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Modelling the mixed traffic flows of autonomous vehicles (AVs) and human-driven vehicles (HVs) on highways is challenging.
Randomness, fluctuations, and congestion exist in the mixed traffic flows. This paper extends the current literature by
proposing an M/G(n)/c/c state-dependent queuing model operating in a random environment. The fluctuating traffic demand
is addressed by arrival rates modulated by the random environment. Meanwhile, a Markovian arrival process (MAP) is
incorporated to describe the platoons. We investigate the performance of the mixed traffic flow under the I policy (AVs and
HVs travel together in all lanes) and the D policy (one lane is designated to AVs). Numerical experiments reveal the following
interesting findings: (1) the fluctuation degree of traffic demand, the traffic intensity, and the penetration rate of AVs play
essential roles in determining the performance of mixed traffic flows. (2) The I policy should always be adopted if the travel
time is more valuable. In terms of output rate, the choice between the I and the D policies depends on the traffic intensity,
SCV of arrival rates and penetration rate. (3) A larger penetration rate is required to completely eliminate congestion on a
longer highway segment.

1. Introduction

With the development of sensing and communication tech-
niques, rapid progress has been achieved in the field of
autonomous vehicles (AVs) in recent years. Compared with
regular human-driven vehicles (HVs), AVs are expected to
be capable of increasing road capacity, relieving congestion,
and improving the stability of traffic flows [1–6]. However, it
is generally recognized that there is a long way to go before
full automation is reached. Therefore, the mixed traffic flow
of AVs and HVs will become mainstream in the following
twenty to thirty years [7].

Intensive attention has been paid to the mixed traffic
flow of AVs and HVs. Research in this field mainly focuses
on two aspects: mixed traffic flows modelling [7, 8] and opti-
mal traffic management [9, 10]. Modelling the mixed traffic
flows of AVs and HVs, which aims to capture the interaction
between different vehicles and the interaction between vehi-
cles and road, is the basis for the analysis and control of
mixed traffic flows. It belongs to the scope of collaborative

optimization and modeling of multi-transport modes and
is one of the hot research topics in the field of traffic and
transportation.

Generally, two basic categories of traffic flow are ana-
lyzed, interrupted traffic flow and uninterrupted traffic flow.
The former focuses on traffic flows affected by external ele-
ments (such as traffic signals), whereas the latter analyzes
vehicles that only interact with other vehicles and roads.
The scope of this paper is limited to the uninterrupted traffic
flows. Specifically, we analyze the mixed traffic flows on
highways.

Modelling the mixed traffic flows on highways is full of
challenges due to the randomness and fluctuations in traffic
flows. Randomness, or stochastic, in traffic flows mainly
results from the uncertain behaviors of drives. Fluctuations
of traffic parameters, such as flow rate and velocity, is the
result of factors such as tidal phenomenon, lane closure, traf-
fic accidents and weather conditions. Randomness and fluc-
tuations in traffic flows have been well documented in the
literature [7, 11]. And various approaches and models have
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been proposed, such as queuing techniques and the cellular
automaton (CA) based models. Congestion and platoons
also exist in highway traffic flows. When the number of vehi-
cles on a highway segment exceeds a particular value, con-
gestion occurs due to limited land space. The velocity of
vehicles declines as the number of vehicles increases. In
addition, vehicles on highways usually travel in platoons,
which allows a smaller headway.

To accurately model and assess the mixed traffic flows
on highways, one should consider all the characteristics in
reality. Mirzaeian et al. [12] applied an M/G(n)/c/c queuing
model incorporated with a Markovian arrival process
(MAP) for the mixed traffic flows on highways. In the
model, the random arrival followed a Poisson process. The
effect of congestion was addressed by a state-dependent ser-
vice rate (service rate depends on the number of vehicles n).
The MAP was applied to describe the platoons. However,
fluctuations in traffic demand were ignored.

This paper aims to provide a more realistic model for the
mixed traffic flow on highways. The main contribution of
this paper is that we present an M/G(n)/c/c queuing model
operating in a random environment. In this model, the fluc-
tuations in traffic demands are treated as arrival rates mod-
ulated by a continuous time Markov chain. And the
fluctuation degree of arrival is quantized by the squared
coefficient of variation (SCV) for arrival rates. Although we
only consider varying traffic demand, the proposed model
can deal with fluctuations in velocity or capacity, which
may be caused by adverse weather conditions, lane closure,
or accidents.

