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EDI is a hot topic in the research of multimodal transportation informatization, which determines the exchange level of in-
termodal transportation information. However, its high cost, large system coupling degree and low performance threshold cannot
adapt to mass data exchange in high concurrent environment. )erefore, a decentralized, scalable, distributed and efficient data
exchange system is formed. It plays a key role in realizing the comprehensive sharing of interdepartmental intermodal information
in the cloud environment. In order to solve the problem of mismatching between application load and computing resource
capacity and realize on-demand resource allocation and low carbon emission, this paper proposes to build an Extensible EDI
system (XEDI) based on MSA and studies the scaling mechanism in container environment. Based on the resource scheduling
characteristics of container cloud and considering the distribution and heterogeneity of intermodal cloud computing platform
from the perspective of resource allocation, the automatic scaling mechanism of XEDI is established, the scaling model is
established, and the automatic scaling algorithm is proposed. For Dominant Resource Fairness for XEDI (XDRF) resource
allocation algorithm and Dominant Resource Fairness for XEDI (CXDRF) based on carbon considering energy consumption, the
CXDRF algorithm is proved by quantitative experiments to achieve system performance optimization on the basis of ensuring
system reliability and effectively reducing energy consumption. XEDI can not only meet the demand of dynamic load and improve
service quality, but also reduce resource occupation and save energy by releasing virtual resources when resource utilization rate is
low. It has great research significance and practical value for mass data application under low energy consumption conditions.

1. Introduction

Multimodal transportation is recognized as the most effi-
cient mode of transportation service in the world, which is
conducive to improving logistics efficiency and reducing
logistics costs [1]. Among them, information sharing, as the
key technology of the information of molten iron and in-
termodal transportation, not only determines the develop-
ment level of the information of intermodal transportation,
but also provides information guarantee for the realization
of one-stop intermodal transportation service. China has
established an intermodal transportation information
sharing platform centered on some large ports, which has
preliminarily realized data exchange between ports and
railway departments, reduced cargo storage time and
transportation cost, and effectively improved the efficiency

of collaborative operation. Information sharing is the core of
intermodal transportation informatization. Because the
current information sharing technologies are all “chimney”
architectures, they can only solve the problem of informa-
tion integration in a local range and cannot meet the de-
mand of on-demand information sharing in the cloud
environment.

At present, the mainstream research is still the tradi-
tional EDI technology. Based on a research project con-
ducted at the Institute of Logistics and Warehousing,
Debicki and Kolinskianalyzed the impact of EDI methods on
the complexity of information flow in global supply chains
[2]. However, the traditional EDI technology has some
problems, such as high cost, backward technology, and large
coupling degree of the system, and the author does not
provide corresponding solutions. Betz et al. applied ICTand
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introduced the current application technology, connection
type, message standard, and its impact on multimodal
transport supply chain based on the international research
results of Hamburg Port and Logistics Institute [3]. How-
ever, this technology is mainly customized for different
users, and it is difficult to adapt to large-scale intermodal
transportation systems. Ding explores the functions and
operating conditions of relatively independent information
systems for railways and ports, combined with traditional
information exchange modes, and establishes an electronic
platform suitable for information interconnection and in-
termodal station interoperability [4]. However, the tradi-
tional information exchange mode is still adopted, which
cannot adapt to the massive data exchange in a high-con-
currency environment.

At present, information sharing-related technologies
adopted by core intermodal transportation organizations
such as ports and railways mainly include the following:

1.1. ElectronicData Interchange. It refers to the formation of
structured document data in accordance with relevant
standards and the completion of end-to-end electronic data
transmission methods. EDI standardizes and formats ex-
changed information in accordance with agreed protocols
(such as EDIFACT and SOAP). It exchanges data between
the computer network systems of trading partners through
data transmission systems such as mail servers, FTP, and
Message Queue (MQ), which can effectively solve the in-
efficiency of paper-based information transmission.

1.2. Service Oriented Architecture. It is defined as a func-
tional paradigm for integrating dispersed businesses within
an enterprise, and its essence is Enterprise Application
Integration (EAI) technology that realizes information ex-
change between heterogeneous systems. )e SOA compo-
nent model realizes business information interaction
between heterogeneous systems by defining standardized
interfaces between different services and has the charac-
teristics of loose coupling, coarse-grained, and transparency.
As a technical realization of SOA, WebService has better
openness and decoupling than traditional EDI.

1.3. Enterprise Service Bus. It is a bus-based enterprise-level
SOA architecture with features such as interoperability,
independence, modularity, and loose coupling. ESB takes
services as the basic unit, and services are coordinated
through messages to complete related business collabora-
tion, and service consumers do not need to know the
technical details of the service provider. ESB can not only
reduce the workload of development and maintenance, save
costs, and improve the scalability of the system, but also
better deal with the heterogeneity of different technologies
and protocols.

According to the research of relevant literature, the
current application scope, advantages, and disadvantages of
information integration technology in intermodal trans-
portation informatization are shown in Table 1.

)is paper constructs a self-scaling mechanism for the
K8S-based XEDI (Extensible EDI) closed-loop control
system, establishes an expansion model, and proposes an
automatic expansion algorithm, a resource allocation
algorithm, and a resource allocation optimization algo-
rithm considering energy consumption to achieve flexible
data sharing and on-demand resource allocation in a
cloud environment. )e performance of EDI system
limits the energy consumption. Finally, the scalability test
verifies that the proposed algorithm has good scalability
effect and high scalability efficiency under heterogeneous
cluster conditions, which can not only ensure the reli-
ability of the system and realize the performance opti-
mization of the system, but also effectively reduce energy
consumption. It can not only meet the demand of dy-
namic load and improve the quality of service, but also
reduce resource occupation and save energy by releasing
virtual resources when resource utilization is low. It can
solve the problems of high cost, system scalability, and
insufficient data processing capacity of existing EDI
system solutions.

