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Traffic prediction is the cornerstone of intelligent transportation system. In recent years, graph neural network has become the
mainstream traffic prediction method due to its excellent processing ability of unstructured data. However, the network re-
lationship in the real world is more complex. Multiple nodes and various associations such as different types of stations and lines
in rail transit always exist at the same time. In an end-to-end model, the training accuracy will suffer if the same weights are
assigned to multiple views. *us, this paper proposes a framework with multi-view and multi-layer attention, which aims to solve
the problem of node prediction involving multiple relationships. Specifically, the proposed model maps multiple relationships
into multiple views. A graph convolutional neural network of multiple views with multi-layer attention learns the optimal
regression of nodes. Furthermore, the model uses an autoencoder module to alleviate the over-smoothing problem during the
training phase. With the historical dataset of Beijing rail transit, the experiment proves that the prediction accuracy of the model is
generally better than the baseline traffic prediction algorithms.

1. Introduction

As the core function of the intelligent transportation system,
traffic forecasting has practical significance for the actual
needs of intelligent command and dispatch, traffic planning
and layout, and public travel convenience. *e prediction of
passenger flow in and out of rail transit stations is one of the
research hotspots in the field of smart transportation. An
accurate passenger flow prediction method will be beneficial
to the transportation system for reasonable route scheduling,
road network design, crowd evacuation adjustment, and
other specific applications. Most of the previous studies have
focused on methods based on mathematical modeling as
well as machine learning. However, in terms of rail transit,
due to the unique topological structure of rail transit and the
travel patterns of passengers, it is difficult to obtain efficient
and accurate prediction results with the simple application
of traditional methods, and related research is relatively
limited.

In recent years, graph convolutional neural networks
have achieved excellent performance in the field of traffic

prediction by virtue of their excellent processing capabilities
for non-Euclidean data. In fact, networks are ubiquitous in
the real world, such as transportation networks, social
networks, and recommendation networks. By modeling the
network as a graph, subsequent prediction tasks can be
performed. *e graph-based non-Euclidean topology not
only describes the connection relationship between stations,
but also constrains the flow path of data. *erefore, the
nongraph method can only make predictions for each sta-
tion and average the prediction results, and cannot make full
use of the topology of rail transit.

However, node relationships in the real world are more
complex and contain many types of interrelated relation-
ships. A view could represent a certain relationship. How-
ever, the node relationship information will be lost to an
extent if only a single view is used for representation [1].
Multiple views can more accurately model different types of
relationships, thereby ensuring that the model retains more
comprehensive node information, which in turn enables
more accurate node-level predictions. In rail transit,
structurally, different types of lines and stations can be
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assigned to different view features. On the other hand, from
the perspective of traffic flow characteristics, the pattern of
passenger travel in different time spans can be viewed as
different spatial-temporal features [2]. However, when the
model contains multiple node relationships at the same time,
how to ensure that the model integrates different node
relationships with optimal weights to achieve more accurate
prediction becomes a key issue.

Since the same node has a different importance in dif-
ferent views, the relationships between nodes in different
views should be given different weights. Conversely, the
same weights will negatively affect the final prediction and
weaken the meaning of the information provided by mul-
tiple views. *erefore, we design a multi-layer attention
mechanism to achieve weight optimization for different
views. In addition, during the training of the graph neural
network, the problem of over-smoothing significantly affects
the training effect as the number of network layers deepens.
*at is, the hidden layer representation of each node con-
verges to the same value during the training process of the
graph neural network, which eventually leads to poor
training results.

In response to the above problems, we propose a traffic
prediction model based on multi-view graph attention
network (MV-GAT), and its main contributions can be
summarized as follows:

(1) An end-to-end rail passenger flow prediction model
is proposed. *e proposed model achieves fine-
grained multi-view modeling for rail transit char-
acteristics at the input and node-level prediction at
the output.

(2) *rough the multi-layer attention module, the
proposed model can assign different weights to
different nodes and relationships within multiple
views, thereby learning the optimal regression of
nodes.

(3) In addition, the self-encoder module transfers the
latent information captured by each layer of the self-
encoder to the corresponding graph convolution
layer, ensuring the validity of the structural infor-
mation of each layer in the network, and further
improving the effect of node prediction.

*e model is evaluated through experiments on the
Beijing rail transit historical dataset, and the superiority of
the model is verified by comparison with existing models.
Furthermore, multi-view and multi-layer attention have
good interpretability, as shown in ablation experiments.

