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Automated recognition of road surface objects is vital for efficient and reliable road condition assessment. Despite recent advances
in developing computer vision algorithms, it is still challenging to analyze road images due to the low contrast, background noises,
object diversity, and variety of lighting conditions. Motivated by the need for an improved pavement objects classification, we
present Dual Attention Convolutional Neural Network (DACNN) to improve the performance of multiclass classification using
intensity and range images collected with 3D laser imaging devices. DACNN fuses heterogeneous information in intensity and
range images to enhance distinguishing foreground from background, as well as to improve object classification in noisy images
under various illumination conditions. DACNN also leverages multiscale input images by capturing contextual information for
object classification with different sizes and shapes. DACNN contains an attention mechanism that (i) considers semantic
interdependencies in spatial and channel dimensions and (ii) adaptively fuses scale-specific and mode-specific features so that
each feature has its own level of contribution to the final decision. As a practical engineering project, dataset are collected from
road surfaces using 3D laser imaging. DACNN is compared with four deep classifiers that are widely used in transportation
applications. Experiments show that DACNN consistently outperforms the baselines by 22-35% on average in terms of the
F-score. A comprehensive discussion is also presented regarding computational costs and how robustly the investigated classifiers

perform on each road object.

1. Introduction

Automation in road condition assessment is a crucial yet
challenging task in smart transportation management. The
goal is to label various road objects in pavement images and
to establish appropriate maintenance and repair strategies to
ensure road serviceability and safety. Manual road assess-
ment, however, is labor intensive, time-consuming, and
inconsistent. Automated road object detection is an alter-
native way for objective and scalable assessment of road
networks. Fast and accurate automated road assessment can
be used as quantitative data for optimal maintenance and
rehabilitation practices to improve road performance and
decrease the overall life-cycle cost.

To automate the road condition assessment, data are
usually collected by surveying vehicles equipped with digital
cameras that acquire images from pavement surfaces at high

speed. There are two main high-resolution imaging tech-
niques frequently used in road survey projects: (i) two-di-
mensional (2D) imaging technology in which line-scanning
cameras are used to generate 2D intensity images; (ii) three-
dimensional (3D) imaging technology that provides addi-
tional range (depth) images in addition to the intensity
images. Recently, the 3D imaging technology has been in-
creasingly adopted by state and local transportation agencies
for data collection of road networks [1, 2]. The 3D imaging
equipment employs high-resolution laser imaging devices
associated with a high-precision inertial measurement unit
(IMU) to capture 3D pavement surface profile data at
highway speed. One of the main advantages of the 3D
technology is that it is less sensitive to light effects and less
prone to noises coming from oil or water stains, dirt or sand,
skid marks, etc. Furthermore, the combination of intensity
and range images provides additional information to model
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object boundaries and global layouts and to better recognize
pavement defects.

Despite those advantages of new 3D imaging technology,
existing kinds of literature [3-6] lack investigations to
quantify improved performance in road object detection due
to 3D technology using additional range images, compared
to traditional 2D technology relying on intensity images
only. Existing studies address the recognition of pavement
defects, mostly cracks, using intensity images by employing
deep convolutional neural networks (CNNs) [7-9]. CNNs
have been successfully employed for various visual recog-
nition tasks including image classification [10, 11], object
detection [12], and semantic segmentation [13]. Although
CNNs have demonstrated good performance on pavement
defects recognition using intensity images, the performance
tends to be degraded when detecting defects in complex
scenes. The complexity comes from intensity inhomoge-
neity, low contrast, background noises, objects diversity in
terms of shape and size, variety of lighting conditions, etc.,
when using intensity images only. For example, when there
exists low contrast between cracks (as the foreground) and
asphalt (as the background) or when dealing with thin
cracks, it is difficult to distinguish between background and
foreground based on only intensity data. In the case of
objects with similar color and texture (such as crack seals
and patches), it is easy to misclassify those objects into the
same categories. Moreover, intensity-based features
extracted from pavement 2D images are sensitive to illu-
mination differences among images. The abovementioned
limitations motivate the joint use of range and intensity
images to enhance the classification of pavement objects.
Figure 1 shows a surveying vehicle installed with a 3D laser
imaging device developed by Korea Institute of Civil En-
gineering and Building Technology (KICT) used in this
study, and a sample of intensity and range images collected
by the system.

We present the novel Dual Attention Convolutional
Neural Network (DACNN) to utilize additional range of
input images along with intensity images to improve
pavement objects classification. In this paper, DACNN
classifies pavement tiles into 8 classes, including crack, crack
seal, patch, pothole, marker, manhole, curbing, and asphalt.
DACNN leverages multiscale input tiles that capture scale-
sensitive information for multiclass classification of various
road objects with different sizes and shapes. Furthermore,
DACNN adopts two attention modules to effectively fuse
heterogeneous features in terms of (i) scales (multiscale
input tiles) and (ii) modes (range and intensity tiles). The
scale and mode attention modules focus on spatial and
channel-related informative features and suppress the
noninformative ones for performance improvement. The
dual attention mechanism is designed to identify semantic
image regions relevant to specific pavement objects. Pruning
feature maps in both spatial and channel dimensions en-
hance the quality of feature representation, contributing to
more accurate and efficient object classification.