)is article is divided into eight parts:

(1) Introduction. )is part generally introduces the
methods used in this paper, also compares other
methods, and discusses their advantages and
limitations.

(2) )e Introduction of XEDI. )is section gives a de-
tailed introduction to XEDI, including its advantages
over EDI and the architecture of XEDI.

(3) Scaling models of XEDI. )is part introduces the
single-index scaling model of XEDI.

(4) Multi-index scaling model. )is part introduces the
multi-index scaling model of XEDI.

(5) Algorithms. In this part, the scaling algorithm based
on the scaling model is introduced.

(6) Evaluation of the algorithm and example. )is
section tests XEDI’s scalability performance.

(7) Conclusions. )is part is a summary of the full text,
and the performance of the algorithm in the article is
summarized.

(8) Prospect. )is section introduces the prospect of the
algorithm and other application scenarios.

2. The Introduction of XEDI

Cloud computing has been developed as one of the creative
platforms that give dependable, virtualized, and adaptable
cloud resources over the Internet. Intermodal transportation
refers to the “carriage of goods by two or more modes of
transport.” Traditional system framework of the intermodal
transportation is rigid and lacks information sharing [5].
However, cloud computing helps provide a new direction to
solve these bottlenecks and realize the informatization of the
intermodal transport.

Electronic Data Interchange (EDI) refers to a standard
for exchanging business documents, such as invoices and

2 Journal of Advanced Transportation



purchase orders, in a standard form between computers
through the use of electronic networks like the Internet. It is
widely used in the information sharing mechanism of in-
termodal transport. However, as time goes by, there appear
more and more defects of EDI, such as high powerful
consumption and low performance threshold, which make it
hard to adapt to the mass data exchange under the cloud
computing environment [6]. In order to realize the elasticity
of information sharing, which expands when faced with high
concurrent information processing and vice versa, we have
to build a lighter andmore flexible EDI system, named XEDI
system in our paper.

When and how does the system stretch specifically?
)ough Kubernetes (K8s), a mature open-source system for
automating deployment, scaling, and management of con-
tainerized applications, provides an ideal platform for
hosting various workloads, automated scaling of the cluster
itself is not currently offered, and thus, it is necessary to
rebuild an automated scaling model based on that [7, 8].

Definition 1. XEDI system is the lighter and more flexible
EDI system that we build, which provides open messages all
intermodal participating organizations through the cloud.

Definition 2. Dominant Resource Fairness for XEDI
(XDRF) is an algorithm designed to allocate the resources of
Pods more fairly and perform better in calculating.

Contributions: this work has the following key
contributions:

(1) It built the XEDI system and stretchingmodel of that.
(2) It presented the algorithm to realize the scaling

progressing.

(3) It provided a comparative analysis between our al-
gorithm and others.

(4) It evaluated the energy consumption of the cloud
system.

Compared with traditional EDI technology, XEDI has the
following advantages:

(1) Low cost and high concurrency. Adopt micro-service
unit encapsulation. )e message processing module
is encapsulated through microservices, which can be
flexibly scheduled in the container cloud environ-
ment and simplify the construction of the scaling
mechanism to achieve high concurrent message
processing with variable loads with minimal com-
puting resource consumption.

(2) Support remote call. Use asynchronous message
mechanism. )e asynchronous message protocol
adapter (Takia) is used to realize message reception
and forwarding, and the high-performance distrib-
uted queue system (Kafka) is used to replace the
inefficient remote call and folder delivery polling
mechanism of the traditional EDI system.

(3) Good scalability. Adopt an extensible message
processing module. Message processing should be
modularized, by encapsulating different message
type processing procedures into micro-service units,
and configured and extended according to message
types and access protocols.

Different from the traditional EDI system, XEDI does
not deploy to each port but manages it in a unified manner
under a resource support system, renting functions such as

Table 1: Comparison of different information integration technologies.

Information
integration
technology

Scope of application Advantage Disadvantage

EDI Widely used in port informatization
for data exchange between institutions

EDI message standards are perfect,
which can better meet business needs

)e cost is high, the technology is
backward, the system coupling is

large, the performance of the remote
call method is low, the performance
threshold is low, and it cannot adapt
to the massive data exchange in the

high concurrency environment

WebService Used for business system integration
of some electronic ports and ports

Mature technology, low coupling, low
cost, and easy implementation of SOAP

data standards

Its essence is a Web-RPC system, and
the SOAP-based remote call method
has a low performance threshold, and
the supported message types are

limited

ESB

)ere are relatively few applications in
the interoperability industry, which is
more suitable for the complex internal

environment

Complete system, with standard
adapters and extensible interfaces, low

development, maintenance, and
management costs, and strong

compatibility with heterogeneity issues

)e structure is cumbersome, the
scalability is poor, and the software
and hardware requirements are high.
If different protocols are uniformly
converted into SOAP messages

through the adaptor and then XML
parsing, there will be more

unnecessary format conversions,
especially the processing efficiency of

large data packets
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message exchange and distribution to participating insti-
tutions and users in the form of EDIaaS to reduce overall
costs. However, the system design is mainly aimed at large-
scale intermodal information platforms and has poor
adaptability to the differentiated needs of individual users.