Following Mirzaeian et al. [12], we analyze two policies:
the I policy (AVs and HVs travel together in all lanes) and
the D policy (one lane is designated to AVs). The second
contribution of the study is that the D policy applied in this
paper is more rational. The D policy in this paper works as
follows (Figure 1): a newly arrived AV enters the designated
lane if the designated lane is not fully occupied, or it enters
the rest lanes if the designated lane is fully occupied while
the rest lanes are not.

The main difference between this paper and Mirzaeian
et al. [12] is as follows. First, we address the fluctuations in
traffic demands by arrival rates modulated by a random
environment. In contrast, the fluctuations in traffic demands
were ignored in Mirzaeian et al. [12] and the arrival rate was
a fixed value. Second, the D policy in this paper is more
rational compared with that in Mirzaeian et al. [12]. In Mir-
zaeian et al. [12], the AVs are only allowed to use the desig-
nated lane in the D policy. If the designated lane is fully
occupied, a newly arrived AV cannot enter the rest lanes
even though they are unsaturated.

Compared with the general homogeneous traffic flow
model (such as the traffic wave model), the M/G(n)/c/c
state-dependent queuing model in a random environment
proposed in this paper is superior in the following aspects.
First, the randomness in traffic demand and vehicle velocity
is addressed by the queuing model. Second, the random
environment of traffic flows is represented by a continuous
time Markov chain. Third, the effect of the platoons on
velocity is also considered by incorporating a MAP and

applying state-dependent velocity. Fourth, we can obtain
the second, third and higher moment for the performance
measures of traffic flows using the proposed queuing model.

The proposed model in this paper, which is novel in lit-
erature, helps us gain deeper insights into the influence of
AVs on the mixed traffic flows on highways. Numerical
experiments reveal that the fluctuation degree of arrival
(SCV for arrival rates) plays an essential role in determining
the performance. The choice between the I policy and the D
policy depends on the traffic intensity and the SCV of arrival
rates. As the influence of the SCV of arrival rates is taken
into account, and the AVs rejected by the designated lane
are allowed to use lanes for HVs, the policy recommenda-
tions in this paper are different from that in Mirzaeian
et al. [12]. In addition, it is found that a larger penetration
rate is required to completely eliminate congestion on a lon-
ger segment. These findings are of great value when making
a decision related to AVs management and control, such as
time-sharing priority or time-sharing pricing for AVs.

The rest of the paper is organized as follows. In Section
2, we review the literatures in the related fields. The queuing
model for the mixed traffic flows is presented in Section 3.
Section 4 displays the numerical experiments and Section 5
concludes the paper.

2. Literature Review

The related literatures in traffic flow modelling, mixed traffic
flows and AVs are reviewed in this section.

Various approaches have been proposed to model traffic
flows. According to the level of detail, there are microscopic,
mesoscopic and macroscopic models. As a mesoscopic
method, queuing techniques have been used to model traffic
flows in different scenarios, including uninterrupted flows
on highways [13, 14]. Queuing models fall into two groups:
stationary model [15–17] and transient model [18–20]. The
former focuses on capturing the steady state performance
and is applicable in facility design and policy decision. The
latter, on the contrary, calculates the dynamic performance
measures and is often used for management and control.
This paper belongs to the former category. Heidemann
[21] applied the basic M/M/1 and M/G/1 queuing models
to capture the speed-flow-density relationships of traffic
flows. To address the effect of congestion, Jain and Smith
[15] proposed an M/G(n)/c/c state-dependent queuing
model, in which the service rate depends on the number of
vehicles n (n is also defined as the state of the queuing sys-
tem). Smith and Cruz [16] also applied the M/G(n)/c/c
state-dependent queue to model traffic flows.

