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Copyright © 2022De Zhao et al.(is is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Electric vehicles (EVs) are becoming the potential contender for the conventional gasoline vehicles in view of the environment-
friendly and energy-efficient characteristics. (e prediction of EV charging-related states (defined in this study as home charge,
outside charge, home stop, outside stop, low-battery travel, and high-battery travel) could help to identify the future charging
demand (power consumption) of EV individuals. Specifically, it could guide the operation and management of charging facilities
and also provide tailored charger availability information based on users’ real-time locations.(is study aims to predict charging-
related states of individual EVs using a deep learning approach.We first propose a tangible approach to convert EV trajectory data
into state sequences and then develop a bidirectional gated recurrent unit model with attention mechanism (Bi-GRU-Attention)
to forecast EV states. A sensitivity analysis is conducted to tune and/or calibrate parameters in the model based on plug-in hybrid
EV trajectories dataset collected in Shanghai, China. Experiment results show that (i) the proposed method could achieve an
average accuracy of 77.15% with a 1-hour prediction length and it outperforms the baseline models for all tested prediction
lengths; (ii) it is also revealed that the prediction accuracy varies dramatically with different states and time periods. Among all
states, the proposed model has a higher prediction accuracy on “home stop” (89.0%). As for time periods, the EV states around 08:
00 am and 04:00 pm are hard to predict, and a comparatively low prediction accuracy (close to 60%) is obtained; and (iii) the
stability and robustness analysis implies that the proposed model is stable and insensitive to SOC noise or season.

1. Introduction

Electric vehicles (EVs) have been recently advocated by
policy-makers in view of their environment-friendly char-
acteristics [1]. Both financial and nonfinancial incentives are
used worldwide to promote the market penetration of EVs
[2–5]. In particular, the development of battery technology is
accelerating the adoption of EVs. It is estimated that 25
million units of EVs will be sold by the year 2025 around the
world [6]. In other words, EVs are expected to be a strong
competitor to the traditional gasoline vehicles (GVs) in the
market, especially when combined with vehicular commu-
nications [7].

One of the obstacles for EV promotion is how to properly
deploy and manage charging facilities [8, 9]. Unlike the
refueling for GVs, pure EV and plug-in hybrid EV users have
to replenish electricity energy more frequently due to a
limited driving range with a long duration [10].(ey prefer to
charge their EVs without many detours from their customary
routes [11, 12]. Hence, travel habits and charging pattern of
EV users are worthmuchmore consideration in the operation
of charging facilities [13, 14]. Herein, the travel habit and
charging pattern means that how the traveling and charging
states of an EV (such as home charge, outside charge, home
stop, outside stop, travel with low battery, and travel with high
battery) change over time and location dynamically.
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It is imperative to seek a viable approach for under-
standing and predicting the EV states at the individual level
because it can substantially provide valuable information for
both charging facility operators and users. For operators,
they are concerned about possible overloading of electricity
grid incurred by a large number of EVs’ charging practices
simultaneously [15, 16]. (e prediction of EV states for a
realistic scenario could let the operators anticipate different
types of charging demand (home charging or public
charging) in the next few hours and make some necessary
control measures in advance (such as peak shaving to avoid
highly variable load [16]). For users, we could also estimate
users’ next charging time and charging type based on their
history of charging behavior and suggest future available
charging facilities from the users’ perspective. Since these
states of EV are all highly related to the charging behavior,
we refer to them as “charging-related states of EV” hereafter
in this article. It is worth noting that the “charging-related
states” here are generalized, covering both charging and
discharging process.

To investigate the charging-related states of EV, the first
research line is assessing the EV users through field surveys.
For example, Davies and Kurani [17] made the first attempt
to examine the charging state of EV based on data of
charging time and charging frequencies of 40 households.
(ey found that daily charging times varied widely across
different households. Afterward, Franke and Krems [18]
analyzed EV charging preference, and their findings also
showed that there are significant individual differences
between EV users. In this sense, individual EV charging state
cannot be described in an aggregate way.