The contribution of this study is not only limited to the
architectural design of DACNN. We also evaluate the ef-
fectiveness of the additional range of data in 3D technology
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over 2D technology through quantitative comparison using
different CNN models, including VGGl6, VGG19,
ResNet50, DenseNet121, as well as the DACNN. The goal of
the above comparisons is (i) to understand the effects of the
additional range data to improve object classification, (ii) to
understand how the scale and mode attention modules can
effectively fuse heterogeneous information to improve ob-
jects classification, and (iii) to understand the effects of CNN
model selection to the number of trainable variables,
training time, inference time, and classification accuracy.
Our main contributions in this paper are summarized as
follows:

We present the new DACNN framework to system-
atically utilize both intensity and range images collected
with 3D imaging devices for multiclass classification of
pavement images. Considering the variety of pavement
objects and surveying field conditions, DACNN ex-
tracts scale-specific and mode-specific features from
images robustly. The dual attention mechanism used in
DACNN is designed to adaptively fuse multiscale
multimodal features, helping the network to capture
discriminative object-specific features related to their
spatial and channel information.

The classification performance comparison is con-
ducted for 8 different pavement objects using CNN
models. The results show that our DACNN outper-
forms other models for all road object classes. We also
present quantitative comparisons to understand how
the additional range of images in 3D technology can
improve object classification performance for com-
pared CNN models.

2. Related Works

2.1. Deep Learning in Pavement Assessment. Conventional
image processing and more recent deep learning methods
are two main approaches for automated pavement image
analysis. The image processing methods can be considered
as feature engineering techniques in which images are
represented with human-specified feature vectors. They
can be sorted into intensity-thresholding [14], edge de-
tection [15], wavelet transforms [16, 17], and texture-
analysis [18, 19]. A major problem with the conventional
methods is that the prediction performance mainly relies
on the validity of human-specified features. Extracting
those features can be subjective, domain-specific, and
inefficient, which makes the detection process ungener-
alizable and tedious. Especially in pavement applications,
hand-crafted features are not robust enough to detect
distresses in the complex background with high varia-
tions. For instance, thresholding approaches for crack
detection only achieve acceptable results under certain
scenarios. If there exists a complex background or the
illumination changes, either the parameters should be
adjusted or the method is not applicable to the new scene.

Deep learning methods overcome the drawbacks of
conventional image processing methods by automatically
capturing complex structures of data with multiple
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F1GURE 1: 3D laser imaging system developed by Korea Institute of Civil Engineering and Building Technology (KICT); sample of high-

resolution intensity and range road surface images.

processing layers. CNNs are the most studied deep
learning models using vision-based input data in which
automated feature learning is done at many different
levels of abstraction to catch the topology of input images.
Partial connections, sharing weights, and pooling layers in
CNNs not only decrease the computations but also
demonstrate state-of-the-art results in computer vision
tasks [20, 21]. Detection, classification, and segmentation
of pavement distress, especially cracks, are the main three
branches of deep learning research in automated pave-
ment assessment. Alfarrarjeh et al. [22] employed YOLO
[23] as the object detection method to detect distresses,
including cracks, potholes, and rutting, in pavement
images. Maeda et al. [24] adopted SSD [25] as the training
algorithm to detect the same defects on pavement sur-
faces. Song et al. [26] utilized Faster R-CNN [27] algo-
rithm to detect pavement distresses, including cracks,
potholes, and bleeding. Li et al. [28] presented a CNN
model to classify pavement tiles into different types of
cracks including longitudinal, transverse, alligator, and
block cracks. Gopalakrishnan et al. [29] utilized a pre-
trained VGG16 [30] on ImageNet and then fine-tuned it
on a pavement dataset for a binary crack classification.
Lau et al. [31] proposed a U-Net [32] based model in
which the encoder is a pretrained ResNet34 [33] to seg-
ment pavement crack images. Inspired by SegNet [34],
Chen et al. [35] proposed a fully convolutional neural
network (FCNN) to detect pavement cracks at pixel level.

