

Table 2: Empirical results.

CPLEX Stage 1 Stage 2 Stage 3
Instance 1 #20′� 30 #40′�10 #Car� 20
Objective value 0.600 0.500 0.600 0.600
CPU time (sec) 2562.758 0.039 0.182 0.182
CPU time saved — 100.00% 99.99% 99.99%
Optimality gap — 16.67% 0.00% 0.00%
Instance 2 #20′� 30 #40′�10 #Car� 25
Objective value — 0.400 0.480 0.480
CPU time (sec) 172,800∗ 0.086 0.240 0.240
CPU time saved — 100.00% 100.00% 100.00%
Optimality gap — 16.67% 0.00% 0.00%
Instance 3 #20′� 30 #40′�10 #Car� 30
Objective value 0.617 0.500 0.600 0.617
CPU time (sec) 111,617.903 0.151 0.774 1.015
CPU time saved — 100.00% 100.00% 100.00%
Optimality gap — 18.92% 2.70% 0.00%
Instance 4 #20′� 60 #40′� 20 #Car� 30
Objective value — 0.667 0.800 0.817
CPU time (sec) 172,800∗ 0.192 0.564 1.583
CPU time saved — 100.00% 100.00% 100.00%
Optimality gap — 18.37% 2.04% 0.00%
Instance 5 #20′� 60 #40′� 20 #Car� 35
Objective value — 0.571 0.700 0.700
CPU time (sec) 172,800∗ 0.104 7.518 7.518
CPU time saved — 100.00% 100.00% 100.00%
Optimality gap — 18.37% 0.00% 0.00%
Instance 6 #20′�10 #40′� 30 #Car� 15
Objective value 0.900 0.800 0.900 0.900
CPU time (sec) 128,876.324 5.230 5.421 5.421
CPU time saved — 100.00% 100.00% 100.00%
Optimality gap — 11.11% 0.00% 0.00%
Instance 7 #20′�10 #40′� 30 #Car� 20
Objective value — 0.600 0.800 0.800
CPU time (sec) 172,800∗ 18.953 19.359 19.359
CPU time saved — 99.99% 99.99% 99.99%
Optimality gap — 25.00% 0.00% 0.00%
Instance 8 #20′�15 #40′� 45 #Car� 20
Objective value — 0.920 0.960 0.960
CPU time (sec) 172,800∗ 60.021 1252.628 1252.628
CPU time saved — 99.97% 99.28% 99.28%
Optimality gap — 4.17% 0.00% 0.00%
∗.e CPU time is limited to about 2 days.
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result in lower utilization since it introduces the additional
constraint (7). For example, in instances 7 and 8 the utili-
zations are 0.75 and 0.94, respectively, which corresponds to
a decrease of 6.25% and 2.08% compared with the single-well
car model. Second, the upper bounds derived in this research
are very sharp. Note that besides instances 6 and 7, the upper
bounds derived are the exact optimal solutions. Finally,
introducing the upper bound into the model indeed sig-
nificantly reduces the computational efforts when solving
the 5-well rail car model. For example, it can reduce the
computational time from more than 1 hour to just a little
over 1 second (cf. instance 3).

5. Concluding Remarks

On-dock rail has become an essential and sustainable mode of
transportation to move containers out of congested marine
container terminals. To help marine container terminals
maximize rail’s capacity in practice, it is critical to have both
models and solution methods that are practice-ready.

.is study contributed to the latter. Using a recently
introduced rail capacity maximization model, we demon-
strated that—when using a commercial off-the-shelf solv-
er—the computational times for realistic problem instances
are prohibitively long for the model to be practically useful.
To address this issue, new and tailored exact solution
methods were developed in this research. Particularly, a 3-
stage solution framework has been proposed for the case
when rail cars have a single well. To complement this case, a
solution method for the case when a rail car has multiple
wells has also been provided. In the computational study,
our results show that computational times can be dramat-
ically reduced from 2+ hours to a matter of seconds, ren-
dering the model suitable for practical use.