The arrival and service rates are fixed in the above queu-
ing models. However, traffic flows are affected by many
other factors that may cause fluctuations in traffic demand,
vehicle velocity or road capacity. Agarwal et al. [22] analyzed
the impact of various adverse weather on the capacity and
speed of highways. Baykal-Gürsoy et al. [23] presented an
M/M/C queue in a random environment for traffic flows
interrupted by incidents. Yang et al. [24] proposed a passen-
ger–taxi matching queueing model that considered the fluc-
tuating arrival of passengers and taxis. Gerum and Baykal-
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Gürsoy [25] used tandem queues to analyze the traffic den-
sity in roadways where the service is affected by random
incidents.

Platooning is another typical feature of the traffic flows
on highways. Alfa and Neuts [26] presented a discrete time
MAP to model the platooned arrivals in traffic flows.
Readers can find more details on MAP in Neuts [27]. Breuer
and Alfa [28] further presented an EM-based procedure to
estimate the parameters for the platoon arrival process.
Based on these researches, Mirzaeian et al. [12] also applied
the MAP to model the platoons on highways. Other research
on platoons includes Jin et al. [29] who introduced a fluid
model to investigate the interaction between the AVs pla-
toons and the non-AVs and proposed platoon coordination
strategies. From a macroscopic level, Sala and Soriguera [4]

provided a generalized model to estimate the platoon length
in mixed traffic flows.

Research on the mixed traffic flows of AVs and HVs also
has rich achievements. Mahmassani [30] established a
microsimulation framework to examine the stability and
throughput of mixed traffic flows under varying market pen-
etration rates of autonomous connected vehicles. To analyze
the impact of AVs on the mixed traffic flows of HVs and
AVs, Zheng et al. [7] developed a stochastic Lagrangian
model which considered human drivers’ heterogeneous
behaviors.

The paper by Mirzaeian et al. [12] is the most related
research to this study. Compared to Mirzaeian et al. [12],
our model is more realistic as it addresses the fluctuations in
traffic flows by applying a queuing model operating in a

AV

HV

AVs and HVs travel together in all lanes.

(a) The I policy

One lane is designated to AV. AVs rejected
by the designated lane can use the rest lanes. the designated

lane for AV

(b) The D policy

Figure 1: The I policy and the D policy.
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Figure 2: Varying arrival rates for the low traffic intensity.

3Journal of Advanced Transportation



random environment. Meanwhile, the D policy in this paper is
more rational as it allows the AVs rejected by the designated
lane to enter the rest lanes if they are not fully occupied.

3. Modelling Mixed Traffic Flows

In this section, we present the queuing model for the mixed
traffic flows on highways. First, we introduce the M/G(n)/c/c
state-dependent queuing model operating in a random envi-
ronment. Second, the MAP used to describe the platoons is
presented. Then, we give the steady state performance mea-
sures of the queuing model.

3.1. The M/G(N)/c/c Queuing Model Operating in a Random
Environment. A highway segment can be viewed as a queu-
ing system, where the vehicles are customers, and the road
segment is servers that provide passage service. For a high-
way segment of length l (in miles) with w lanes, its queuing
capacity c is equal to the number of vehicles the road can
accommodate, which is also the number of servers of the
queuing system.

c = Klw ð1Þ

where K is defined as the jam density, which means the
maximum number of vehicles a lane of one mile can hold.

Vehicles arrive according to a Poisson process with an
arrival rate λ. When a newly arrived vehicle finds the road
fully occupied (the number of vehicles on the road reaches
the capacity c), it turns away. In reality, a driver may take
an alternative route when he finds a severe traffic jam ahead.
The process that a vehicle passes through the highway is
viewed as the service process. Therefore, the service time is
determined by the velocity. Due to the effect of congestion,
the velocity varies with the number of vehicles on the road.
The more vehicles travel on the road simultaneously, the
slower the velocity tends to be. The number of vehicles n is
defined as the state of the queuing system. When n = 1, there
is only one vehicle on the highway, travelling with a free
velocity v1. When there are c vehicles on the road segment,
the velocity decreases to 0. That means the velocity vn, for
n = 1, 2,⋯, c, is state-dependent. Therefore, the service rate
(of a single server in the queuing system) μn = vn/l is also
state-dependent.