2.2. Attention in Deep Learning. The performance of deep
learning-based approaches has been constantly improving
by developing new architectural designs, and the attention
mechanism is one of them. The main idea behind an
attention mechanism is to give higher weights to relevant
features while minimizing the irrelevant ones by giving
lower weights. Focusing on the distinctive parts when
processing large amounts of information, the attention

mechanism enhances the quality of feature representa-
tion, contributing to a more accurate and efficient per-
formance of the designed network. Attention was initially
proposed by [36] for machine translation. Then, it was
employed for various tasks, such as action recognition
[37-39], speech recognition [40, 41], image captioning
[42, 43], and recommendation [44, 45]. More specifically,
the attention mechanism is investigated in computer
vision community in three aspects: (i) spatial attention in
which the network learns the locations that should be
focused on [46, 47]; (ii) channel attention in which the
network adaptively recalibrates channel-wise features by
modeling interdependencies between channels [48, 49];
and (iii) Self-attention in which long-range dependencies
are captured by the network [50, 51]. In pavement ap-
plications, attention modules have been also applied for
defect detection. Song et al. [52] presented a channel of
attention to detect and classify different types of cracks in
pavement images. Wan et al. [53] proposed an encoder-
decoder network, called CrackResAttentionNet, con-
taining spatial and channel attention modules after each
block in the encoder to segment pavement cracks. Sim-
ilarly, Qiao et al. [54] proposed CrackDFANet in which a
channel-spatial attention module is designed to increase
the generalization ability of the model in predicting cracks
under different conditions of roads. Wang et al. [55]
proposed using DenseNet121 as an encoder and a spatial
attention module to combine multiscale features. Eslami
et al. [56] designed a channel-spatial attention module to
adaptively fuse multiscale features for pavement image
classification. Zhou et al. [57] presented a VGG16-based
network to predict crack maps, and employed spatial and
channel attention modules to further refine the model. Qu
et al. [58] employed Res2Net [59] along with an attention
module to capture global context and long-range de-
pendency for a better pavement segmentation. Pan et al.
[60] proposed SCHNet with VGGI19 as the base net in
which a self-attention module is designed to global as well



as semantic interdependencies in the channel and spatial
dimensions. Finally, Li et al. [61] proposed a self-attention
module along with a scale-attention module to enhance
feature representation for pavement crack segmentation.

In this study, we propose a dual attention approach to
capture semantic interdependencies in both spatial and
channel dimensions for scale and type of input images. The
dual attention mechanism achieves a fast focus on more
important features and enhances the representativity of
more relevant features for better classification performance.
The dual attention approach enables modeling global con-
text as well as multimodal features to improve classification
performance for both small objects (e.g., cracks) and large
objects (e.g., patches), which are in trade-off using other
CNN models.

2.3. 3D Image Data in Pavement Assessment. Most of the
existing deep learning studies were based on only intensity
images using 2D imaging devices in transportation appli-
cations. With 2D intensity input images, CNNs suffer from
some important limitations. The complexity of scenes, di-
versity of objects, background noises (stains, oil spills, and
tire marks), and surrounding changes (light and shadow)
make it difficult to distinguish foreground objects (defects)
from the background (asphalt) in 2D images. With the
advances in sensor technology, 3D imaging systems are
available and increasingly employed by state and local
transportation agencies for automated road condition as-
sessment. A survey showed that 18 states in the U.S. adopted
a 3D data collection system by 2017, and 17 states intended
to utilize this technology by 2019 [1]. Different approaches
have been studied for transportation applications such as
GPR, LiDAR, Microsoft Kinect, and laser profilers [3]. In
pavement applications, laser profilers are commonly used in
surveying road roughness and megatexture (ASTM E950,
ASTM E1926, and ISO 13473-5) [62-64]. Other techniques
offer limitations such as relatively low resolution (in case of
LiDAR) or low frequency (in case of Microsoft Kinect) to
collect road surface profiles. The 3D laser imaging technique,
such as Laser Crack Measurement System (LCMS) [65], is
commercially available to collect high-resolution road sur-
face profiles. This system utilizes surveying vehicles equip-
ped with two laser imaging devices (left and right) and IMU.
Using the 3D imaging system, intensity and range images
can be acquired at speeds up to 100 km/h on on-road lanes
with 4 m width under various lighting conditions. The 3D
laser imaging technology has been used to evaluate crack
[66, 67], pothole [68], raveling [69], rutting [70], joint [71],
and texture [72]. Ghosh et al. [73] employed YOLO and
Faster R-CNN to detect cracks in range images collected by
the 3D imaging system. Yang et al. [74] utilized 3D laser
technology to measure the growth of crack lengths when
they are sealed and non-sealed to quantify the crack sealing
benefit. Li et al. [28] proposed a CNN framework to classify
range images into transverse cracks, longitudinal cracks,
block cracks, and alligator cracks. Lang et al. [67] proposed a
clustering-based algorithm to classify range images into the
same categories of cracks as Li et al. [28]. Fei et al. [75]
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presented a deep CNN, called CrackNet-V, to segment
cracks on asphalt range images. Li et al. [76] applied a filter-
based method to segment cracks using 3D pavement images.
Zhang et al. [77] proposed a recurrent neural network
(RNN), called CrackNet-R, to detect pavement cracks at
pixel-level in range images. Gui et al. [78] utilized laser-
scanning 3D to detect pavement cracks by extracting hand-
crafted features. Tsai and Chatterjee [68] proposed a
threshold-based method to detect pavement potholes in
range images collected by 3D laser technology. Zhang et al.
[79] proposed a CNN-based architecture, called CrackNet to
segment cracks in 3D pavement images. Zhang et al. [80]
improved the crack segmentation results on 3D pavement
images by proposing a deeper network, CrackNetII, in which
the need for hand-crafted features is eliminated. Li et al. [81]
presented a frequency analysis to detect pavement cracks
from background texture in range images.