.ere are at least three possible future research direc-
tions. First, while the model captures the most salient fea-
tures observed in practice, it is possible to further extend the
model to incorporate less common container types, most
notably tank and hazardous cargo containers. Second,
stochasticity during the planning and operation (i.e., ran-
dom disruption or stochastic demand arrival) can also be
incorporated. However, this might increase the computation
times, which brings us to the last future research direction.
.ird, while our solution approach is highly efficient, it
might be interesting to explore other solution methods,
especially when considering different model extensions. For
example, evolutionary algorithms have generally shown to

be effective in addressing large-scale real-world problems;
e.g., see Zhao and Zhang [14, 15].

Appendix

A. Ng and Talley’s Model Formulation

For ease of reference, we will summarize the optimization
model from Ng and Talley [13] here: once discharged from a
vessel, a rail container is stored at the terminal until it gets
loaded on a double-stack train. Each container has a des-
ignated rail hub, i.e., its destination. Each train carries
containers to prespecified rail hubs. It is the marine ter-
minal’s rail manager’s job to assign rail hubs to specific rail
cars. .e model below assumes that all rail cars consist of a
single-well car. .is can easily be relaxed with some more
cumbersome notation [13].

.e goal of the model is to maximize rail’s capacity by
loading as many import containers (each with a certain
destination, called the rail hub) on the available rail cars
(each rail car can be assigned a certain rail hub).

A.1. Sets

H � 1, 2, . . . , d{ } Set of rail hubs.
Ih Set of laden 20′ containers destined for hub h ∈ H.
Mh Set of empty 20′ containers destined for hub h ∈ H.
Jh Set of 40′ containers (laden or empty) destined for hub

h ∈ H.
K � 1, 2 . . . , r{ } Set of rail cars to be loaded.
L � 1, 2{ } Position in rail car. L� 1 refers to top position.

L� 2 refers to bottom.

A.2. Parameters

w40
j Gross weight of the (laden or empty) 40′ container

j ∈ Jh, h ∈ H.
w20

i Gross weight of the laden 20′ container
i ∈ Ih, h ∈ H.

wmt20
m Gross weight of the empty 20′ container

m ∈Mh, h ∈ H.
ck Weight capacity of rail car k ∈ K.
ck Weight tolerance factor for rail car k ∈ K.

A.3. Decision Variables

uh
k Equals 1 if rail car k ∈ K is assigned hub h ∈ H, 0

otherwise.

Table 3: Empirical results for N � 5.

Instance no. Single-well car model 5-well car model 5-well car model with UB
Objective value Time (sec) Objective value Time (sec) Objective value UB

1 0.600 10.901 0.600 1.320 0.600 0.600
2 0.480 318.329 0.480 1.264 0.480 0.480
3 0.617 3600.237 0.617 1.435 0.617 0.617
4 0.817 33.407 0.817 32.604 0.817 0.817
5 0.700 3600.183 0.700 6.425 0.700 0.700
6 0.900 14.217 0.900 12.685 0.900 1.000
7 0.800 521.059 0.750 126.243 0.750 0.800
8 0.960 13.369 0.940 1.624 0.940 0.940
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xik Equals 1 if laden 20′ container i ∈ Ih is loaded on (the
bottom of) rail car k ∈ K, 0 otherwise.

vmk Equals 1 if empty 20′container m ∈Mh is loaded on
(the bottom of) rail car k ∈ K, 0 otherwise.

yjkl Equals 1 if 40′ container j ∈ Jh is loaded in position
l ∈ L on rail car k ∈ K, 0 otherwise.

zk Equals 1 if there is at least one laden 20′ container
loaded on rail car k ∈ K, 0 otherwise.

τk Equals 1 if there is at least one empty 20′ container
loaded on rail car k ∈ K, 0 otherwise.

A.4. Model (P)

MaxZ �
1

4|K|
􏽘
k

􏽘
i

xik + 􏽘
k

􏽘
m

vmk + 2􏽘
l

􏽘
k

􏽘
j

yjkl
⎛⎝ ⎞⎠.