The traffic flows on highways are affected by many fac-
tors, such as the tide phenomenon, traffic accidents and
weather conditions, which may cause changes in traffic
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demand and velocity. We can introduce a random environ-
ment represented by a finite state Markov process to model
the influence of these factors. Consider an irreducible con-
tinuous time Markov chain it , t ≥ 0, in the state space {1, 2,
…, N}, N ≥ 2. The infinitesimal generator Q for it is as fol-
lows:

Q =
Q11 ⋯ Q1N

⋮ ⋱ ⋮

QN1 ⋯ QNN

2
664

3
775, ð2Þ

where Qii = –1/ti ð1 ≤ i ≤NÞ and ti is the mean duration time
at state i for Markov chain it ;Qij ð1 ≤ i, j ≤N , i ≠ jÞ repre-
sents the transition intensity of the Markov chain it from
state i to state j. The invariant probability vector of Q is x
and it satisfies xQ = 0, xe = 1. The duration time of each
environment state is a random number which may follow
an exponential, Erlang, or pH distribution. For the sake of
simplicity, exponential duration time is considered in this
paper. When a queuing model operates under a random
environment, its parameters, such as the arrival rate, the ser-
vice rate or the capacity may change with the random
environment.

In this study, the M/G(n)/c/c queuing model is modu-
lated by the random environment as follows. When the Mar-
kov chain it is at state i, the arrival rate of the queuing system
is λi. When the state of the Markov chain changes, the
arrival rate of the queuing system changes synchronously.
Although we only consider arrival rate changing with the
random environment in this paper, the model can also deal
with varying service rate and varying capacity.

The M/G(n)/c/c queuing model operating in a random
environment can be described by a continuous time level-
dependent QBD (quasi-birth-and-death) process ξt = fnt , it
g, t ≥ 0, where nt = 0, 1,⋯, c. The infinitesimal generator of
ξt , t ≥ 0 is given by Q∗

Q∗ =

D0 F0
E1 D1 F0

⋯ ⋯ ⋯

Ec−1 Dc−1 F0
Ec Dc

2
666666664

3
777777775
, ð3Þ

where
F0 =diag(λ1, λ2, …, λN),
En=diag(nμn, nμn, …, nμn), n=1,…, c,
Dn=Q – diag(λ1 +nμn, λ2 +nμn, …, λN+nμn), n=1,…,

c-1,
D0 =Q – diag(λ1, λ2, …, λN),
Dc=Q – diag(cμc, cμc, …, cμc).
The stationary probability vector for Q∗ is π, and it sat-

isfies the following global balance equation:

πQ∗ = 0, πe = 1, ð4Þ

where π = ðπ0, π1,⋯, πn,⋯, πcÞ and πn = ðπn1, πn2,⋯,
πnNÞ. πni is the steady-state probability for the system state
is n and the environment state is i. Meanwhile, the stationary
probability satisfies πn+1 = πnRn ð0 ≤ n ≤ c − 1Þ, where Rn is a
level dependent rate matrix and π0ðD0 + R0E1Þ = 0, Rn = –
F0/ðDn+1 + Rn+1En+2Þ, Rc = 0.

3.2. MAP for the Platoons of Traffic Flows. Vehicles on the
highway always form platoons. The mean headway when
there are n vehicles on the road segment is denoted as hn.
Traffic density k on the highway segment is expressed as k
= n/ðlwÞ. According to the relationship between the traffic
flow, density and speed, the flow equals to nvn/ðlwÞ, which
is also equal to the inverse of the mean headway hn. Hence,
we have

vn =
lw
nhn

, ð5Þ

We follow Mirzaeian et al. [12] to apply a MAP to
describe the platoons in highway traffic flows. A MAP is
defined by twom ∗mmatrices, C0

n and C1
n when the number

of vehicles is n. The irreducible generator matrix of the MAP
is Cn =C0

n +C1
n, with the corresponding stationary probabil-

ity vector mn. The mean headway equals the mean of the
MAP

hn =
1

mnC1
ne

, ð6Þ

where e is a column vector of all ones. Readers can refer to
Mirzaeian et al. [12] for more details on the MAP. The dis-
tributions of three elements, platoon size (with mean 1/δ),
intraplatoon headway (with mean 1/ξ), and interplatoon
headway (with mean 1/φ), are necessary to calibrate C0