While there are existing studies using 3D laser imaging
technology, they are limited to the use of either range or
intensity images. In this study, we show that extracting
features from both intensity and range (depth) images can
significantly improve the CNN performance. We also show
that by fusing intensity-specific and depth-specific features
systematically, one can robustly and accurately classify not
only cracks but also other pavement objects, including crack
seals, patches, potholes, markers, manholes, and curbing in
multiclass classification.

3. Data Preparation

3.1. Ground-Truth Labeling. The dataset used in this study
contains 296 intensity images and the same number of range
images with the size of 3700 x 10000 pixels spatial resolution
of 1 mm/pixel. The gray-scale intensity and range images are
collected by the 3D laser imaging device developed by Korea
Institute of Civil Engineering and Building Technology
(KICT) shown in Figure 1. The technical specifications of
this device are provided in Table 1.

We provide pixel-level annotations of road objects for 8
categories, including 4 distress classes (crack, crack seal,
patch, and pothole), 3 non distress classes (marker, manhole,
and curbing), and 1 pavement class (asphalt) as the back-
ground. We annotate the intensity images using an in-house
developed semiautomated software that makes the anno-
tation process fast yet accurate. The annotation procedure is
performed in two steps: (i) labeling area objects (all classes
except for cracks) and (ii) labeling linear objects (i.e., cracks).
To label area objects, the original image, shown in
Figure 2(a), is grouped into homogeneous regions, called
superpixels [82, 83]. As shown in Figure 2(b), superpixel
segmentation preserves the edges and boundaries of objects.
Therefore, superpixel-level labeling, rather than pixel-level
labeling, can be performed, which reduces the labeling work
significantly. To further facilitate the annotation process, an
unsupervised mean shift clustering is applied, which groups
the neighboring superpixels into a bigger cluster. The result
of the superpixel clustering procedure is shown in
Figure 2(c). Then, the human annotator can easily select the
clusters that belong to the same object and label them. Also,
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TaBLE 1: Technical specifications of KICT 3D laser imaging device.

Scanning frequency Transverse range

Lateral resolution (mm)

Vertical resolution (mm) Data rate

4 m

5600 profiles per second (4096 points per profile)

10.4 Gb/km

05 (720 Mb/km compressed)

(a) (b)

(c) (d)

FIGURE 2: Annotation procedures for areal objects. (a) Original image; (b) superpixel segmentation; (c) unsupervised mean shift clustering;

(d) human correction of false clustering and classification.

the annotator is able to define new segments, which are
missed by the clustering algorithm. Figure 2(d) demon-
strates the final pixel-level labeling mask. Although the
superpixel segmentation technique is beneficial for labeling
area objects in the dataset, it is not effective for linear object
labeling such as cracks. To label cracks, a morphological
technique, called MorphLink-C, is employed to extract crack
pixels in original images. MorphLink-C consists of a series of
morphological operations, which is proposed by Wu et al.
[84]. The original image in Figure 3(a) is a zoomed-in
pavement image for better visualization of the existing crack.
The cracks detected by MorphLink are shown in Figure 3(b)
with the bounding boxes. Having the detected cracks, the
human annotator can select the truly detected cracks within
the image, as shown in Figure 3(c).

Figure 4 demonstrates the contents of different objects in
the dataset. We observe that the population of road object
pixels are highly imbalanced, for example, there are more
than three million of asphalt pixels but only more than 4000
crack seal pixels in the dataset. Detecting objects with high
variations in shape and size within a highly imbalanced
dataset is a major challenge in pavement applications.

3.2. Data Preprocessing. In road surveying projects, the
depth information in range images is often used to measure
the macrostructure of pavement surface (ISO 13473-1) [64].
Although the depth resolution of the laser device on an
absolute millimeter scale is important to determine the mean
profile depth (MPD) in macrotexture surveying, a small
variation in surface profile (e.g., crack depth) and low
contrast in range images could be a disadvantage in road
objects detection. To enhance the contrast, a histogram
equalization (HE) can be applied to range images. HE en-
hances the contrast by effectively spreading out the most
frequent intensity values (stretching out the intensity range
of the image). It allows for areas with lower local contrast to
obtain a higher contrast. In this study, Contrast Limited
Adaptive Histogram Equalization (CLAHE) [85] is applied
to a range of images. CLAHE differs from ordinary HE
algorithms in two ways: (i) An adaptive HE computes several
histograms, each corresponding to a small region of the
image rather than computing the histogram for the entire
image. Therefore, it improves the local contrast and edges in
each region of the image. (ii) CLAHE sets a threshold to limit
the contrast in each small region. The contrast limiting
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FIGURE 3: Annotation procedures for linear objects. (a) Original image; (b) automatic crack detection by MorphLink technique; (c) human

selection of truly detected cracks.
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FIGURE 4: Number of pixels in our pavement classes.