(e second research path focuses on the mathematical
model to formulate the charging state. Dong and Lin [19]
built a Poisson-gamma distribution model to characterize
travel distances between two sequential charges and used
GPS-based survey data to validate the model. A few re-
gression models were proposed then to find out the latent
predictors of EV charging state, such as the linear regression
model [20], logit model [11, 21, 22], and machine learning
models [23].(e latent predictors include but are not limited
to the state of charge (SOC), the availability of charging
station, detour distance for the charging, time of day,
charging cost, the travel plan of next day, etc. More models
and specific factors have been explicitly summarized and
discussed by Hardman, Jenn [24]. Except for charging state
estimation, researchers also build mathematical models to
directly control the battery charging process. Liu et al. ap-
plied a constrained generalized predictive control strategy to
the battery charging process. A coupled thermoelectric
model was introduced to estimate the battery behaviors [25].
Subsequently, they derived a distributed average tracking
approach to achieve the optimal charging control of EV
battery [26]. (is approach significantly reduced the com-
putational burden for the charger controller.

(e rise of deep learning approach makes it possible to
predict time-series sequences accurately. (e sequence
prediction is widely applied in biochemistry-molecular bi-
ology and natural language processing (NLP) [27]. A bunch
of models has been developed in the above research areas, for

example, n-gram, hidden Markov chain (HMM), recurrent
neural networks (RNN), etc [28]. In this decade, the RNN
becomes the most prevailing tool for NLP applications in
industry due to its excellent performance in terms of both
prediction accuracy and computational efficiency [29].
Unlike the n-gram or HMM which can only predict the
current state based on limited numbers of history states, the
RNN could theoretically work with unbounded history
states [28]. (e RNN provides a powerful solution for
processing time-series data as well as sequence data. It has
also been used for traffic analyses, for example, traffic flow
and travel speed prediction [30], driving behavior analysis
[31], and GPS data-based vehicle classification [32]. (ese
applications are all numerical prediction or data-driven
clustering.

Recently, it has spawned a vast body of literature that
uses the deep learning approach to estimate/predict EV state,
including state-of-charge (SOC) [33], state-of-health (SOH)
[34], state-of-available-power (SoAP) [35], etc. For example,
Liu et al. have proposed a transferred RNN-based framework
to achieve the battery calendar health prognostics [36]. In
this task, the RNN model proved to outperform the other
two typical feedforward neural networks—BP NN and RBF
NN. (e research team also combined the long short-term
memory model (LSTM, a special type of RNN) with
Gaussian process regression model to predict the future
capacities and remaining useful life of EV battery [37]. It
turns out that the combination model can achieve accurate
results. As for SOC prediction, deep learning models also
showed good performance in many cases, such as LSTM
[38], BP NN [39], or RNNs-CNNs [40]. Among them, the
RNN model is most prevailing since it can work with very
long history states.

From the above literature review, it can be seen that
previous studies have paved a solid way to investigate EV
charging state by finding out the latent predictors or method
framework. When analyzing EV charging state, however,
these studies have not paid much attention on the other
important states such as driving, stopping, etc., and over-
looked their inherent correlations. In fact, these states are
also closely related to the charging state in that a sequence of
EV states can reflect the complete travel habit and charging
pattern of an individual EV. For example, a “low-battery
traveling” state followed by an “outside charging” state could
provide more information for succeeding state inference and
prediction than a sole state “outside charging.” It indicates
that the EV user probably realized a low battery and then
charged his EV in a public charging station. By in-depth
learning a time-series sequence of EV states, we can decode
its charging pattern and predict future states. However, the
accurate prediction of the state sequence is always a chal-
lenging task since conventional time-series models cannot
be used in the nonnumerical sequence.

Considering the aforementioned research gap, a tangible
data-driven framework through devising RNN approach
(bidirectional gated recurrent unit model with attention
mechanism, Bi-GRU-Attention) is proposed to predict EV
states. We predict the charging-related states instead of
directly forecasting the charging demand because the other
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states, such as low-battery travel or home stop, also imply the
latent charging behavior. (e charging-related states as a
whole are more informative than merely the charging be-
havior. Besides, the time allocated to each specific state can
unveil the time-use pattern of EV, especially the discrimi-
native time intervals for “outside charging” and “home
charging” states which could indicate different types of loads
on electric grid.

(e main contributions of this study are as follows:
Firstly, this article makes the first attempt to tackle the
charging-related states of EV as a consecutive sequence
rather than separate states and proposes an effective method
to covert EV trajectory data to EV state sequences for model
training. Secondly, we enrich the charging-related states
with traveling and location information and define six types
of EV charging-related states. (en, we provide a tangible
RNN-based approach (Bi-GRU-Attention) to predict EV
charging-related states.(irdly, plug-in hybrid EV trajectory
data from Shanghai of China are used to validate the pro-
posed model and tune the related parameters. (e result
indicates that the proposed approach outperforms the tra-
ditional sequence prediction models in terms of prediction
accuracy.