)e construction of XEDI’s architecture makes it clear
about how the messages interact from different EDI systems
under cloud. XEDI system are composed of Data Service
Layer, Micro-Service Layer, and Resource Scheduling Layer
from top to bottom.)e logic structure of Data Service Layer
is similar with the traditional EDI system. Considering
business operation compatibility, Data Service Layer con-
sists of three models: Data Access Modal, Data Processing
Modal, and Data Storage Modal to make messages received
and sent, parsed, and transformed and make messages
stored [9]. To adapt containers scheduling, Data Processing
Modal rebuilds the decentralizedmodal using micro-service.
)e last layer takes charge of component scheduling and the
feedback of performance monitoring. )e architecture is
shown in Figure 1:

3. Scaling Models of XEDI

Most of the current scaling models and algorithms are
designed based on IaaS VMS and can be divided into vertical
and horizontal scaling modes [10]. However, it takes a long
time to configure and start and stop virtual machine in-
stances, so the scaling response is poor in real-time. Unlike
IaaS, lightweight container clouds can scale applications in

real time in a larger cluster environment. Because the
container is an immutable carrier, only supporting hori-
zontal scaling model, although the current container ar-
rangement system has set up a simple response telescopic
mechanism (for example K8SHPA [11]), but because only to
copy an application based on memory and CPU load
control, application scope is limited and has yet to have
related research for complex component system scaling
problem. Because XEDI’s micro-service components are
interconnected, there is no general scaling control by
abstracting services into independent nodes [12]. In this
paper, a closed-loop control system based on XEDI is
proposed to build a self-scaling mechanism to achieve elastic
data sharing and on-demand resource allocation in the cloud
environment.

)e scaling tactic is a function whose input is the in-
dicator vector obtained from the XEDI monitoring module.
Each dimension of the vector represents a monitoring in-
dicator. In addition, the monitoring module ensures a long
enough historical record. )e record matrix P corre-
sponding to the index data collection is shown as formula:

P �

x11 x12 ... x1(m− 1) x1m

x21 x22 ... x2(m− 1) x2m

... ... ... ... ...

x(n− 1)1 x(n− 1)2 ... x(n− 1)(m− 1) x(n− 1)m

xn1 xn2 ... xn(m− 1) xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)
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N specifically represents the length of historical records,
and m specifically represents the number of monitoring
indicators.

)e output of the scaling strategy is scaling index I, that
is, I � fi(P), fi is the scaling strategy function. If I is large, it
can be interpreted as urgent to expand capacity and vice
versa. In order to realize the quantization of the scaling
decision, the system usually sets the expansion threshold Iup
and the shrinkage threshold Idown in advance. If I> Iup

appears, the expansion process will be carried out at this
time; if I< Idown, the shrinkage process will be carried out at
this time.

According to the choice of P, fi can be divided into
single index strategy and multi-index strategy. When m � 1,
fi is a single-index scaling strategy; when m> 1, fi is a
multi-index scaling strategy. At the same time, according to
the choice of fi, the scaling strategy can be divided into
response strategy and prediction strategy.

Although the single index algorithm is simple, it is prone
to the miscalculation of scaling. In terms of scaling strategy,
compared with a responsive scaling strategy, a predictive
scaling strategy can make a prediction based on historical
load and make scaling decisions earlier, which has a better
scaling effect [13]. We propose a multi-index scaling model
of XEDI based on a single index predictive scaling strategy.

In the single index algorithm, the input matrix P can be
simplified as the historical window vector of load indicators,
defined as follows:

3.1. Responsive Scaling Strategy. )e nonprediction model is
generally based on the historical window H(x, n) to make a
weighted average of the index x as the response value
Vr(H(x, n)), where x is the index, and n is the window size.
)e following formula (2) is used for calculation:

Vr(H(x, n)) � 
n

i�1
qixi, xi ∈ H(x, n), (2)

where qi is the weight coefficient. When qi � 1/n,
Vr(H(x, n)) � Vavg(H(x, n)) is the average value of indi-
cator window H(x, n). According to formula (3), the re-
sponse scaling index I can be obtained:

I � fi(P) � Vr(H(x, n)). (3)

In particular, when n � 1, I � xn, that is, scaling
according to the current load, which is currently the industry
commonly used scaling strategy.

3.2. Predictive Scaling Strategy. Compared with a responsive
scaling strategy, a predictive scaling strategy can predict the
historical load and make scaling decisions earlier, which has
a better scaling effect [14]. In this paper, the autoregressive
model is adopted to design a predictive scaling strategy,
which is generally used in the stage of statistics and signal
processing. As a random process, it is mostly used for
modeling and forecasting various natural phenomena. Al-
though XEDI message load changes are not the case. AR(p)

specifically represents the p-order autoregressive model in
this study. )e definition of AR(p) model is as follows:

Xt � c + 

p

i�1
φiXt − i + εt. (4)

)e Xt is model variables, φi is the model of the re-
gression coefficient, c is a constant (usually zero), εt is a
random error, and p is the order number.

In the process of AR (1), a sliding window composed of
multiple cycle monitoring indicators is used to predict the
load value of future cycles, which are called adaptive
Windows. According to H(x, n) of the history window with
length n, let the length of the adaptive window be w and
iteratively predict the value of a new period based on n
recent historical records. AR (1) can predict the index xi of w

future periods in the adaptive window, where
n< I< � n + w, xi is calculated iteratively by formula:

xi � xavg + ρ(1) xi− 1 − xavg  + ei, (5)

where xavg represents the mean value of xi in the history
window, ei represents noise (generally 0), and ρ(1) repre-
sents the relation function when the delay step number is 1.
ρ(1) is calculated by the following formula:

ρ(l) �
1

n + w − l
∗ 

n− l

i�1

xi − xavg  xi+l − xavg 

σ2n
. (6)

where σ2n represents the standard deviation of the historical
window.

)en, the predicted peak value can be obtained from the
w window of indicator xi. It is reasonable that when indi-
cator x is the load rate, it can be calculated by the following
formula:

Vp(H(x, n)) � max xi|i ∈ (n, n + w] , (7)

)e same as formula (3), the expansion index can be
predicted I � fi(P) � Vp(H(x, n)).

Although AR (1) algorithm solves the problem of index
prediction in the time window, it can only realize the
prediction of a single index load. Literature [15, 16] has
proved through experiments that when the selection of
indicators does not match with the type of load, the real load
of the application cannot be shown, and even if the algo-
rithm is rigorous, it will fail. )e multi-index algorithm can
rely on the comprehensive analysis of multiple load indi-
cators to correctly judge the scaling time and effectively
avoid the situation that the load is too large, the application
scale cannot be adjusted correctly, and the request cannot be
responded to normally.