procedure prevents the over-enhancement and amplifica-
tion of noise in the image. Figure 5(a) shows a range image
with cracks spreading all over the image. Also, the intensity
distribution of the image and the cumulative distribution are
presented for the range image as histogram and cdf, re-
spectively. Figure 5(b) demonstrates the range image after
using CLAHE enhancement and its corresponding histo-
gram and cdf. We can see that the visibility of cracks is
improved by redistributing the lightness values of the image
without introducing noises to the image. Comparing the
histograms before and after applying CLAHE to the image,
the intensity range of the road image is expanded within the
lower range (dark pixels 0-50) by redistribution of the
values, as shown in Figure 5(b).

After the contrast enhancement of range images, we
divide the original images into nonoverlapping 50 x 50 tiles
to conduct multiclass classification experiments on pave-
ment images. Then, each image tile is assigned to one of 8
categories of road objects. When a 50 x 50 tile has more than
one class of pixels, the tile class is determined by a majority
vote between the pixel number of nonbackground classes if
exists, otherwise, the tile is classified as the background
(asphalt). By aggregating the assigned classes for all tiles
generated from an original image, a segmentation mask with
a resolution of 50 x 50 mm? can be produced. The reason for
50 x 50 tile generation comes from two sources: (i) Due to
the large size of the original images (3700 x 10000), the

segmentation task on the whole image is memory intensive
and not practical; (ii) 50 x 50-pixel tiles, equivalent to 50 x
50 mm’, is small enough to contain only one pavement
object for the classification task. Therefore, assembling the
classification results into the whole image produces a seg-
mentation mask with a high-resolution, which is satisfactory
in pavement applications. Although having small input tiles
results in high-resolution segmentation masks, it sacrifices
the contextual information required from the deep networks
to perform well. Due to the importance of contextual in-
formation for the classification task, we generate 250 x 250,
and 500 x 500 tiles surrounding each 50 x 50 tile with the
same center. Feeding multiscale tiles into the deep networks
improves the classification performance of the smallest tile,
which will be explained in Section 4.1.

4. Method

4.1. Dual Attention Convolutional Neural Network
Architecture. The Dual Attention Convolutional Neural
Network (DACNN)), illustrated in Figure 6, is presented to
classify pavement image tiles into one of the 8 existing
classes in the dataset. The DACNN provides a systematic
way of data fusion for heterogeneous input images including
(i) intensity and range images (i.e., mode), and (i) 50 x 50,
250 x 250, and 500 x 500 (i.e., scale), which is more effective
than a simple feature concatenation. For this, the DACNN
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FIGURE 5: (a) Original range image and (b) CLAHE enhanced range image with corresponding histograms and cumulative histograms.

consists of two main streams of intensity and range modes,
which are merged later by a mid-fusion strategy (i.e., mode-
level attention module). Each mode steam consists of three
scale streams to extract multiscale features, which are
combined later using a mid-fusion strategy (i.e., scale-level
attention module). The high-level architecture of the
DACNN is shown in Figure 6.

Multiscale Input Tiles. Input tiles are extracted from the
original intensity and range images at three scales, 50 x 50,
250 x 250, and 500 x 500. All the input tiles are resized to 50
x 50 before they are fed to the DACNN.

Feature Extraction (Scale). A conventional to combine
multiscale multimodal input data is directly concatenating
them at the input level. This approach has a disadvantage in
that only similar patterns will be captured across the scales
and modes. Instead of concatenating heterogeneous input
data in an early fusion, we propose to feed input tiles to 6
separate CNNs to extract scale-specific and mode-specific
features. Each CNN consists of three convolution layers with
the filter numbers 32, 32, and 64, respectively. The filter size
is 3 x 3 pixels for all convolution layers. Each convolution
layer is then followed by a Batch Normalization layer and a
rectified linear unit activation (ReLU), which are not shown
in Figure 6 because of space limitation. It should be noted
that up to this point the extracted feature maps are processed
independently at each scale and mode level.

Mid-Fusion with Scale-Level Attention Module. The main
idea of using multiscale input tiles is to allow features
extracted from different levels of spatial context around the
smallest tile (50 x 50) to contribute to the classifying de-
cision. The level of contribution at each scale for different
objects varies for different objects. For example, scale 1 is
more informative for small objects (e.g., cracks), while scale
3 is more informative for classifying large objects (e.g.,
patches). Therefore, we use a scale-level attention module
that decides how much attention to pay to scale-sensitive
features. Unlike simple concatenation of multiscale features,

the scale-level attention module weights the features from
different input scales at each mode. The scale-level attention
module consists of three convolution layers of 1 x 1 x 64,
and one sigmoid layer to generate the weight scores for each
scale. The generated score maps reflect the importance of
scale-specific features at a specific position and scale for
classifying the object in the tile.