(e rest of the study is organized as follows: Section 2
elaborates our research methodology, including the EV state
definition and the RNN approach for EV state sequence
prediction. Section 3 illustrates the process of converting EV
trajectory data to state sequence data and validates the
proposed model using real-world data. Section 4 concludes
the article and gives a few suggestions for the future study.

2. Research Methodology

2.1. 4e Set of Charging-Related States. According to the
intrinsic battery status, there are three states of an EV,
namely charging, traveling (discharging), and stopping (self-
discharging, a slow charge leakage phenomenon of batteries
when not in use). (ese three types of state information
could be identified by monitoring the current in the battery.
However, location and SOC information is not revealed. To
better investigate charging-related states, we further divide
them into six subtypes according to the location and SOC of
EV: (1) home charge (HC); (2) outside charge (OC); (3)
home stop (HS); (4) outside stop (OS); (5) low-battery travel
(LT, SOC< S0); and (6) high-battery travel (HT, SOC≥ S0).
S0 is the charging threshold, lower than which the EV user
would feel an urgent need to charge the EV. (e parameter
S0 is expected to vary with the risk preference of EV users
and their EV conditions (e.g., battery degradation level).
However, the exact value of S0 for each user is difficult to
estimate since S0 is not very definitive. Besides, in this study,
we only use S0 to differentiate two states regarding traveling,
that is, LT and HT. Hence, we assume the same value of S0
for all users in this study. (e specific setting of S0 is given in
Section 3.1.

We differentiate the six types of EV charging-related
states because these states respectively indicate different
urgency of charging and convenience of home charging. For
example, LTmeans that the EV is still running on the road

when SOC is below the charging threshold S0, which implies
an urgency of charging later. Accordingly, HT means that
the EV is working properly with the SOC higher than S0 (less
urgent need for charging), whereas “home” or “outside” can
measure the availability of home charging or the desire for
public charging facility.

2.2. Sequence Prediction with RNN. (e RNN belongs to a
powerful family member of artificial neural network
models. Unlike the traditional neural network, the RNNs
can store the previous state information to process se-
quence data. However, the simple RNNs are not capable of
training long sequence data because the gradient may
vanish quickly for parameters across the sequence [30],
while EV state prediction is just the case with a long se-
quence. (e sequence length of EV state prediction may
even excess 100 if we use whole-day history data as input.
To solve the long sequence issue (vanishing gradient
problem), two variants of simple RNN were proposed
successively: long short-term memory (LSTM) [41] and
gated recurrent unit (GRU) [42].

(e LSTM has added a “forget” mechanism to the basic
RNN, which enables error to backpropagate through the
long sequences. It makes the long sequence prediction
possible. (e LSTM has very wide applications in the
transportation field [29, 30, 32, 43] since it is proposed in
early 1997 [41]. (e GRU, introduced late in 2014 by Cho,
Merri¨enboer [42], is another popular variant of RNN like
LSTM. Nevertheless, the GRU contains fewer parameters
than the LSTM when training the same data. It is demon-
strated to be more efficient than the LSTM with empirically
similar performances in most tasks [29]. (erefore, in this
study, we choose the GRU as the core part of our model. (e
specific structure of GRU for sequence prediction is illus-
trated in Figure 1.

Similar to the basic RNN or LSTM, based on the input xt
and the previous hidden state ht-1, the GRU can produce the
current hidden state ht as well as the output yt. (e main
difference is that the GRU has added two gates: reset gate r
and update gate z. On the one hand, the update gate is used
to determine how much of the previous state information
should be passed to the future.(e update gate for time t can
be calculated by

z � σ Uz · xt + Wz · ht−1( . (1)

On the other hand, the reset gate determines how much
of the previous state information should be forgotten/
dropped. (e reset gate for time t can be calculated as:

r � σ Ur · xt + Wr · ht−1( , (2)

where Uz, Wz, Ur, and Wr in (1) and (2) are the weight
matrices, and σ is the sigmoid activation function given by

σ(x) �
1

1 + exp(−x)
. (3)

(en, reset gate r and update gate z work together to
affect the output according to the following mechanisms:
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ht � tanh Uz · xt + Ws · ht−1 ⊙ r( ( ,

ht � (1 − z)⊙ ht + z⊙ ht−1,
(4)

where ⊙ is the Hadamard Product, ht is the middle memory
content, and tanh is the nonlinear activation function cal-
culated by:

tanh(x) �
exp(x) − exp(−x)

exp(x) + exp(−x)
. (5)

(e final estimated yt is a probability distribution over
the predefined classes (EV state), which can be calculated by
the softmax function (multinomial logit):

yt � softmax Wy · ht ,

softmax xj  �
exp xj 

Σiexp xi( 
.