4. Multi-Index Scaling Model

)e basic idea of implementing the multi-index scaling
strategy is to transform the multi-index load into a single
index set. According to the above analysis, the input P of the
scaling strategy is an n∗m matrix, and the output is the
scaling index I. )e multi-index scaling strategy is shown in
the following formula:
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I � fi(P), xmn ∈ P, m> 1, n≥ 1. (8)

)e calculation steps of I are as follows:

4.1. Convert Multiple Indicators into Single Indicators.
)e weighted average is carried out for each index in each
row of P, and the transformation formula in the k row is as
follows:

xk � 
m

i�1
xki ∗

xki


m
j�1 xkj

. (9)

You take all the rows, you transform the input matrix P,
and you get a vector that has dimension n, which is H(x, n).

4.2. A Single Index Is Used to Calculate the Load. After
converting the multi-index matrix into a single index vector,
the single index scaling model can be used to calculate the
scaling index I and carry out the scaling decision-making
process.

At the same time, in terms of index selection, XEDI
adopts the multi-index comprehensive trigger strategy that
can reflect the performance most directly, so as to avoid the
failure of prediction algorithm due to the failure of CPU,
memory, and other indirect indexes to reflect the real status
of message processing. )e multi-index predictive scaling
algorithm can select the trigger point of scaling more ef-
fectively and effectively prevent excessive scaling operation
when combined with the cooling time of scaling.

Based on [17] Dominant Resource Fairness (DRF) al-
gorithm and Dominant Resource Fairness for XEDI
(XDRF), which is an extension of the two above-mentioned
algorithms, it is designed to allocate the resources of PODs
more fairly and perform better in calculating.

Assuming that there are n available computing nodes in
the current cluster operating environment of XEDI, each
computing node has m resources in total, Qk represents the
performance evaluation score of node k, ηk represents the
ratio of the performance evaluation score of node k to the
average score, and Tk represents the resource type charac-
teristics of node k, and the encoding is consistent with
Definition 3:

Definition 3. (XEDI performance context). Parameter
XEDI.C� {XEDI performance index set ∪ XEDI resource I
resource status index set} is the performance context of the
current XEDI system.

zi,k represents the adaptation factor of POD(i) on ma-
chine k, Di,j represents the demand of a copy of POD(i) for
resources of type j, with Di � Di,1, Di,2, Di,3, . . . , Di,m, Si

represents the dominant share of POD(i), Rk
j represents the

total amount of resources of type j on node k, and Ruk
i,j

represents the number of resources of type j that POD(i) has
been allocated on node k, Rck,j represents the number of
resources of type j on node k that can be allocated, and Wi
represents the weight of calculating POD(i). )e calculation
process is as follows:

(1) Wi of each PODweight requiring capacity expansion
in the POP set is

Wi �
V(H(POD.MEMinsR, n)) + V(H(POD.CPUinsR, n))

2
.

(10)

(2) )e ratio of the performance evaluation score of
node k to the average score is

ηk �
nQk


n
i�1 Qi

. (11)

(3) )e adaptive factor and dominant share Si of POD(i)
on node k were calculated, and k was

Si,k �
maxm

j�1 Ru
k
i,j/R

k
j ∗ zi,k

Wi

,

zi,k � a∗ ηk +(1 − a)∗
POD(i).RTP&Tk

POD(i).RTP
; s.t.0≤ a≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

(4) Calculate the leading share Si (DS value) of POD(i) as
the sum of its leading shares on each node:

Si � 
n

k�1
Si,k. (13)

(5) )e resource Predicates set of computing POD(i) is

Npre(i) � k|k ∈ 1, 2, . . . , n{ };∀j ∈ 1, 2, . . . , m{ }; Di,j ≤Rck,j .

(14)

(6) )e JTH resource allocation to POD(i) is determined
by the following Priority:

When j is odd, the copy of POD(i) is allocated with
suitable high-quality resources, as shown in the following
formula:

s.t.k ∈ Npre(i);
zi,k − aηk

1 − a
> 0. (15)

When j is even, the copy of POD(i) is allocated with
suitable inferior resources, as shown in the following
formula:

s.t.k ∈ Npre(i);
zi,k − aηk

1 − a
> 0. (16)

5. Algorithms

)e automatic scaling algorithm of XEDI is designed based
on the scaling model in Section 2, which mainly solves the
problem of when the message processing module scales in
the container cloud environment. According to the
threshold of the scaling index, the scaling process is divided
into two algorithms: Algorithm 1 is for expansion, and
Algorithm 2 is for shrinkage. )e scaling algorithm firstly
obtains the monitoring data, and under the condition that
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the performance is not abnormal, calculate the load index set
and calculate the XEDI message workload [18]. If the
message’s expansion index exceeds the expansion threshold,
it traverses all the packet processing packets in sequence and
calculates the data load of the corresponding POD. If the
expansion index of the data packet exceeds the expansion
threshold, the POD replica set is expanded to improve data
throughput. On the contrary, if the expansion index is lower
than the reduction threshold, the POD replica set is scaled
down to release resources, and under the premise of en-
suring the concurrent processing performance of the mes-
sage, the resource occupation is minimized (Algorithm1).