Feature Extraction (Mode). After the mid-fusion with the
scale-level attention module, the weighted feature maps get
concatenated in intensity and range modes, separately. Then,
they are passed through three convolution layers with the
filter number of 128 and max-pooling layers. At this stage,
the network is expected to extract more complex multiscale
features in each mode. Depth-specific patterns can com-
plement intensity patterns and help the overall model with
this useful information.

Mid-Fusion with Mode-Level Attention Module. For the
effective mid-fusion of complementary information of in-
tensity and range data, we use a mode-level attention module
that weights the mode-sensitive features extracted from
intensity and range images, determining the contribution
level of mode-sensitive features to the final classification
output. In this way, the feature maps can be fused with
different weights based on the contribution levels of road
object classes, instead of being treated uniformly.

Feature Extraction (Classification). For each mode, the
mode-level attention module outputs weight maps that are
multiplied by the feature maps. The weighted feature maps
get concatenated and passed through shared layers. Four
convolution layers with the filter size of 256, 512, 512, and
1024 with two max-pooling layers are applied to extract
higher-level multimodal features. Then the feature maps are
flattened and passed to six fully-connected layers with the
sizes 2048, 1024, 512, 256, 128, and 8.

Classifier’s Output.The last fully-connected layer gen-
erates 8 numbers showing the probability of the 50 x 50
tile belonging to the 8 existing classes in the dataset. The
higher the number is, the more probable the tile belongs
to that specific pavement class. By assembling the pre-
dicted labels for the smallest tiles into the whole image,
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in each mode. The adaptive fusion of multiscale multimodal features is performed through scale-level and mode-level attention modules.
The final class prediction for input tiles is assembled into the original image to create a mask.

the segmentation mask with the spatial resolution of 50 x
50 mm? is created.

Effects of Range and Intensity Input Image Tiles. Range and
intensity input images provide complementary information
about road objects, which can improve object classification
performance compared to intensity-only input images.
Depth is a key feature for road object classification, such as
cracks and potholes. These objects can be small or have a
similar color and texture to the clean asphalt, and it makes
them difficult to detect in gray-scale intensity images.
However, they appear more clearly in range images due to
their depth differences. Other pavement objects, such as
markers, that have a distinct color or texture or do not have a
significant depth can be easier to detect from intensity
images. Figure 7 demonstrates the advantage of using in-
tensity and range images over intensity images only con-
taining markers, patches, and cracks.

4.2. Attention Modules. We design two types of attention
modules as a mid-fusion strategy to adaptively aggregate
multiscale multimodal features extracted from intensity and
range image tiles. The mechanism of an attention module is
to attend to relevant parts of input features, which is im-
portant for having a robust classification. The scale-level and
mode-level attention modules enable the deep network to
focus on visual representations that are more informative for
the classification of the object in the input tile. Scale-level

and mode-level modules incorporate both spatial and
channel-wise attention into the network.

As illustrated in Figure 8(a), the scale-level attention
module generates the score maps (8™) with the dimension of
CxH xW for each scale, where m €{1,2,3} is the scale
number, C is the number of channels, W is the width, and H
is the height of the input features (F"). The weighted feature
maps, F”, are generated by the inner product of:

F" =F".§", (1)

or
m m m
fw,h,c = Sw,h,c'fw,h,c’ (2)

where ?nuih’c is the weighted feature at the spatial position
(w, h) for the channel number c at the scale m; and s, is
the score corresponding to the input feature f7, = at the
spatial position (w, h) for the channel number c¢ at the scale
m. The attention module assigns a score between 0 and 1 to
the feature maps of each scale in each channel and spatial
position. Therefore, each element in the feature map x,,;, . is
revised to x,,; ., in which scale, channel, and spatial in-
formation is considered. This module not only localizes the
object spatially but also selects the most discriminative
channel.

The mechanism of the mode-level attention module,
shown in Figure 8(b), is similar to the scale-level one. In
this module, the shared module among the modes generates
the score maps for each mode to focus on the most
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F1Gure 7: Illustration of pavement objects in intensity and range images: (a) markers, (b) marker, patch, and cracks, (c) patch and cracks,

and (d) marker and pothole.
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F1GURE 8: The details of (a) scale-level attention module and (b) mode-level attention module.

discriminative part of visual representations. The attention
module assigns higher weights to the channel and regions of
the mode features that are more relevant and informative for
the classification step of that particular object.

4.3. Implementation Details. We train the classifiers in a fully
supervised manner. The Adam optimizer with a learning rate
of a=0.0001, 3, =0.9, 3, =0.999, and & = 1e-8 is used, where
B, and f3, are exponential decay rates, and ¢ is a constant for
numerical stability. The Adam optimizer inherits the ad-
vantages of other optimization algorithms, including the
momentum feature of SGD and the adaptive learning feature
of AdaDelta. The Adam optimizer also provides faster
computation time and requires fewer parameters for tuning.
The networks are trained for 800 epochs with a mini-batch
size of 200. In each epoch, the network uses 60,000 random
tiles out of more than 6 million tiles in the training dataset.