(A.1)

s.t.

􏽘
i∈Ih

xik ≤ 2zku
h
k, ∀k ∈ K, h ∈ H, (A.2)

􏽘
k∈K

xik ≤ 1, ∀i ∈ Ih, h ∈ H, (A.3)

􏽘
m∈Mh

vmk ≤ 2τku
h
k, ∀k ∈ K, h ∈ H, (A.4)

􏽘
m∈Mh

vmk ≤ 1, ∀m ∈Mh, h ∈ H, (A.5)

zk + τk ≤ 1, ∀k ∈ K, (A.6)

􏽘
l∈L

􏽘
k∈K

yjkl ≤ 1, ∀j ∈ Jh, ∀h ∈ H, (A.7)

􏽘
∀j∈Jh

yjk1 ≤ u
h
k, ∀k ∈ K, h ∈ H, (A.8)

􏽘
∀j∈Jh

yjk2 ≤ 1 − zk( 􏼁u
h
k, ∀k ∈ K, h ∈ H, (A.9)

􏽘
∀j∈Jh

yjk2 ≤ 1 − τk( 􏼁u
h
k, ∀k ∈ K, h ∈ H, (A.10)

􏽘
l∈L

􏽘
j∈Jh

wj
40

yjkl + 􏽘
i∈Ih

wi
20

xik + 􏽘
m∈Mh

wm
mt20

vmk ≤ ck, ∀k ∈ K, h ∈ H, (A.11)

􏽘
j∈Jh

wj
40

yjk1 ≤ ck 􏽘
j∈Jh

wj
40

yjk2 + 􏽘
i∈Ih

wi
20

xik + 􏽘
m∈Mh

wm
mt20

vmk
⎛⎝ ⎞⎠, ∀k ∈ K, h ∈ H, (A.12)

􏽘
h

u
h
k � 1, ∀k ∈ K, (A.13)

u
h
k ∈ 0, 1{ }, ∀k ∈ K, h ∈ H, (A.14)

vmk ∈ 0, 1{ }, ∀k ∈ K, m ∈Mh, (A.15)

xik ∈ 0, 1{ }, ∀i ∈ Ih, k ∈ K, (A.16)

yjkl ∈ 0, 1{ }, ∀j ∈ Jh, l ∈ L, k ∈ K, (A.17)
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zk ∈ 0, 1{ }, ∀k ∈ K, (A.18)

τk ∈ 0, 1{ }, ∀k ∈ K. (A.19)

.e objective function (A.1) seeks to maximize the
utilization of the rail cars. Constraint (A.2) ensures that
when rail car k is assigned hub h, one can either load two
laden 20′containers on the rail car, or none. Constraint (A.3)
states that each laden 20′ container can be loaded on 1 rail
car only. Constraints (A.4) and (A.5) are the parallels of
constraints (A.2) and (A.3) for empty 20′ containers,
whereas constraint (A.6) prohibits themixing of empties and
laden 20′ containers on a rail car. Constraint (A.7) guar-
antees that each 40′ container is assigned to at most one
location on the rail cars. Constraint (A.8) states that only
when rail car k is assigned hub h, one can load a 40′ con-
tainer (i.e., destined for hub h) to the top position on the rail
car. Similarly, at most one 40′ container (i.e., destined for
hub h) can be loaded at the bottom of rail car k, if the rail car
is destined for hub h and no 20′ containers are loaded on the
rail car, cf. constraints (A.9) and (A.10). In (A.11), the weight
capacity restrictions of the rail cars are stated. Constraint
(A.12) ensures that the top container is lighter than the
bottom container(s) within a tolerance factor of ck. For
instance, when ck � 1.1, this indicates that the weight of the
container on the top on rail car k is at most 10% higher than
the weight of the bottom container(s). Constraint (A.13)
ensures that each rail car is assigned a hub. Finally, con-
straints (A.14) to (A.19) state the binary nature of the de-
cision variables. For a more detailed discussion of this
model, the reader is referred to Ng and Talley [13].
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