6. Fairness Analysis of XDRF and
CXDRF Algorithms

In the process of cloud resources sharing, the efficiency and
fairness of the allocation of resources are the most important
properties, widely considering the encourage sharing, cheat
blocking, no jealous, and Pareto efficiency as an important
index of judging allocation mechanism, and the following
XDRF algorithm in POD expansion process is used to
further discuss the equality of the allocation of resources:

Theorem 1. XDRF is incentive sharing

Proof. if there are k PODs to expand, for any POD (i), POD
(j), satisfying i≠ j, i≤ k, j≤ k, POD(i), POD(j) ∈
collection(POP), if satisfies Si < Sj < . . . < Sk, then the al-
location of POD(i) results in the amount of resourcesDi, and
the total amount of resources decreases as R�R − Di.
According to formulas (3)–(6), the increase of the used
resource Ruk

j will cause the DS value Si of POD(i) to increase.
While Si > Sj, POD(i) stops allocating and allocates resources
to POD(j) to minimize the DS values alternation of different
POD. When the load falls back, each POD will call Algo-
rithm 3 to release the excess resources to ensure the re-
source-share of other POD in order to guarantee the
resource-share of the next expansion, and the proof is
completed. □

Theorem 2. XDRF prevents strategic operations

Proof. suppose that there are two resources r1 and r2, and the
total resources are R1 and R2 respectively; there are two
computing tasks i and j, and their resource demand vectors
are Di � di,r1, di,r2 and Dj � dj,r1, dj,r2. If the following re-
lationship exists, (di,r1/R1)> (di,r2/R2), (dj,r1/R1)<
(dj,r2/R2), then the dominant resource of computing task i is
r1, and the dominant resource of computing task j is r2. If xi
and xj are the number of subtasks of calculation tasks i and j
respectively, the xi and xj are calculated by the following
formula:

dr,r1 ∗ xi + dj,r1 ∗ xj ≤R1,

dr,r2 ∗ xi + dj,r2 ∗ xj ≤R2,

di,r1/R1 ∗xi � di,r2/R2 ∗xj.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

Assume that POD(i) increases its dominant resource
demand fromDi toDi

′ in order to obtainmore shares, and the
dominant resource of POD(i) is r, and then di,r <di,r

′; if the
dominant resourceofPOD(j) isp, according to formula (17), it
can be known that when capacity expansion is completed,

(di,r/Rr)∗xi � (dj,p/Rp)∗xj，and
(di,r
′/Rr)∗ xi � (dj,p/Rp)∗ xj, because (dj,p/Rp)∗xj keeps

the same，so (di,r/Rr)∗xi � (di,r
′/Rr)∗xi comes out, with

the contradiction of di,r <d’
i,r, and the proof is completed.

It indicates that POD cannot increase its allocation share
by falsely reporting resource demand and cannot be de-
ceptive in meeting resource demand. □

Theorem 3. XDRF is free of jealousy

Proof. assume that POD(i) is jealous of POD(j)’s resource
quota; that is to say, POD(j)’s resource quota is larger than
POD(i), and these resources are also needed by POD(i). If
these resources are r ∈ r1, r2, . . . , rm, the following two
situations should be considered:

(1) If r is the dominant resource of POD(i) and POD(j),
then r can only be the same resource. According to
the hypothesis di,k <dj,k and according to formula
(17) (di,r/Rr)∗ xi � (dj,r/Rr)∗ xj, then xi>xj, that
is, by allocating more copies for POD(i) to balance its
dominant resource, so the resource allocation of i
will not be affected.

(2) If r is not the dominant resource of i but is relatively
important for POD(i), POD(j) occupies more
quotas, and if the dominant resource distribution of
POD(i) and POD(j) is q and p, then there is the
following relationship:

(dj,p/Rp)∗ xj � (di,q/Rq)∗ xi > (dj,r/Rr)∗
xj > (di,r/Rr)∗xi, consider the following two sce-
narios simultaneously:

(a) if (dj,p/Rp)> (di,q/Rq), then xi > xj ，and in order to
satisfy the above relationship, the demand of POD(i)
on r is far less than that of POD(j), that is, dj,r?di,r,
and r is not an important resource of POD(i), which
contradicts the hypothesis.

(b) if (dj,p/Rp)< (di,q/Rq), then xi <xj ，and it can be
obtained from the above relationship, dj,r ≥di,r,
which is the same as the case a), so the demand of
POD(i) on r is less than or equal to that of POD(j),
which is inconsistent with the hypothesis, and the
proof is completed. □

Theorem 4. XDRF is satisfy Pareto efficiency

Proof. according to the definition of Pareto efficiency, it is
assumed thatPODcan increase its quotawithout affecting the
quota of other pods. According to the hypothesis, for POD(i),
Pareto improvement exists to make it increase the resource
share of POD(i) without affecting the share of other nodes.
According to lemma (8) in literature [19], there is at least one
saturated resource in PODusingDRF. Suppose that the share
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name: autoScalingUp
input: none
output: none
Define variable I: Expansion index; Define variable scalingStrategy: Capacity expansion policy: Non-predictive capacity expansion if
the value is 0, predictive capacity expansion if the value is not 0; Define a collection<POD>: POD collections that need to be
expanded; Define a collection<EXPOD>: A collection of pods with poor performance; Define a collection<POP>: POD optimization
solution set;
Main-loop {

retrieve XEDI context from CAT as XEDI.C; //Get the XEDI context from CAT
//Calculate the average message processing time and average throughput of XEDI
XEDI .Tavg(n) � Vavg(H(XDE I.Tins ,n)); XEDI .Vavg(n) � Vavg(H(XDE I.Vins,n))

if (XEDI .Tavg(n)>XEDI .Tmax and XEDI .Vavg(n)<XEDI .Vmax) {
//POD nodes with normal throughput but abnormal message processing time
for (step i from 1 to 3) {
for (each XEDI pod in step i from K8S) {
retrieve pod. C;
// Calculate the average data processing time and average throughput of POD
POD.Tavg(n) � Vavg(H(POD.Tins ,n)); POD.Vavg(n) � Vavg(H(POD.Vins,n))

if (POD.Tavg(n)>POD.Tmax and POD.Vavg(n)<POD.Vmax) {
add this unhealthy pod to collection<EXPOD>;

}}}
report collection<EXPOD> to CAT as performance exception; //Report exception triggers to CAT
enter next loop;

}
If (scalingStrategy� � 0) {
//According to formulas (2) and (3), qi � 1, the responsive capacity expansion index based
//on mixed load rate is calculated
I � Vavg(H(XEDI .TVinsR,n));

} else {
//According to formulas (5)–(7), the predictive expansion index was calculated