The model with the best performance on loss for the vali-
dation dataset is selected as the model used in the testing
mode. The training is conducted on an NVIDIA TitanX
GPU with a memory configuration of 12 GB. The codes are
implemented in Python 3.7.3 and TensorFlow 1.14.0.

5. Experiments

5.1. Baseline Models with Single-Scale Input Images and
Results. Four different baseline classifiers, widely used in
pavement applications, are trained to classify pavement
image tiles into one of the existing 8 classes in the dataset.
The deep CNNs compared in this study can be divided into
three categories. (i) VGGNet was proposed by Simonyan
and Zisserman [30] for ImageNet challenge 2014. The main
idea behind VGGNet is to use filters with a small size (3 x 3),
decreasing the number of parameters, and stack more of
them to achieve the same receptive field as if a larger filter
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were used. VGG16 and VGG19 have a total number of 16
and 19 convolutional and fully-connected layers, respec-
tively. The deep architecture of VGGs is proved beneficial for
image classification tasks. However, the gradient vanishing
problem has appeared with the deeper architectures. (ii)
ResNet proposed by He et al. [33] for ImageNet challenge
2015, alleviates the gradient vanishing problem by intro-
ducing skip-connections so that the input in each layer is
passed to the next layer. Using identity skip-connections as
well as batch normalization allows for training deep net-
works. ResNet50 has a total number of 50 convolutional and
tully-connected layers. (iii) DenseNet proposed by Huang
et al. [86] in 2017, extends ResNet’s idea by including skip-
connections from all previous layers. The dense concate-
nation to all subsequent layers preserves the features in
preceding layers and allows for the classification of images in
a wide range of scales. DenseNetl121 has a total of 121
convolutional and is fully connected.

Figure 9 shows an overview of the deep networks used
for pavement object classification in this study. The classi-
fiers are trained with only intensity input tiles as well as
intensity and range input tiles to evaluate the effect of
exploiting depth information along with intensity infor-
mation. As shown in Figure 9(a), 50 x 50 image tiles are
generated and are concatenated as a 3-channel image to train
the deep networks with only intensity images. When training
the networks with both intensity and range images, as shown
in Figure 9(b), 50 x 50 image tiles of each mode are con-
catenated at the input level as a 2-channel image (early
fusion) and fed to the network.

Table 2 summarizes the results for all classifiers using (i)
only intensity and (ii) intensity and range input pavement
tiles. The performance of each classifier is evaluated on each
pavement object and on average in terms of precision, recall,
and F-score.

. TP
Precision = ——,
TP+ FP
TP
Recall = ———, 3
T TPIFEN 3)
2TP
F % score = ————,
2TP + FP+ FN

where TP, FP, and FN are true positives, false positives, and
false negatives, respectively. The precision determines how
many of positive predictions are really positive, while the
recall shows the ability of the network in predicting all the
relevant instances. The F-score is a harmonic mean of
precision and recall that is a useful measure to find the
balance between these two metrics. The results show that
using both range and intensity images improves the per-
formance of all classifiers in terms of overall precision, recall,
and F-score.

In more detail, we compare the baseline models’
performances for different classes when they are trained
with intensity-only images and intensity-range images. To
interpret the results, we divide the classes into two cat-
egories: (i) the pavement objects having a height differ-
ence with adjacent pixels including crack, crack seal,
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pothole, manhole, and patch; (ii) pavement objects having
no significant height difference with adjacent pixels in-
cluding marker, curbing, and asphalt. Using range-in-
tensity input images improved the performance of
VGG16, VGG19, ResNet50, and DenseNet121 on the first
category of objects, including crack, crack seal, pothole,
manhole, and patch, on average by 18.8%, 20.6%, 11.9%,
and 14.5% in terms of F-score. The average improvement
of the baseline models on crack, crack seal, patch, pothole,
and manhole are 12.6%, 22.5%, 21.6%, 22.1%, and 3.6% in
terms of F-score. The lower improvement of manhole
classification compared to the other four objects comes
from the fact that manholes have distinct shapes and
textures in intensity images. Therefore, providing range
data as complementary information to the network has a
milder effect. Incorporating range images into the net-
work barely changes the performance of baseline models
on the classification of pavement objects in the second
category. In fact, the range image of marking, curbing, and
asphalt provide no extra information to the networks for
the classification task.