n
and C1

n.
Following Mirzaeian et al. [12], two policies can be

adopted for the AVs. One is the designated-lane policy
(referred to as the D policy) and the other is the integrated
policy (referred to as the I policy). The penetration rate of
AVs is denoted as p. Under the I policy, the AVs and the
HVs arrive at all lanes with an arrival rate λ, and the capacity
of the queuing system is Klw. Under the D policy, the AVs
arrive at the designated lane with an arrival rate pλ, forming
a queue with a capacity Kl. And the HVs arrive at the rest
lanes with arrival rate ð1 – pÞλ, forming another queue with
a capacity Klðw – 1Þ. The AVs cannot enter the designated
lane if the number of AVs already in the lane reaches its
capacity. The AVs rejected by the designated lane are
allowed to join the rest lanes if they are not fully occupied.
In this case, the rest lanes essentially work as the I policy,
where the arrival rate is ð1 – pÞλ + pλpDc , and the penetration
rate is pλpDc /ðð1 – pÞλ + pλpDc Þ, where pDc is the blocking
probability of the designated lane.

The distribution and the formulation for 1/δ, 1/ξ, and
1/φ for the D policy and the I policy are presented in
detail in Mirzaeian et al. [12]. Based on them, we can
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obtain the state-dependent velocity vn according to Equa-
tions (5) and (6).

3.3. Performance Measures. Given the queuing system in
Section 3.1, we can calculate the stationary performance
measures of interest based on the steady state distribution
π. For queuing systems with fixed parameters, we focus on
the average performance measures, such as the average dura-
tion time ET , the average blocking probability PC, and the
average output rate θ.

ET = 〠
c

n=1

πnμ
−1
n

1 − π0e
,

PC = πce,

θ = 〠
c

n=1
nμnπne:

ð7Þ

However, the performance measures change with time
for queuing systems with varying parameters. For these
queues, the conditional performance measures provide more
valuable information. To calculate the conditional perfor-
mance measures, we introduce a conditional probability pn

ðiÞ, which represents the conditional probability that the sys-
tem state is n on the condition that the environment state is i
,

pn ið Þ = πni

xi
: ð8Þ

Then the conditional performance measures, such as the
conditional duration time ETðiÞ, the conditional blocking
probability PCðiÞ, and the conditional output rate θðiÞ at
environment state i can be expressed as

ET ið Þ = 〠
c

n=1

pn ið Þ
μn 1 − p0 ið Þð Þ½ � ,

PC ið Þ = pc ið Þ,

θ ið Þ = 〠
c

n=1
npn ið Þμn:

ð9Þ

Due to the introduction of the random environment and
the state-dependent service rate, it is very difficult to obtain
the explicit expression for the steady-state distribution π.
Following Zhu et al. [17], we apply the Matrix Analytic
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Figure 7: Comparison between the D policy and the I policy when SCV = 0:4 under a low traffic intensity.
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Scheme (MAS) algorithm in Baumann and Sandmann [31]
to solve the proposed model. Using the MAS algorithm,
the explicit calculation of the stationary distribution π is
unnecessary. Hence, the space complexity of the algorithm
is significantly reduced. In this paper, the time complexity
of the MAS algorithm is a linear function of cN , and the
space complexity of the algorithm is a linear function of N .

4. Numerical Experiments

In this section, we present numerical experiments on mixed
traffic flows. First, the calibration of the model is presented.
Then, we analyze the average and varying performance mea-
sures affected by the fluctuation degree of arrival rate and the
penetration rate under the I policy. Finally, we compare the
D policy with the I policy.

4.1. Model Calibration. To describe the highway traffic flow
as an M/G(n)/c/c queuing model operating in a random
environment, we need the following parameters: the infini-
tesimal generator Q, the invariant probability vector x, the
arrival rate λi for each Markov state i, and the state-
dependent velocity vn for each system state n. It is worth
noting that Markov state (environment state) i represents
one of the N states for the Markov chain it , while system
state n refers to the number of vehicles on the highway.

The arrival rate of vehicles changes with time due to the
tidal phenomenon. 24 hours of a day is treated as a random
environment. The Markov chain it , t ≥ 0 has a state space {1,
2, …, N} and N = 24. For the infinitesimal generator Q, we
have Qii = –1 ð1 ≤ i ≤NÞ, Qi,i+1 = 1 ð1 ≤ i ≤N – 1Þ, and QN ,1
= 1, while the rest of the entries in matrix Q is 0. And x =
e1×N/N .