2. Related Work

*e research content of this paper mainly involves graph
convolutional neural network and graph attention
mechanism.

2.1. Graph Convolutional Networks. Graph convolutional
networks (GCNs) are currently used in many domains such
as traffic prediction [3], recommender systems [4, 5], and

traffic situation analysis [6]. On graphs, its tasks include
graph classification [7], node classification [8], link pre-
diction [9, 10], and graph pooling [11]. GCNs have different
kernels that learn node embeddings to be applied to
downstream tasks. For example, DeepWalk [12] and
node2vec [13] are both random walk-based methods. *e
model SDNE [14] uses autoencoders to maintain the
proximity of first- and second-order networks, using highly
nonlinear functions to obtain embeddings. Existing traffic
flow forecasting techniques include traditional mathematical
modeling methods, such as ARIMA [15], as well as deep
learning methods. Among them, deep learning methods are
subdivided into nongraph-based methods, such as LSTM
[16], and nongraph-based methods, such as GCN models.
Traditional mathematical modeling methods as well as
nongraph-based methods do not consider the topology of
the graph and can only make individual predictions for
individual sites. Deep learning methods based on graphs can
achieve node-level prediction, but currently the mainstream
methods are mainly single view [17].

Single-view graph neural networks contain only one
relationship between nodes [18]. Although single view has
many advantages, such as easy to understand and easy to
design neural network models, it is difficult to accurately
capture the complex relationships between nodes, which
play a crucial role in the effectiveness of information transfer
and problem solving [19]. It has been pointed out that graph
data possess similarity information between different nodes,
which in turn has been proposed to preserve similarity
information in the hidden layer of graph convolutional
neural networks [20]. However, these methods rarely exploit
the multi-view prediction in end-to-end network models.

2.2. Graph Attention Mechanism. *e attention mechanism
was first proposed for natural language processing and has
now been widely used for many sequence-related tasks. *e
advantage of the attention mechanism is that it can amplify
the impact of important parts of a sequence, and the in-
troduction of the attentionmechanism also facilitates the use
of graph neural networks. Because graph convolutional
networks rely on the eigenvalues of the Laplacianmatrix, it is
difficult to extract convolutional operations from the overall
static graph structure. In an attention network, the output at
a given moment depends on the attention it allocates across
multiple inputs, i.e., the learning weight assigned to each
part of the input, with larger weights implying the output of
the pair at that particular moment.

As the attention mechanism in the seq2seq model [21],
each output is affected by the different weights assigned to
the different inputs. *e concept of hard attention [22] is
designed as a stochastic process that uses Monte Carlo
sampling methods to estimate the gradient of the module,
thus enabling back-propagation of the gradient. In addition,
attention mechanisms include global attention and local
attention [23], as well as multi-headed attention [24]. Multi-
headed attention is used to extract features more compre-
hensively by mapping node representations into multiple
node representations through linear mapping and
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combining the computational results. Inspired by the above
work, the possibility of using a multi-layer attention
mechanism to fuse multi-view information to reveal the
deep relationships between nodes becomes one of our
considerations.

3. Methodology

*e necessary preliminaries are firstly illustrated, followed
by introducing of the overall architecture of the proposed
model, and then the details of each component are
elaborated.

3.1. Preliminaries. *is section will introduce some concepts
and symbols used in this paper. For a regular graph G with
vertex set V, the edge set E and weight W can be denoted as
G � (V; E � (ei)i∈I; W). For an undirected graph, the inci-
dence matrix H ∈ RN×I can be defined as

h(v, e) �
1, if v ∈ e,

0, if v ∉ e.
 (1)

For the vertices in graph, the degree is defined as the sum
of all weights connected to the vertices; for the edges in
graph, the degree is defined as the total number of vertices
connected by the edge:

d(v) � 
e∈E

w ei( h v, ei( , i ∈ I,

δ(e) � 
v∈V

h v, ei( , i ∈ I.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

In the process of modeling information in real life,
usually only a single view is used to represent the rela-
tionships between nodes. A single view contains only one
relationship, but due to the complex relationship in real life,
it is difficult to capture the comprehensive node relationship
with only one view, which will inevitably lead to the
omission of information, which will lead to deviations in the
subsequent processing of the model. A multi-view contains
various relationships between nodes. It can capture struc-
tural information more accurately than a single view and
better discover implicit relationships between nodes.