(6)

2.3. Bidirectional GRU with the Attention Model.
Attention mechanism proved to be effective in enhancing
performance of RNN with long input sequence [44]. Hence,
we also added the attention architecture in this study. In
models with attention mechanism, the GRU network is
usually replaced by a bidirectional GRU network, which can
read input sequence in both the forward and backward
directions [45]. (e specific architecture of bidirectional
GRU with attention (Bi-GRU-Attention) mechanism used
in the study is depicted in Figure 2. (ree sources of data are
encoded and fused as the model input, including historical
SOC data, distance to home data, and the sequential EV state
data, because all the three sources of data contain potential
information about the future state of EV. Particularly,
distance to home data could be derived based on the real-
time location of EV and the EV driver’s home location. (e
final output of the Bi-GRU-Attention model would be the
most likely estimation for the future EV state (the focus of
our study).

(e Bi-GRU-Attention models are built based on Keras,
a neural network API on top of TensorFlow. (e categorical
cross-entropy function is used as the loss function, which is
the objective function when training the deep learning
model. (e cross-entropy loss function measures the per-
formance of classificationmodels with discrete output. It can
be calculated by:

Lcross−entropy(y, y) � −
i
yilog yi( . (7)

(ere are four parameters in the model: epochs, opti-
mizer, batch size, and dropout rate. Epochs determine how
many rounds of training will be run. In this study, we choose
the early stopping mechanism to determine the epochs
rather than fixing a specific value. Specifically, when the
prediction results do not have any improvements for 5 times,
the training of the model will terminate [46]. (e early
stopping mechanism can save the total training time.

(e optimizer is the algorithm used to choose a proper
learning rate and avoid getting trapped in local minima for
the deep learning model. We use the Adaptive Moment
Estimation (Adam) algorithm as the optimizer, which
adaptively computes the learning rates for each parameter.
Adam is proved to be quite robust to the input parameters
[32].

During each epoch, the entire dataset is divided into a
number of batches for training because the entire dataset is
usually massive. (e batch size is the number of samples in
each batch, which should be specified beforehand. To im-
prove the convergence speed and avoid the overfitting of the
model, we also add the dropout layer to the model, because
the dropout layer, as a regularization approach, could thin
the network by ignoring some units at random. (e proper
value of batch size is picked up based on the sensitivity
analysis, which is extensively discussed in the next section.

3. Data Sources and Experimental Results

3.1. Electric Vehicle Trajectory Datasets. (e Bi-GRU-At-
tention model for state prediction in this study is fit for both
pure EV and plug-in hybrid EV. (e datasets used comprise

tanhσσ

1–

ht–1

xt

rt
zt

ŷt

ht

reset gate

update gate

~ht

(a)

GRU GRU GRU GRU

prediction

x0 x1 x2 xt
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Figure 1: (e structure of GRU for sequence prediction. (a) (e structure of GRU. (b) Sequence prediction using GRU.
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the trajectories of 50 personal plug-in hybrid EVs (non-
commercial) in Shanghai, China from 26 May 2015 to 26
May 2016. (ese 50 EVs are randomly selected and their 1-
year datasets cover all the districts of Shanghai. In each
dataset, a series of information fields are recorded with an
updating frequency approximately 30 secs, including the
real-time location (longitude and latitude), velocity, direc-
tion, SOC, the status of EV (traveling, charging, or idling
stop), etc. (ese pieces of information are very common and
could also be found in EV trajectories from other cities, such
as in Aichi prefecture [47] and other prefectures in Japan [8].
(e data recording system embedded in the EV works all the
time, except that the vehicle has completely stalled. (us, we
could complete the datasets by adding the status of “stop-
ping” after the vehicle has completely stalled. It is estimated
that there are totally 5,084 charging piles in Shanghai by the
end of 2016 [48].