We use the open data from the Department for
Transport to calibrate the varying arrival rate. The total
number of vehicles that arrived in 24 hours for a high-
way segment with three lanes is 56080. Four curves for
varying arrival with the same average arrival rate but
different SCVs of arrival rates are presented in
Figure 2. When SCV = 0:1, the fluctuation degree is rel-
atively small; when SCV = 1, the fluctuation degree is
large. In this figure, the line for SCV = 0:4 reflects the
actual data on-site. Note that when SCV = 0, there is
no fluctuations in arrival (it shows a horizontal line),
which corresponds to the arrival rate in Mirzaeian
et al. [12]. We also analyze a high traffic intensity by
increasing the arrival rate by one time or two times.
In the following content, we use low and high traffic
intensity to refer to the two traffic load scenarios.

Let the length l of the segment be one mile and the num-
ber of lanes be 3. The value of K typically ranges from 185 to
265 veh/mile-lane according to Jain and Smith [15]. In this
paper, it is set to be 185. For the I policy, AVs and HVs form
a mixed traffic flow and travel together in three lanes, so the
capacity of the queue is 555 (w = 3). In the D policy, one spe-
cific lane is assigned to the AVs, therefore the capacity for
the AVs queue is 185 (w = 1) and that for the HVs queue
is 370 (w = 2).

According to Mirzaeian et al. [12], the state-dependent
velocity vDHn for the HV queue and vDAn for the AV queue
under the D policy are as follows,

vDHn = 66e− n3:4/5215902ð Þ + 2, n = 1, 2,⋯, 370:
vDAn =min 74:7, 3600 + 2:16nð Þ/0:855nf g, n = 1, 2,⋯, 185,

ð10Þ

where 74.7miles/hour is the free speed.
For the I policy, the state-dependent velocity vInðpÞ is

vIn pð Þ =min 74:7, 10800w/ n 2 − 1:7pð ÞA+ 1+1:7pð ÞBð Þ½ �f g,

n = 1, 2,⋯, 555, pϵ 0, 1½ �, ð11Þ

where

A = 10800 − 7:56nð Þp + 4:59np2
� �

3000 + 0:6n + 10800 1−pð Þ
nE

− 0:55 1−pð Þ,

B = 0:55p2 + 1:4p 1−pð Þ + 1:1 1−pð Þ,
E = 46:67e− n2/21049ð Þ + 3:13:

ð12Þ

Readers can refer to Mirzaeian et al. [12] for the details
of the calibration work.

4.2. Average Performance Measures under the I Policy. In this
experiment, we analyze the influence of the AVs under dif-
ferent SCVs of arrival rates. Four values for the SCV of
arrival rates, 1, 0.7, 0.4, and 0.1, and penetration rates from
0 to 100% are analyzed. Both the low traffic intensity and
the high traffic intensity (two times of the low traffic inten-
sity) are tested. The average duration time ET , the average
blocking probability PC, and the average output rate are dis-
played in Figures 3 and 4.

The two figures show that the increase in penetration
rate does not influence the average performance measures
under certain circumstances, specifically, when the average
blocking probability is 0 (which means there is no conges-
tion). When the average blocking probability is larger than
0, the increase in penetration rate remarkably improves the
average performance measures. Note, the improvement of
performance measures refers to the decrease in duration
time, the reduction in blocking probability or the increase
in output rate, and vice versa. In Figure 3, the maximum
increase in the average output rate is 60%, and the maximum
decrease in the average duration time is 93%, while that in
Figure 4 is 225% and 94%, respectively. This result makes
sense as the AVs help to alleviate congestion.

Meanwhile, Figures 3 and 4 illustrate that the SCV of
arrival rates remarkably affect the performance of the mixed
traffic flow. When the SCV of arrival rates increases, a larger
proportion of AVs are required to achieve stable average
performance, that is, to completely eliminate congestion in
traffic flows. Under a low traffic intensity, the average perfor-
mance measures become stable at a penetration rate of 30%
when the SCV of arrival rate is 0.4. In contrast, a penetration
rate of 60% is required when the SCV of arrival rate is 1.
Under a high traffic intensity, the average blocking
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probability is larger than 0 until the penetration rate reaches
70% for SCV = 0:1 and 100% for SCV = 1.