*us, a multi-view graph can be denoted as
G � (V, E(1), E(2), . . . , E(m), X), which V � vi 

n
i�1 represents

the set of nodes in the graph. e
(m)
i,j ∈ E(m) indicates the m-th

view, node i is connected to node j, and xi ∈ X denotes node
feature vi. *e node structure in Graph G can be represented
by multiple adjacency matrices A(m) 

M

m�1; if e
(m)
i,j ∈ E(m),

then a
(m)
i,j � 1; otherwise a

(m)
i,j � 0. In our work, the con-

nection between the node and itself is not considered, i.e.,
a

(m)
i,i � 0.
*e purpose of the work is to predict traffic flow with the

proposed model. *e input of the model is the historical
transit flow data Xt � (xt

1, xt
2, . . . , xt

N) ∈ RN×C×T, where N
indicates the total number of vertices, C is the number of
channels of the feature, and T is the time dimension. At the
output end of the proposed model, node-level prediction

results are supposed to be obtained, which can be denoted as
Yt+m � (yt+m

1 , yt+m
2 , . . . , yt+m

N ) ∈ RN.

3.2. MV-GAT: �e Proposed Model. For complex relation-
ships between entities in the real world, it is difficult to fully
grasp the node structure information if only a single view is
used to represent the node relationships. In rail transit,
considering only the line connections between stations ig-
nores the relationships between stations at the feature level,
such as the OD characteristics of passenger trips between
stations with different time spans. During the morning and
evening peak hours, large passenger trips show relatively
fixed patterns, which can also be used as a view for traffic
flow prediction. At the same time, it is important to avoid the
problem of premature model fitting as the number of layers
of the network model increases. When the model uses
multiple views as input, how to fuse these views becomes a
new problem.*e fusion process must ensure that the model
can ignore noisy information and that the most relevant
information of the nodes is extracted among the multiple
views.

To address the above issues, we propose the overall
framework of the model, as shown in Figure 1.*e basic idea
is to use the multi-layer attention module to capture the
node information contained in the multi-view to ensure that
the best node representation can be learned, and to use the
autoencoder module to ensure that the model learns the
structural information between the data, which is repre-
sented as a multi-view graph.

In the multi-view module, multiple views are used to
ensure complete information extraction. Specifically, in this
forecasting task, the multiple views include a static view
based on the connectivity of tracks and routes, and an OD
view of passenger flows for three different time spans:
hourly, daily, and weekly.

*e autoencoder module learns the accurate data rep-
resentation and mitigates the over-smoothing problem. *e
two parts of the input are connected to the autoencoder
module and the GCN module, and each layer in the
autoencoder module is guaranteed to be connected to the
corresponding GCN layer, so that the structural information
between nodes learned in the autoencoder can be integrated
into the GCN module.

In the multi-layer attention module, multi-layer atten-
tion is used to fuse the multi-view information to obtain an
optimal representation of the data. *e multi-layer attention
module ensures that the model learns different weights at
different nodes and in different views.

3.3. Multi-View Graph Convolution. For the single-view
graph, the input is Gk � (Ak, X). *e multi-view graphs
generated by the relationship between the nodes are
Gm � (Am, X

(m)
att ), where m is the number of views. Each

input is fed into an exclusive convolution module. *e
output of the convolution is Zk and Zm. Take Zk; for ex-
ample, the output of the l-th layer of the graph convolution
can be expressed as
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Z(l)m � ReLU D̃
− 1/2

ÃmD̃
− 1/2

Z(l− 1)W(l)( ) , (3)

whereW(l) is the weight matrix of GCN at the l-th layer, the
preliminary Z(0)m � X(m)

att , and X
(m)
att is the node embedding

learned by single-view attention network in view m.
Z(0)m � Am. Ãm � Am + I, and D̃ is the diagonal matrix of Ã.

It is di�cult for multi-view convolution to learn the
commonality between di�erent views only by learning each
view individually, so multi-view convolution is supposed to
be added to extract common information between di�erent
views. �e proposed model uses previously constructed
input graphsGk andGm as inputs tomulti-view convolution,
the output of multi-view convolution module is Zc, and the
output of the l-th layer of the convolution can be expressed
as

Z(l)c � ReLU D̃
− 1/2

ÃD̃
− 1/2

Z(l− 1)W(l)( ) , (4)

whereW(l) is the weight matrix of the l-th layer of GCN, the
preliminary Z is Z(0) � X, Ã � A + I, and D̃ is the diagonal
matrix of Ã.