Based on the above datasets, we could find out the low-
battery threshold S0, that is, when the drivers usually feel
urgent to charge their EVs. We plot the histogram of SOC
when the drivers start to charge to estimate the low-battery
threshold S0, as shown in Figure 3. It can be found that as the
start-to-charge SOC goes down, the probability density
increases dramatically, especially when the SOC is below
25%, which indicates that the potential urgency for EV
charging is increasingly strong with SOC less than 25%.
(erefore, we set the low-battery threshold S0 as 25% in this
experimental study.

3.2. Home Location Identification and Dataset Converting.
Because the EV trajectory datasets do not have the exact
information about home location of an EV user, we in this
section identify the home location by their trajectory pat-
terns. (e home location of each EV user is estimated by the
following rules shown in Figure 4 (the trajectory of one EV
user). Firstly, we extract the data rows of one EV with the EV
status “charging” or “stopping” between 2:00 a.m. and 4:00
a.m, because during this time interval, the majority of EV
users probably charge or park their EVs at home. Secondly,
based on the spatial location of each data point in the
extracted subset, we filter out the data point with the
maximal number of proximity points in its walkable radius.
We set this data point as the home location of this EV user.

(e walkable radius is set to be 500m [49]. Based on the
estimated home location, we can calculate the Euclidean
distance to home of each trajectory data point. All the data
points situated in the walkable 500m radius to home are
regarded as at home in this study since many drivers do not
have a dedicated parking spot around their homes.

Next, we convert the EV trajectory dataset into EV state
sequences for model training and prediction. By filtering
the Euclidean distance to home, status, and SOC, we can
easily define a state for each data row. For example, the data
row with Euclidean distance to home <500m (walkable
radius) and status “charging” is set as “HC,” while the data
row with status “traveling” and SOC<25% is set as “LT.”
(en, we cut the dataset into pieces with an equal time
window. (e latest state in each piece is set as the state of
this time window and all the states are stitched together
into the state sequence. (e excerpt of derived state se-
quences with a time window of 60min is illustrated in
Figure 5. We choose the 24-hour data before the predicting
point as the input sequence across the entire study.
(erefore, the length of the state sequence depends on the
time window we use. For example, if we set the time
window as 30min, the length of input state sequence would
be 24 h/30min � 48. (erefore, the time window is another
parameter that should be calibrated, besides the dropout
rate and batch size mentioned in Section 2.
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3.3. Performance Metrics. We cut the EV sequence dataset
into two parts. (e first 90% of the dataset is used as training
data and the remaining 10% is used as the referenced data for
validation. (e prediction accuracy is selected as the per-
formance metrics in training the model. (e prediction
accuracy is calculated as follows:

acc �
Ntrue

Ntotal
, (8)

where Ntrue is the number of samples that are correctly
predicted (true positive) and Ntotal is the total number of
samples.

3.4. Predictive Performance. A preliminary analysis of the
EV states at the individual level reveals that there exists a
large variation of individual charging pattern. Figure 6
shows the EV state distribution of four different users at
different times of the day. From the figure, we can find that
the majority of users have a high probability of night
charging at home, which is in line with the previous liter-
ature [50]. While, the other states display a strong individual
pattern, such as outside charging (OC) and low-battery
travel (LT). EV user 2 shown in Figure 6(b) has a high
proportion of outside charging. By contrast, EV user 1
shown in Figure 6(a) charges the vehicle nearly all at home.
EV users 1 and 4 have a very sharp increase in the probability
of home charging after 22:00. (at is because electricity

tariffs will go down by 50% from 22:00 to 6:00 in Shanghai
and these two users are probably very sensitive to the
charging cost. (is phenomenon agrees with the conclusion
from the previous study by Sun, Yamamoto [21].

We also calculate the entropy of states for each EV user
to measure the uncertainty or unpredictability of each user’s
state. Higher entropy means weaker regularity of the state
distribution, which is more difficult to predict [51, 52]. (e
entropy of the 50 EV users ranges from 1.83 to 2.39, which is
a very high variation. (erefore, the prediction results of
different users could vary a lot. For example, the state
prediction for EV user 3 (entropy 2.39) would be more
difficult than that of EV user 4 (entropy 1.83).