From the figures, we can see that if we apply SCV = 0 (as
in Mirzaeian et al. [12]), the average performance measures
will be improved compared to SCV = 0:1. It implies that
the performance measures of the mixed traffic flows are
overestimated if we ignore the fluctuations in traffic demand.
The findings of this experiment are novel to the AV litera-
ture as the SCV of arrival rates was ignored in research to
date.

Notably, the average blocking probability for SCV = 0:1
is slightly larger than that for SCV = 1 in Figure 4. There
are two opposite effects when the SCV of arrival rates grows.
As Figure 4 analyzes a high traffic intensity, congestion
already exists in traffic flows for SCV = 0:1. Increasing the
SCV of arrival rates results in more vehicle loss during the
peak periods (increase the average blocking probability)
and lower arrival rate during the off-peak periods (decrease
the average blocking probability). The effective arrival rate
gets smaller. Therefore, the average output rate gets smaller
from SCV = 0.1 to SCV = 1.

4.3. Varying Performance Measures under the I Policy. In this
section, we focus on the varying performance measures
under the I policy. The high traffic intensity with an SCV
= 0:7 is applied. We tested two length values for the seg-
ments 1mile and 4miles. The conditional output rate and
the conditional blocking probability are presented in
Figures 5 and 6.

Figures 5 and 6 show that the conditional performance
measures improve distinctly with the penetration rate
increase at the environment state with a conditional block-
ing probability larger than 0. However, Figures 5 and 6 also
show different phenomena. In Figure 5, when the length of
the segment is 1mile, a penetration rate of 1 eliminates the
congestion completely. The conditional blocking probability
for all environment states drops to 0 for p = 1 in Figure 5. It

means the congestion due to the peak hours is completely
dissipated. By contrast, the conditional blocking probability
is about 53% during the morning and evening peak hours
for p = 1 in Figure 6. It is because the number of vehicles
stuck in congestion are larger in a longer segment. In this
case, the congestion due to the morning peak hours is not
effectively dissipated and lasts to the end of the evening peak
hours. It is not difficult to understand as the congestion of
several vehicles dissipates much easier than severe traffic
jams that last for miles. In Figure 6, it takes more time for
vehicles to leave the highway. Therefore, it is observed that
the conditional throughput rate at 20:00 for p = 1 is 1828
in Figure 5, whereas it is 3167 in Figure 6.

In addition, from the two figures, one can easily con-
clude that improving the penetration rate during peak hours
tremendously improves the performance of highways. This
finding provides evidence for highway management, such
as dynamic toll pricing.

4.4. Comparison of the D Policy and the I Policy. In this sec-
tion, we present the comparison between the D policy and
the I policy. We conducted experiments on the low and high
(three times of the low traffic intensity) traffic intensities
with different SCVs of arrival rates (SCV = 0:4 and SCV =
1). In this experiment, the high traffic intensity is set to be
three times of the low traffic intensity. The result is displayed
in Figure 7–10.

Figure 7–10 indicate that the arrival rates and the SCV of
arrival rates play an important role in determining which
policy should be adopted. Regarding travel time, the D pol-
icy always outperforms the I policy. As for the output rate,
the situation is much more different. In Figure 7–9, the I pol-
icy has a larger output rate when p is smaller than certain
values. Specifically, under a low traffic intensity, the I policy
is superior when p is smaller than 36% when SCV = 0:4 and
when p is smaller than 39% when SCV = 1. Under a high
traffic intensity, the I policy has a larger output rate when
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Figure 10: Comparison between the D policy and the I policy when SCV = 1 under a high traffic intensity.
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p is smaller than 17% when SCV = 0:4. The explanation is
the arrival rate to the designated lane in the D policy is too
small under these situations, and the capacity of the desig-
nated lane is not fully utilized. When p exceeds certain
values, the D policy yields a larger output rate. This is
because the capacity of the designated lane is fully utilized
and it yields a high output rate.