3.4. Autoencoder Module. �e proposed method introduces
an autoencoder to learn the structural information of the
data and pass the learned information to the corresponding
GCN layers, and the added autoencoder module also helps
to alleviate the over-smoothing problem of the GCN.

Assuming that the autoencoder has L layers, the ex-
pression learned in the l-th layer in the autoencoder is H(l):

H(l) � ReLU W(l)
e H

(l− 1) + b(l)e( ) . (5)

In the formula, ReLU is the activation function of the
fully connected layer, andW(l)

e and b(l)e are the weight matrix
and bias of the l-th layer in the autoencoder. In addition,
H(0) is the feature matrix X. �en, the input data of
decoding part are reconstructed through the fully connected
layer.

H(l) � ReLU W(l)
d H

(l− 1) + b(l)d( ) . (6)

Here,W(l)
d and b(l)d are the weight matrix and bias of the

l-th layer of decoder. In order to pass the node represen-
tation into the GCN module, the node representations are
learned from the autoencoder, such as H(1), H(2), . . .H(L).
After being passed into the GCNmodule, the GCN can hold
two di�erent kinds of information, the data itself and the
data structure. For example, the output of l-th layer learned
in the single view can be expressed as Z(l)k .

�e representation H(l) learned by the autoencoder can
reconstruct the data itself and contains a di�erent valuable
information. Combining the two representations leads to a
more complete representation.

Z̃
(l−1)
k �(1 − ϵ)Z(l−1)k + ϵH(l− 1) . (7)

Here, ϵ is the balance coe�cient with an initial setting of
0.5. In this way, the autoencoder and GCN can be connected
layer by layer. We use ReLU as the activation function to
solve the gradient vanishing problem.

3.5. Multi-Layer Attention. Since the model takes multiple
views as input, the proposed method designs a multi-layer
attention module to e�ectively integrate the node repre-
sentations learned in di�erent views to form an optimal
combination. First, the proposed method uses a single-view
attention layer to learn the in�uence of di�erent neighbor
nodes on the predicted node in the same view.�en, a multi-
view attention layer is used to learn the in�uence of di�erent
views on the predicted node. Finally, the two parts are
combined to obtain the optimal weighted combination of
the nodes to be predicted.

In the single-view attention layer, the in�uence of dif-
ferent neighbor nodes on the predicted node in each view
can be learned. Since each node plays a di�erent role in the
process of node embedding, the impact on the �nal node
prediction result is also di�erent. Self-attention is thereby
used to learn the weights between each node. For instance, in
the viewm, calculating the attention index of a pair of nodes
(i, j) can be formulated as

e(m)ij � att xi, xj( ) . (8)

Here, att represents the attention mechanism, and since
the multiple views are undirected graphs, the importance of
node i to node j is the same as node j to node i. �erefore,
e(m)ij is a symmetric matrix.

After calculating the e(m)ij of node j, the weight coe�cient
is normalized as

α(m)ij � softmaxj e
(m)
ij( )

�
exp LeakyReLU aTm · xi‖xj[ ]( )( )

∑k∈Nexp LeakyReLU aTm · xi‖xk[ ]( )( )
.

(9)

In the equation, ‖ represents the connection operation,
and aTm is the attention vector in the single view. �e node
embedding of node i in the view can be obtained by the
feature aggregation of neighbor nodes with feature
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Figure 1:�e end-to-end framework of proposed model. �e MV-
GAT model includes multi-view input, multi-layer attention
module, and the autoencoder module. �e node-level prediction
results are obtained as output.
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coefficients. Multi-head attention is utilized in order to make
the training process more stable. Softmax and ReLU are both
activate functions. Specifically, the single-view attention
layer repeats K times and connects the learned embedding to
a specific view. *e learned node embedding and feature
matrix are spliced to get X

(m)
att . In the following equation,

z
(m)
i is the embedding of node i learned in the view m.

z
(m)
i �

K

‖

k � 1

Sigmoid 
j∈N

α(m)
ij · xj

⎛⎝ ⎞⎠ . (10)

A single view contains only one type of relationship
between nodes, while a multi-view contains relationships
between different nodes. To learn more comprehensive node
embeddings, it is necessary to integrate multiple node
embeddings learned from different views. For different
nodes or associations, the weights assigned to different views
are different, so it is necessary to design a multi-view at-
tention layer that automatically assigns different weights to
different views to solve this problem.