Next, we make the parameter sensitivity analysis in the
training process and discuss the performance of our pro-
posed model. (e dropout rate is not sensitive to the pre-
diction accuracy based on our preliminary analysis and thus
we set it as 0.3. To make the simple GRU and proposed Bi-
GRU-Attention model more suitable for real applications in
this case, two parameters in the model were tuned thor-
oughly, namely batch size and time window. For batch size,
we only consider cases with batch size 64 or above. Because
when the batch size is 32 or smaller, the prediction accuracy
fluctuates heavily and does not even converge finally. (e
prediction length is set as 60min during the calibration,
which means that we predict the state of EV an hour ahead
using the history state sequence. (e parameter sensitivity
analysis of GRU and Bi-GRU-Attention is shown in

�e original EV trajectory �e charging or stopping data points
between 2:00 a.m. and 4:00 a.m.

�e identified
home location 500 m radius

Figure 4: Home location identification based on EV trajectory data.
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Figure 7, and there are totally 20 combinations of parameters
for each model. From the figures, we can find that both the
time window and batch size show a significant relationship
with the mean prediction accuracy of the EV fleet. It is
interesting to find that, as the time window increases, the
prediction accuracy increases a little (at 10min) and then
drops slowly. Regarding batch size, the prediction accuracy
gradually decreases while batch size increase with the time
window bigger than 10min.(is phenomenon is due to that
bigger batch size requires only fewer iterations and conse-
quently loses some accuracy. In general, both GRU and Bi-
GRU-Attention achieve the highest prediction accuracy
(76.75% and 77.15%, respectively) with batch size 64 and
time window 10min as marked in Figure 7. (e following

GRU and Bi-GRU-Attention models are trained under this
group of parameter settings unless otherwise stated. It is
worth noting that the two parameters need recalibrating
when using this model in other datasets/cities.

Based on the calibrated parameters, we compared the Bi-
GRU-Attention model with two baseline models: GRU and
n-gram.(e performances of the three models (two baseline
models) under various prediction lengths are shown in
Figure 8. (e prediction performances for all three models
deteriorate slowly over the prediction length. It can be seen
from Figure 8 that the Bi-GRU-Attention model outper-
forms GRU and n-gram in terms of prediction accuracy for
all considered scenarios, especially when the prediction
length is long (i.e., 180min). When the prediction length is
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180min, the average prediction accuracy of the Bi-GRU-
Attention model could still keep at 66.9% but that of GRU
and n-gram drop down to 60.3% and 48.6%, respectively.
Furthermore, the prediction accuracies of different EVs vary
greatly, ranging from 67.7% to 87.5% when the prediction

length is 60min, which is consistent with the findings of
entropy variation as in Figure 6.

(e prediction accuracies on different states are shown
in Figure 9(a). (e prediction accuracy varies greatly with
different states, ranging from 38.4% to 89.0%. It can be
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Figure 7: Parameter tuning and sensitivity analysis. (a) GRU. (b) Bi-GRU-Attention.
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observed that compared with the other states, the prediction
accuracy of “HS” is much higher based on the proposed
model. It indicates that the proposed model has a stronger
prediction ability for state “HS” or the state “HS” is more
predictable. By contrast, the state “LT” has a low prediction
accuracy, which is probably because the frequency of “LT”
state is very low as shown in Figure 6 and there is not much
history for themodel to learn about. Furthermore, both “LT”
and “HT” have a wide prediction accuracy range for different
users, indicating that the regularity of EV traveling varies a
lot from individual to individual.

For cases where the operators only care about two EV
charge states (home charge or outside charge), the Bi-GRU-
Attentionmodel could just predict 3 states (“OC,” “HC,” and
others) to improve the prediction accuracy, as shown in
Figure 9(b). (e prediction accuracy for “OC” increases
greatly from 66.07% to 71.45%, and the prediction accuracy
for “HC” increases from 74.65% to 82.20%.

We also compared the prediction accuracy at different
times of day to find out the more predictable time intervals
as Figure 10 illustrated. Obviously, the prediction accuracies
at 08:00 and 16:00 are relatively low, especially on weekdays
(even lower than 60%).(is is probably because at the outset
of the day (around 08:00 am) and during the late afternoon
(around 16:00) there are not many clues about the day’s or
the night’s trip plans. On the contrary, the accuracy after
midnight (02:00 am-05:00 am) is pretty high, even over 90%
at 03:00 am. (is result is as expected since most people
would just charge or park their EVs at home during this time
interval, which makes it easy to predict. Besides, the after-
noon predictions differ a lot between weekdays and week-
ends, and the EV states on weekend afternoons are more
predictable.