I � Vp(H(XEDI .TVinsR,n));
}
if (I> Imax) {
//Enter the expansion process and get the POD set of XEDI
for (each XEDI pod in K8S) {
retrieve pod. C;
//Avoid frequent POD scaling by cooling-off time
if (currentTime-pod. lastScalingTime< pod. C. Tc) {
enter next loop;

}
//Calculate POD expansion index
If (scalingStrategy� � 0) {
//According to formulas (2) and (3), qi � 1, the response expansion index based on
//mixed load rate was calculated
Ip � Vavg(H(POD.TVinsR,n));

} else {
//According to formulas (5)–(7), the predictive telescopic index is calculated
Ip � Vp(H(POD.TVinsR,n));

}
//Make scaling decisions
if (Ip > Imax) {//Calculate and update POD expansion metrics
If (scalingStrategy� � 0) {

//In response mode, qi � 1 is calculated according to formulas (2) and (3) to calculate //data grouping processing
time and throughput,

//Queue wait time and response metrics for CPU and memory utilization
update pod context (

Vavg(H(POD.Tins,n)),Vavg(H(POD.Vins,n)),Vavg(H(POD.Qins,n)),Vavg(H(POD.MEMinsR,n)),Vavg(H(POD.CPUinsR,n)));
} else {
//Predictive mode, according to formulas (4)–(6), calculate data grouping //processing time, throughput, Queue

wait times and predictors of CPU and //memory utilization
update pod context (

ALGORITHM 1: Continued.
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of POD(I) in resource r is increased from si,r to s’i,r, where
si,r � di,r ∗xi. According to )eorem 2, POD(I) cannot in-
crease si,r by increasing di,r; therefore, POD(I) can only in-
crease the quota of resource r by increasing xi. It can be
obtained from lemma (8) that I has at least one saturated
resourcew.)erefore, increasing xi cannot increase the share
of w. )erefore, it contradicts the hypothesis that Pareto
improvement does not exist, and the proof is completed.

)e essence of XDRF meeting Pareto efficiency is the
constraint on resource occupation by P. When resource
allocation reaches saturation, POD cannot increase its share
anymore, unless it occupies resources of other pods, whose
behavior will be forbidden by XDRF.

)eXEDI system is deployed with the help of Inter)ings,
a virtual cluster environment of containers, and it is tested
under the following two aspects: scaling effect and scaling
velocity [20]. )e former one refers to comparing frequencies
of message processing using different automatic scaling al-
gorithms, while the latter one refers to testing whether PODS
can be effectively adjusted with the change of load [1]. □

7. Scalability Test of the Algorithm

7.1. Scaling Effect Test. )e throughput limit and resource
allocation algorithm efficiency of XEDI under different POD

copy sizes were tested, among which the Takia adapter was
configured into SYN mode; that is, the request-response was
not conducted until the message conversion of the three steps
was completed. )e POD copy quota of the three steps tested
wasconfiguredas<0.2c,128M>,<0.4c,128M>,<0.3c,256M>,
and the resource vectorswere<1, 0, 0>,<0, 1, 1>, and<1, 0, 1>.
In order to compare the capacity expansion effect, XEDI
configured the three STEP copies of the test Topic into even
capacity expansionmode (from2 to16 toexpandcapacityon4
heterogeneous computing nodes), where Dell-R710 and Dell-
R620, respectively, correspond to CPU and memory storage
computing resourcesandusedMesosDRFandXDRFasXEDI
POD allocation algorithms, respectively [21].

)e VUser of LoadRunner adopts the trapezoid incre-
mental graph until the HTTP-503 error appears in the re-
sponse result. )us, the response frequency of server
requests, data throughput frequency, and maximum con-
current request number of XEDI under different replica
configurations can be obtained, as shown in Table 2:

And the relationship of the data in Table 2 can be shown
in Figures 1–4.

According to Figure 4, through XMON’s monitoring of
POD’s comprehensive load rate, the overall load rate ofXDRF
is higher than that of Mesos’ DRF algorithm during the POD
distribution process, which indicates that the resources are

Vp(H(POD.Tins,n)),Vp(H(POD.Vins,n)),Vp(H(POD.Qins,n)),Vp(H(POD.MEMinsR,n)),Vp(H(POD.CPUinsR,n)),);
}
add this pod to collection<POD>;

}}
//Calculate configuration optimizations for POD collections that need to be scaled up
for (each pod in collection<POD>) {
//POD optimization scheme is calculated by queuing theory system
compute PodOptimizationPlan(pop) for pod by queue system;
add this pop to collection<POP>;

}
//Confirm whether K8S resources meet the expansion conditions
if (R not adequate for collection<POP> scaling-up) {
//When the available resources are used up, try to apply for resources from the container
//cloud and preempt dynamically when the resources are insufficient try to apply resource
//increment as Rc1;
if (Rc1 �� 0) {
//Performance is abnormal and additional computing resources cannot be
//requested from the container cloud report resource exhausted exception to
//CAdvisor;
enter next loop;

}
Rc � Rc1; R � R + Rc; //Update total resources
}
//Allocate resources for POD according to Algorithm2
call XDRF algorithm for collection<POP> with Rc By XTuning. Scheduler;

}
If (I< Imin) {
//Normal performance without expansion, according to the Algorithm 3 asynchronous
//trigger shrinkage process
asyn_invoke auto scaling-down with XEDI.C;

}}

ALGORITHM 1: XEDI’s automatic expansion algorithm.
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better utilized overall. Combined with Figure 5 it can be also
seen that XDRF algorithm and dynamic weighting and re-
source types match, and the more the urgent priority allo-
cation, the more the reasonable resources, as well as the
equilibriumbetween different node performances, so the two
resources allocation performance is better than the default
resource allocation algorithm as a whole.