*e input of multi-view attention layer is the single-view
graph convolution Zk and Z(m) and the multi-view con-
volution Zc, and the attention mechanism att(Zk, Z(m), Zc)

learns the weights corresponding to different views
(αk, α(m), αc):

αk, α(m), αc  � att Zk, Z(m), Zc  . (11)

Here, αk, α(m), αc are the attention weights of different
views, respectively. For node i, a nonlinear transformation is
applied on the node embedding, and then the shared at-
tention vector q is taken to calculate the attention value ωi

m.

ωi
m � q

T
· tanh W · z

i
m 

T
+ b  . (12)

*e W is weight matrix and b is bias. *e attention index
of node i in other embedding matrices can be obtained in the
same way. *en, the final weight can be calculated by
normalizing multiple attention values.

αi
m � softmax ωi

m 

�
exp ωi

m 

exp ωi
m  + exp ωi

m  + exp ωi
m 

.

(13)

*e multiple embeddings are then linearly combined.
*e larger the αi

m, the more important the view is.

Z � αk · Zk + α(m) · Z(m) + αc · Zc . (14)

*e above multi-view attention module solves the
problem of assigning different weights to the views, thereby
enabling adaptive inter-view importance learning.

3.6. Objective Function. In order to allow the convolution to
capture richer information, we increase the difference be-
tween Zk, Zm, Zc. Here, we take advantage of the

Hilbert–Schmidt independence criterion (HSIC) to measure
the independence between the outputs:

HSIC Zi, Zj  � (n − 1)
− 2

tr RKiRKj  . (15)

Here, KiKj is the Gram matrix, ki,ij � ki(zi
i, z

j
i ),

kj,ij � kj(zi
j, z

j
j). And R � I − 1/neeT. I is the identity ma-

trix, and e is the corresponding identity column vector. In
the same way, all other views are also calculated by HSIC,
denoted as Ls.

*e multi-view loss function is supposed to learn as
much consistency between different views as possible. After
normalizing the matrices Zci 

4
i�1 to Zcinor 

4
i�1 with L2

normalization, the similarity between nodes Si i�1 is cal-
culated, and the sum is denoted as Lm.

Si i�1 � Zcinor · Z
T
cinor

. (16)

Since in the autoencoder module, the output of the
decoder is the reconstructed original data. *e node-level
traffic flow prediction results will be output through a
complete fully connected layer, and the multi-channel is
mapped to a single channel, which can be expressed as

Lp � 
t

X
t

+ b  − X
t

�����

�����
2

. (17)

*e final loss function is L, where a, b are the parameters.

L � Lp + aLm + bLs . (18)

4. Experiments and Results

*e proposed MV-GATmodel is evaluated by comparing it
with state-of-the-art baselines. *e experimental dataset and
baselines are first introduced, followed by the parameter
setup. Finally, the experimental results and experimental
analysis are presented.

4.1. Experiment Setting. We adopt the historical data of
Beijing metro as the experimental dataset. MetroBJ [25] is a
five-month passenger flow dataset, formally collected in
2015, with a granularity of 5minutes. *e dataset covers the
entire subway network with 325 stations and 22 lines,
covering the daily traffic data in July, August, September,
November, and December. *e time horizon is five months,
covering weekdays and weekends.*is time series contained
in this dataset is long enough for us to divide multiple time
spans to build multiple feature-level views.

*e dataset contains the desensitized swipe ID, the line
station and time of entering the subway, and the traffic flow
data of the line station and time of leaving the subway. In the
actual use of this method, firstly, a node set containing 325
nodes is constructed based on the subway stations in Beijing
in this dataset, and a basic view containing 22 edges is
constructed with reference to the subway network lines. On
this basis, the DBSCAN algorithm is used to cluster the
historical passenger flow data under three different time
spans of hours, days, and weeks, and construct corre-
sponding multi-views. Compared with the traditional
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k-means algorithm, the DBSCAN algorithm does not need
to input the number of clusters k and can find clusters of any
shape, and at the same time, it can find outliers during
clustering. Finally, the traffic flow values of each node in the
next 5 minutes, 10 minutes, and 15 minutes are output to
calculate the accuracy of the proposed model.