In Figure 10, when the SCV = 1 under a high traffic inten-
sity, the output rate of the I policy is larger when p < 12% and
p > 73%. When 12% < p < 73%, the D policy has a larger out-
put rate. In this case, the arrival rate of HVs to the designated
lane is moderate and the designated lane has a high through-
put rate. The explanation is as follows: when p > 73%, the
arrival rate to the designated lane in the D policy is too large.
As serious congestion occurs, the designated lane’s output rate
decreases dramatically due to the state-dependent service rate.
Therefore, the overall output rate of the D policy is surpassed
by that of the I policy as p grows.

Note that the output rate of the D policy grows
(Figures 7, 9 and 10) or tends to be stable (Figure 8) when
the penetration rate is close to 1. This is different from that
in Mirzaeian et al. [12], where there is a drop in the output
rate for the D policy. This is because the AVs rejected by
the designated lane enter the rest lanes for HVs as long as
they are not fully occupied in this paper.

As the influence of the SCV of arrival rates is taken into
account, and the rejected AVs are allowed to use lanes for
HVs, the policy recommendations in this paper are different
from that in Mirzaeian et al. [12]. Generally, if the travel
time is more valuable, the I policy should be adopted. How-
ever, if the output rate is more important, the decision
should be made based on the traffic intensity and the SCV
of arrival rates.

5. Conclusion

This paper explores the influence of AVs on highway perfor-
mance in a more realistic situation. The mixed traffic flow of
AVs and HVs is modelled as an M/G(n)/c/c state-dependent
queue operating in a random environment. The randomness
and fluctuations in traffic demand is addressed by a Possion
process with the arrival rate modulated by a continuous time
Markov chain. The state-dependent velocity describes the
effect of congestion and the MAP is applied to describe the
platoons. The proposed model is more coincident with the
reality compared with existing queuing models for mixed
traffic flows on highways.

We investigate the conditional and average stationary
performance measures under the I policy and the D policy.
For the D policy, we allow the AVs rejected by the desig-
nated lane to join the rest lanes for HVs as long as they
are not fully occupied.

The numerical experiments yield conclusions that are
consistent with existing research. More importantly, this
paper reveals the following interesting findings:

(1) The fluctuation degree of arrival (SCV of arrival
rates), as well as the traffic intensity (average arrival
rate) and the penetration rate play important roles

in determining the performance of the mixed traffic
flows on highways. This finding is novel to the AV
literature as the SCV of arrival rates was ignored in
related research to date

(2) Increasing the penetration rate can remarkably
improve the performance only when there are con-
gestions (the blocking probability is larger than 0)
in traffic flows. This result provides evidence for
result [22] as congestion in traffic flows is deter-
mined not only by the average arrival rate but also
by the SCV of arrival rates

(3) A larger penetration rate is required to completely
eliminate congestion on a longer segment

(4) The I policy should always be adopted if the travel
time is more valuable. If the output rate is more
important, the choice between the I policy and the
D policy depends on both the traffic intensity and
the SCV of arrival rates

(5) Improving the penetration rate during peak hours
can tremendously improve the performance of
highways

These findings provide evidence for highway manage-
ment and control, such as time-sharing priority or time-
sharing pricing. Only AVs and HVs are considered in this
paper. In the future, there will be many types of mixed traffic
flow, such as the mixed traffic flow of connected automated
vehicles (CAVs), connected vehicles (CVs), AVs and HVs.
The method proposed in this paper can be applied to model
mixed traffic flows of three, four, or even more different
vehicle types. For the integrated traffic flows in the I policy,
it can be modelled as a queue. If a lane is designated to a spe-
cial type of vehicle when applying the D policy, the traffic
flow on the designated lane should be modelled as a separate
queue. Calibrate work should be conducted for each type of
traffic flow.

In this paper, we only analyze arrival rate that changes
with the random environment. In reality, vehicles’ velocity
and the segment’s capacity may also vary due to adverse
weather conditions or lane closure. In addition, the proposed
queuing model is loss-based as the newly arrived vehicles
immediately leave the queue (take another route) if the seg-
ment’s capacity is reached. However, in most actual situa-
tions, these vehicles have to wait and try to enter the queue
repeatedly as there is no other option. This will considerably
influence the performance of the traffic flows. We leave these
topics to our future research.
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