7.2. Scaling Velocity Test

7.2.1. Comparison of Scaling Effects of Different Scaling
Strategies. In the cloud deployment response scale and scale
forecasting strategy, respectively, two cluster instances, Takia
ferry mode is configured to ASYN enough throughput to
ensure that the front end POD configuration is the same as
the first step in the test, the initial replications to 1, and in the
test phase of the load scenario, LoadRunner VUser adopts
arch random graph, the two cluster instances at the same
time to request access to 16min to test the system’s response
to the load, including the expansion of the trigger and ex-
ecution and time efficiency to solve this problem. According
to the interface of the capacity enlargement algorithm, the
capacity expansion threshold was set as 75% and the capacity
reduction threshold as 45% [22]. )e capacity expansion

index adopted the time-throughput composite load rate, and
the cooling time of capacity expansion was 2min (note: in
production environment, to avoid frequent capacity ex-
pansion caused by load fluctuation near the threshold, the
value was generally more than 10minutes). )e test results
are shown in Figure 6.

As can be seen from Figures 1 and 6, in the initial stage,
the load rate is lower than 40%, and the total number of
POD copies is specifically 3. At 3min, the load increases
sharply, and the server load rate rises rapidly to nearly 80%,
higher than the capacity expansion threshold. With capacity
expansion triggered, the number of POD copies increased
to 8 at 4min. After that, the load was reduced to 40%, less
than the shrinkage threshold. Since it was in the “cooling-off
time” stage, the shrinkage operation was not triggered, and
the two expansion and shrinkage operations within a short
period of time in this stage were prevented. At 5min, the
load returned to the rising trend, reached 75% at 7 min,
and triggered the second capacity expansion operation.
At 8 min and 9min, respectively, the number of copies of
the two expansion strategies increased to 12. At 11 min,
the load was reduced, and the volume reduction opera-
tion was triggered when it was lower than the volume
reduction threshold. )e copies of the two capacity

name: autoScalingDown
input: C: XEDI performance context;
output: none
//If the XEDI resource occupancy rate is low, it will not shrink, reducing the number of
//unnecessary shrinkages
if (Ra <R∗ θmax) { terminate scaling-down;}
//Get all the POD sets for XEDI
retrieve all pods of XEDI from K8S as collection<POD>;
for (POD pod: collection<POD>) {

retrieve pod. C;
//Avoid frequent POD scaling by cooling-off time
if (currentTime-pod. lastScalingTime< pod. C. Tc) {

enter next loop;
}
/∗Calculate POD expansion index∗/
If (scalingStrategy�� 0) {
//According to formulas (2) and (3), qi � 1, the response capacity expansion index based
//on mixed load rate was calculated
I � Vavg(H(PO D.TVinsR,n));

} else {
//According to formulas (5)–(7), the predictive expansion index was calculated
I � Vp(H(PO D.TVinsR,n));

}
//Adjust pods with lower load rates
if ((I< Imin) {
//Reduce the number of copies of POD according to the flex index
pod. replicas� ∗I;
//Refresh the POD’s copy number configuration so that the POD’s shrinkage takes effect
refresh pod replication for K8S with XTuning. Scheduler;

}
//Stop shrinking when the resource utilization rate falls below the resource load rate
if (Ra <R∗ θmin) { terminate scaling-down;}

}

ALGORITHM 2: XEDI’s automatic shrinkage algorithm.
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expansion strategies were reduced to 6 and 8, respec-
tively, and the volume expansion was not carried out in
the following 2min cooldown. At 16 min, the volume
reduction operation was triggered by load drop, and the
number of copies was reduced to 3, which verified the
effectiveness of XEDI dynamic capacity expansion. It can
also be seen from the figure above that, compared with the

response capacity expansion strategy, the predictive ca-
pacity expansion strategy is more active than the response
strategy, because it can predict the load status of the
subsequent time series in advance. )erefore, the capacity
expansion preparation can be carried out before the load
expansion, so as to obtain better system processing
performance and throughput [23].

Algorithm name: XDRFforPOD
/∗)e number of nodes is n, and the resource dimension is m∗/
Input: R�<R1 �<R1,1 to R1,m>, . . ., Rk �<Rk,1 to Rk,m>, . . ., Rn �<Rn,1 to Rn,m>>: total resource collection; collection<POP>: POD
optimization scheme collection;
Output: none
Define variable z� collection<POP>.size: the number of PODs to be calculated; Define variable R1u � Ru1

1,1, . . . , Ruk
i,j, . . . , Run

z,m: the
set of allocated resources, Ruk

i,j represents the number of resources of type j that has been allocated by POD(i) on node k; Define
variable Rc � Rc1,1, . . . , Rck,j, . . . , Rcn,m: unallocated resource set, Rck,j represents the number of resources of type j on node k that
can be allocated; Define variable W � W1toWz: )e weight set of POD to be optimized;
for (i from 1 to z) {

Calculate the weight of the POD in the collection<POP> according to formula (10) and fill the collection W;
}
for (k from 1 to n) {

Calculate the cluster nodes ηk according to formula (10) and arrange them in ascending order;
}
do {

for (i from 1 to z) {
For R and Ru sets, calculate the dominant share Si of POD(i) according to formulas (11) and (12), and update the

collection<POP> collection, sorted by Si in ascending order;
}
//Get the POD with the smallest dominant share (i)
picking POP(i), the first element of collection<POP>;
POD(i)�POP(i).POD;
//Get POD(i) resource requirements such as CPU and memory
calculate resource demand of POD(i) as Di;
Calculate the resource Predicates set Npre(i) of POD(i) according to formula (14);
if (Ru + Dj ≤R) {

According to formulas (13) or (14), a copy resource r is allocated to POD(i), where r� �Di;
//Load and run the copy instance
let replication as result of loading and running POD(i).replicationConfig with r;
//Register the copy, monitor the data queue and participate in data processing services
register this replication as consumer to kafka with POP(i).topic;
//Update resource usage
Ru+ � Dj; Rc− � Di;
//Refresh the dominant share of POD(i) according to formulas (12) and (13)
refresh dominant share for POD(i);
if (POP(i).dPR--�� 0) {
//)e POD has been expanded and deleted from collection<POP>, and no longer enters //the subsequent allocation process
POD(i) scaling-up done;

}}
//)e cluster node resources are exhausted, record the POD information that has not been
//allocated and exit DRF
else {

get unsatisfied POPs as collection<UPOP> from collection<POP>;
report collection<UPOP> to CAdvisor;
terminate XDRF;

}
/ When collection<POP> is empty, all POD allocation is completed
If (allocation done for all pod in collection<POP>) {

report to XTuning allocation done with R and collection<POP>;
terminate XDRF;

}} while (true)

ALGORITHM 3: XDRF algorithm.
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Table 2: Comparison of pressure test results before and after replica expansion.