*e comparison methods include two categories of
nongraph methods and graph-based methods. *e com-
pared methods contain autoregressive integrated moving
average (ARIMA) model [26], support vector regression
(SVR) [27], and long short-term memory (LSTM) [28].
Graph-based deep learning methods contain temporal graph
convolutional network (T-GCN) [29], spatio-temporal
graph convolutional network (STGCN) [30], and diffusion
convolutional recurrent neural network (DCRNN) [31]. *e
detailed parameter settings are listed as follows.

(1) ARIMA: ARIMA is a common time series fore-
casting methods. *e degree of differencing d, lag
order p, and the order of moving average q are
determined with the “auto arima” in the “pyramid”
library.

(2) SVR: One improvement of SVR is the tolerated
deviation ε when calculating the loss. During
training, the model with linear kernel has a penalty
term C of 0.1 and a deviation ε of 0.1.

(3) LSTM: *e compared LSTM model has hidden
layers of [31] recurrent units. During the training
phase, the batch size is 32, the activation function is
sigmoid, and the learning rate is set to 10− 2.

(4) T-GCN: *e temporal graph convolutional network
has hidden units of GRU. *e batch size is set to 64
while training, and the learning rate is set to 10− 3.

(5) STGCN: *e spatial-temporal graph convolutional
network has two convolution blocks with channel of
[64,16,64]. *e convolution kernel size is 3, and the
batch size is 64.

(6) DCRNN: *e diffusion convolutional recurrent
neural network is a data-driven traffic prediction
model with autoencoder framework. It has two RNN
layers of 64 units. *e batch size is set to 64, and the
learning rate is set to 10− 3.

To quantitatively evaluate the prediction accuracy of the
proposed method, the results of the experiments take mean
absolute error (MAE) and root mean square error (RMSE) as
performance metrics:

MAE � 
T

i�1


N

j�1

Xij − Xij





T∗N

RMSE � 
T

i�1


N

j�1

Xij − Xij 
2

(T∗N)
1/2 ,

(19)

where Xij is the ground truth, the Xij is prediction value, T is
the time length, and N is the node number. When MAE and
RMSE are used as evaluation indicators, the lower the value,
the higher the accuracy. All experiments are tested with the

platform of CPU of “Intel(R) Xeon(R) Platinum 8268 CPU
@ 2.90GHz” and GPU of “NVIDIA GTX 2080Ti.” *e
number of epochs of training phase is 50, and the batch size
is 64. *e learning rate is set to 10− 2 and decreases to 10− 4

gradually.

4.2. Experiment Results. To fully utilize the different views
over multiple time spans, we use the data of a whole month
as the experimental data. *e experiments use ten-fold
cross-validation to get stabler results. Considering the size of
dataset per month, the training set, testing set, and valid set
are split with 8 :1 :1 on the time dimension. *e experi-
mental results are shown in Table 1.

Table 1 shows the prediction accuracy when the his-
torical data of July and September are used as the experi-
mental dataset. As can be seen from the results, the accuracy
of the ARIMA method is significantly lower than that of the
machine learning and deep learning methods. SVR signif-
icantly outperforms ARIMA, and at the same time, LSTM is
better than SVR by virtue of modeling long- and short-term
sequences. T-GCN, an earlier method that combines graph
networks with time series dependency, achieves similar
accuracy to the relatively mature LSTM.

As a classical framework, STGCN has achieved more
accurate prediction results, especially in the medium-term
prediction of the next 45minutes, where obvious advantages
can be seen. With a unique architecture, DCRNN also
achieves accurate results. Among all methods, our proposed
method achieves better accuracy, especially on short-term
predictions of 15 minutes and 30 minutes. Compared with
machine learning methods and graph-based deep learning
methods, there are significant improvements. More exper-
imental results of flow prediction are shown in Table 2.

It can be seen from Table 2 that the prediction accuracy
of each method is similar to that presented in Table 1. It
shows that the rail transit shows a basically stable operation
law in eachmonth. It is worthmentioning that, similar to the
previous set of experiments, STGCN achieves a clear ad-
vantage in 45-minute prediction results. It reflects the
complexity of traffic forecasting from the side. In many
cases, it is difficult to solve short-term forecasting, medium-
term forecasting, and even long-term forecasting problems
simultaneously with one model.

To prominently compare the role of each module of the
proposed model, we design a set of ablation contrast ex-
periments, as shown in Table 3. In this set of ablation ex-
periments, we mainly compared the difference between
single view and multi-view, and the role of the autoencoder.