3.5. Stability and Robustness. Measurement noise is com-
mon in the real-world EV battery state monitoring process.
To validate the performance of the proposed Bi-GRU-At-
tention model in the presence of measurement noise,
Gaussian white noises with different variances are added in
the measured SOC value. According to the state-of-art SOC
estimation technology, the mean absolute error (MAE)
range is 0.004–0.024 [53]. Hence, we set the maximum
Gaussian noise variance as 0.06 (much bigger than the upper
bound of estimation error). Figure 11 shows the mean
prediction accuracy under different Gaussian noise vari-
ances of SOC.(e embedded subplots visualize the Gaussian
noises in one sample EV. We can find that as the Gaussian
noise variance increases, the prediction accuracy decreases
slightly. When the Gaussian noise variance reaches 0.06, the
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mean prediction accuracy is 76.33% (0.82% reduction
compared with no noise). Although the prediction accuracy
decreased 0.82%, it still holds a good performance, indi-
cating that the proposed Bi-GRU-Attention model is stable
and insensitive to SOC noise. (is is probably because we
only predict the discrete EV states instead of the exact value.

To verify robustness of the trained Bi-GRU Attention
model, four weeks’ data (April 11–17, July 11–17, October
11–17, and January 11–17) are taken as the testing data to
represent four seasons, and the other data are used to
training the model. Furthermore, to find out the proper
sample size (data requirements) when applied to other cities,
we also select different sample sizes for training. (e results
from 16 scenarios (4 seasons∗ 4 sample sizes) are compared
in Figure 12.(e prediction accuracy values for four seasons
with 8 months’ training data are 77.55%, 76.98%, 77.04%,
and 77.12%, respectively, indicating that the proposedmodel
has stable prediction performance in all seasons. In each
season, the prediction accuracy increases significantly with
the sample size. When the sample size is bigger than 4

months, the performance improvement for the model
gradually slows down. It means that when using Bi-GRU
Attention model in other cities, the sample size is suggested
over 4 months.

4. Conclusions

In this study, we proposed the Bi-GRU-Attention model to
predict the charging-related state of EV, which could im-
prove the operation and management of charging facilities
and guide nearby charging services for EV users. (e
charging-related states of EV were classified into six types,
including “home charge,” “outside charge,” “home stop,”
“outside stop,” “low-battery travel,” and “high-battery
travel.” We also presented a solution to convert EV tra-
jectory data into the above sequential state data. (e pro-
posed data converting solution and Bi-GRU-Attention
model for charging-related state prediction have been val-
idated by plug-in hybrid EV trajectory data collected in
Shanghai, China. (e results showed that the prediction
accuracy of the proposed approach is sensitive to the length
of time interval (time window) and batch size (parameter in
Bi-GRU-Attention model training). We have obtained the
highest prediction accuracy (77.15%) with the time window
of 10min and batch size 64 by using the proposed method. It
outperforms the traditional sequence prediction model,
n-gram, and simple GRU under all tested prediction lengths.

Numerous analyses also show that the prediction ac-
curacy varies greatly in different states. Among all charging-
related states, the prediction accuracy of “HS” derived by the
proposed model ranks in the top (89.0%), while the pre-
diction accuracy of “LT” is very low (38.4%). Furthermore,
the prediction accuracy also varies widely over time of day.
In detail, we obtain the lowest prediction accuracy around
08:00 am and 04:00 pm, and the highest one for midnight
(02:00 am - 05:00 am). (e stability and robustness analysis
implies that the proposed Bi-GRU-Attention model is stable
and insensitive to SOC noise or season. In summary, this
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study contributes substantially to the prediction of short-
term EV states.(e proposed deep learning approach for EV
state prediction opens an interesting direction for future
research on transportation sequential data analysis.

(ere are some limitations to this study. Firstly, we use
only 1-year trajectory data of 50 plug-in hybrid EVs to
validate our approach. A larger number of samples from
other cities and pure EVs can be used to test the robustness
of the proposed deep learning approach in the future.
Secondly, EV charging behavior is divided into “home
charge” and “outside charge” in this study. More granular
divisions (i.e., workplace charge and public charge) are not
considered in this study due to data limitation. Hence, this
study could be extended and improved by considering more
specific charging states in the sequence or training with
larger datasets to enhance the predictive power of the Bi-
GRU-Attention model.
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