Number of copies

Index
Request response

frequency (fetches/sec)
Data throughput

frequency (bytes/sec)
Maximum number of
concurrent requests

DRF XDRF DRF XDRF DRF XDRF
2 0.1624 0.1645 32.5 33.4 60 64
4 0.3056 0.3742 65.4 66.8 113 137
6 0.4475 0.5238 85.2 87.1 152 174
8 0.5834 0.6925 112.4 114.5 184 206
10 0.7423 0.8292 121.7 124.3 216 268
12 0.7893 0.9482 137.6 139.7 262 338
14 0.8621 1.0179 142.8 145.2 287 377
16 1.0016 1.1382 146.9 150.4 321 406
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Figure 2: )e relationship between XEDI request-response frequency and the number of POD copies.
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7.2.2. Performance Comparison between Closed and Open
Scaling Strategy. Based on the above test scenarios, and
further comparison does not have scale characteristics of the
traditional “stovepipe” through information sharing system
with elastic performance difference between unit ITIU in-
formation sharing, namely, validation expansion module
performance improvement effect of information sharing
service, we will have the response type expansion cluster in-
stance XTuning closed, as well as the expansion and test in-
stance and the expansion of the client’s response performance.
Using the same server configuration, set the front module to
the SYN mode, and at the same time, set the LoadRunner
VUser map of 300 concurrent users trapezoidal map; the
threshold arrival time is 50 sec, cycle for 3min, and do not test
points recording two-cluster-instance transaction response
time, and the test results are shown in Figures 7 and 8; the X-
axis is time, the vertical axis for the transaction response time.

By comparing the two figures, it can be found that the
response time of the two cluster instances is basically the
same in the early stage, and the system throughput of the
server load reaches the threshold at about 50 sec. In Figure 7,
as the capacity expansion scenario starts to expand, the
message response time decreases to about 1 sec after the
capacity expansion. In Figure 8, as the cluster instance shuts
down the capacity expansion component, the response time
of the system after stabilization remains around 2.5 sec. It
can be seen that the automatic capacity expansion system
can effectively maintain the service performance of the client
when the system load increases.

In order to compare the performance difference of XEDI
components in the container environment and the virtual
machine environment of the current mainstream cloud
platform, two XEDI cluster instances that respond to the
scaling mode are deployed in the container and virtual
machine environments [24, 25]. )e Takia adapter is con-
figured in SYN mode, the POD configuration is the same as
the first test, the initial number of copies is 1, the node in the
virtual machine mode also uses the same configuration, and
the initial number of nodes is also 1. LoadRunner’s VUser
map is a ladder map of 200 concurrent users, with a period of
2 minutes. Record the transaction response time of the two
test cluster instances separately to evaluate the response level
of the container and virtual machine scaling to the load
under the same configuration. )e test results are shown in
Figures 9 and 10.

As can be seen from the above figure, the average re-
sponse time of the container environment is about 1 sec,
which is significantly better than the virtual machine en-
vironment. In addition, because the container is a light-
weight process-level service, the refresh time of the POD
copy only takes about 5 sec, so Figure 9 can quickly complete
the expansion operation in the early stage of the load and
reduce the transaction response time to less than 1 sec. )e
virtual machine startup and deployment time is an operating
system level operation. As can be seen from Figure 10, the
transaction response time in the virtual machine mode
increases as the load reaches about 90 sec before completing
the first expansion operation. It can be seen that, in terms of
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scalability and agility, container clusters have obvious ad-
vantages over virtual machines.

8. Conclusions

In this paper, we have proposed the autoscheduling algo-
rithm XDRF in the cloud environment. )is paper incor-
porates a detailed evaluation of the XEDI stretching model
toward the workloads of CPU and RAM. )rough quanti-
tative experiments, it was verified that the XDRF algorithm
could achieve the system performance optimization on the
basis of guaranteeing system reliability and reduce energy
consumption effectively [26].)e work in this paper also has
clarified that the model can meet the demand of dynamic
load and improve the service quality according to the two
tests.

9. Prospect

9.1. Standardization of CloudPlatform forCombined Iron and
Water Transport. Cloud computing is an effective way to
optimize the existing intermodal information layout and
application management model, and it also brings new
challenges to intermodal business and data standards under
the cloud environment. Although the intermodal cloud
platform adopts a centralized management model, it is

difficult to integrate a large number of heterogeneous in-
termodal applications on a unified cloud platform without a
unified intermodal information standard. Although simple
migration can achieve unified management of applications,
it cannot effectively use virtual resources to optimize cloud
service models. )erefore, researching the intermodal in-
formation standards that adapt to the cloud environment is
crucial to the landing application of intermodal cloud
platforms.

9.2. Construction of Intermodal Blockchain. Combined
transportation of iron and water is a multiparty collaborative
business process, and the security and traceability of in-
formation sharing are extremely important. Blockchain is
the latest information sharing and storage technology. It can
not only effectively simplify the intermodal business process,
but also effectively protect the security of shared data. How
to combine blockchain with intermodal information tech-
nology, build intermodal blockchain, and realize intermodal
smart contracts and data traceability is also of great sig-
nificance and requires a lot of follow-up research work.

Data Availability

Data used to support the finding of this study are available
within the article.
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