*e experimental data adopt the passenger flow data of
Beijing rail transit in July. We first tested the single-view
network model without the autoencoder module. *e single
view is the graph of the rail transit network. While removing
the autoencoder, other parts of the proposed model remain
unchanged. It can be seen that the prediction accuracy of this
method is unsatisfactory, and it cannot even beat the STGCN
model on this dataset. In the case of single view, whether the
multi-layer attention mechanism has the effect of negative
optimization is a new problem worth investigating.
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By adding the autoencoder module to the single-view
model, the prediction accuracy is improved, but the im-
provement is relatively limited.*e autoencoder module can
alleviate the gradient vanishing problem during training to a
certain extent, especially for graph convolutional deep
network models with many layers. Limited by the graph
scale of the dataset used in this experiment, the number of
layers in the network model is not many. *erefore, in the
deeper graph convolution prediction model, it is worth
looking forward to whether the autoencoder module can
play a larger role.

After the introduction of multi-view, the prediction
accuracy of the model is significantly improved compared to
single view, with or without an autoencoder module. Among
them, the model achieves the best prediction results when
the multi-view module and the autoencoder module coexist.

5. Conclusions

*is paper proposes a multi-view and multi-layer attention-
based GCN model for the problem of rail traffic flow pre-
diction. Considering that it is difficult to fully express the
relationship between nodes in the node classification
problem using only a single view, this model introduces
multi-view and utilizes a multi-layer attention mechanism

and an autoencoder module to achieve more accurate
temporal prediction. Experimental results on the Beijing
dataset show that our model outperforms other nongraph
and graph-based benchmark methods. In the future, we will
optimize the framework of the proposed method and try to
design models for directed graphs. We also want to explore
more comprehensively the application of graph-based deep
learning in intelligent transportation systems.
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Table 1: Accuracy results of rail passenger flow prediction experiment.

Methods
July September

MAE RMSE MAE RMSE
ARIMA 18.34/20.12/23.32 29.14/33.37/36.81 19.64/21.31/24.06 30.74/34.30/36.66
SVR 14.73/16.55/18.26 25.24/31.33/32.71 15.89/16.71/17.36 28.30/33.01/34.09
LSTM 10.76/12.27/12.86 21.22/22.33/23.74 11.95/12.56/13.77 23.95/26.43/28.34
T-GCN 10.88/12.46/12.73 20.93/22.72/24.61 11.00/12.77/13.75 23.98/25.98/28.35
STGCN 9.04/10.29/10.88 19.38/20.49/22.51 10.99/11.95/13.42 21.03/23.03/24.06
DCRNN 8.41/9.73/11.56 19.43/23.76/25.77 8.72/9.24/12.73 20.94/22.01/25.82
MV-GAT 8.35/9.57/11.60 19.41/21.84/22.38 8.67/9.13/12.45 20.85/22.13/25.67

Table 2: Accuracy results of rail passenger flow prediction experiment.

Methods
November December

MAE RMSE MAE RMSE
ARIMA 14.22/18.81/24.39 30.06/33.52/35.24 18.39/20.52/24.22 30.24/33.81/35.06
SVR 13.92/16.52/16.12 26.89/28.75/28.56 14.12/15.75/16.92 26.56/28.52/28.89
LSTM 11.49/13.79/14.05 21.36/22.33/25.50 11.05/12.33/14.49 21.50/22.79/25.36
T-GCN 10.99/12.76/13.44 21.48/23.68/25.62 10.90/13.78/13.34 21.42/23.74/25.85
STGCN 9.06/10.65/11.32 21.74/22.22/23.55 8.20/10.26/11.25 20.72/22.28/23.25
DCRNN 8.83/9.71/11.79 21.52/23.15/26.04 8.24/9.65/11.87 21.28/23.24/26.95
MV-GAT 8.80/9.62/11.20 20.83/22.18/23.39 8.15/9.57/11.43 20.64/22.13/24.72

Table 3: Ablation contrast experiment.

Methods
July

MAE RMSE
Single view w/o autoencoder 9.21/10.31/12.38 19.68/22.49/23.51
Single view w/autoencoder 8.98/10.20/12.21 19.61/22.27/23.19
Multi-view w/o autoencoder 8.44/9.61/11.69 19.50/21.91/22.49
Multi-view w/autoencoder 8.35/9.57/11.60 19.41/21.84/22.38
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