Providing depth information to the DACNN improves
the classification results on the first category of objects by
3.2% in terms of F-score. In more detail, utilizing range-
intensity images increases the performance of the DACNN
on the classification of crack, crack seal, patch, pothole, and
manhole by 2.4%, 7.8%, 1.2%, 2.6%, and 2.3% in terms of
F-score, respectively. The improvement of DACNN per-
formance by adding depth information is less than such
improvement in baseline models. This is because of the high
performance of the trained DACNN with intensity-only
images which creates less capacity for improvements. As
shown in Table 2, the average F-score for DACNN with
intensity-only images is 92.9% while the number for VGG16,
VGG19, ResNet50, and DenseNet121 is 59.9%, 59.9%, 62%,
and 63.4%, respectively. The DACNN also outperforms
VGG16, VGG19, ResNet50, and DenseNet121 on average by
23.3%, 22%, 25.4%, and 22.4%, respectively, in terms of
F-score when the networks are trained with range-intensity
input data. The significant improvement of DACNN clas-
sification performance over the baseline models comes from
encoding contextual information to the network and
adaptively fusing the features through the attention mod-
ules. In section (5.2), we show that the performance of
baseline models improves by providing multiscale input tiles
to the networks. However, DACNN still outperforms those
models by having an effective fusion strategy for combining
multiscale multimodal features.

Figure 10 demonstrates sample segmentation at a spatial
resolution of 50 x 50 mm?® for different algorithms when
trained with intensity-only and intensity-range pavement
tiles. It can be seen DACNN achieves the best results by
extracting a robust representation of range and intensity
images. In more detail, we can see that cracks at the top left
corner of the image are identified better when the depth
information is encoded into all the networks. Range data
provide more distinctive features helping the networks to
distinguish between foreground and background when in-
tensity values are not distinctive.
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FIGURE 9: An overview of baseline classifiers trained with single-scale (a) intensity images, and (b) intensity and range images.
TaBLE 2: Comparison of deep CNNs for classification of pavement objects using single-scale intensity and range input tiles.
Metric Method Input image Crack Crack seal Patch Pothole Marker Manhole Curbing Asphalt Avg

VGGI6 Intensity 0.660 0.533 0.676  0.529 0.923 0.850 0.947 0.945  0.758

Intensity + Range  0.732 0.684 0.849  0.637 0.944 0.875 0.956 0.959  0.830

VGG19 Intensity 0.593 0.577 0.653  0.636 0.932 0.840 0.944 0.95 0.766

Intensity + Range  0.670 0.707 0.823  0.570 0.940 0.887 0.955 0.963  0.814

Precision ResNet50 Intensity 0.637 0.702 0.661  0.554 0.928 0.831 0.945 0949  0.776
Intensity + Range  0.679 0.777 0.793  0.593 0.931 0.879 0.954 0.959  0.821

DenseNet121 Intensity 0.647 0.529 0.688  0.543 0.928 0.850 0.946 0.949  0.760

Intensity + Range  0.737 0.875 0.789  0.608 0.935 0.895 0.952 0.961 0.844

Intensity 0.864 0.897 0.965  0.947 0.966 0.919 0.983 0.986  0.941

DACNN (0urs) 1 iensity + Range  0.887 0942 0972 0953 0971 0965 0993 0987 0959

VGGI6 Intensity 0.256 0.018 0.345  0.253 0.917 0.646 0.985 0.988  0.551

Intensity + Range  0.438 0.241 0.563  0.463 0.908 0.669 0.988 0.985  0.657

VGGI9 Intensity 0.373 0.033 0.348  0.139 0.904 0.669 0.991 0.981  0.555

Intensity + Range  0.480 0.209 0.596  0.571 0.920 0.727 0.986 0.983  0.684

Intensity 0.33 0.073 0.364  0.271 0.911 0.618 0.990 0.984  0.568

Recall ResNetS0 | tensity + Range  0.453  0.163 0533 0450 0925  0.645 0988 0984  0.643
DenseNet121 Intensity 0.324 0.100 0.363  0.319 0.912 0.655 0.990 0.984  0.581

Intensity + Range  0.431 0.218 0.648  0.528 0.926 0.676 0.992 0985 0.676

DACNN (ours) Intensity 0.780 0.837 0.942  0.909 0.957 0.937 0.990 0.991 0.918

Intensity + Range 0.805 0.947 0.958 0.956 0.966 0.937 0.990 0.993 0.944

VGG16 Intensity 0.369 0.034 0.457  0.343 0.920 0.734 0.966 0966  0.599

Intensity + Range  0.548 0.356 0.677  0.536 0.926 0.758 0.972 0.972  0.718

VGG19 Intensity 0.458 0.063 0.454  0.223 0.918 0.745 0.967 0.965  0.599

Intensity + Range  0.560 0.323 0.691  0.602 0.930 0.799 0.970 0973  0.731

F-score ResNet50 Intensity 0.434 0.133 0.469  0.364 0.919 0.709 0.967 0.966  0.620
Intensity + Range  0.543 0.269 0.638  0.512 0.928 0.744 0.971 0971  0.697

DenseNet121 Intensity 0.432 0.169 0.475  0.402 0.920 0.740 0.967 0.966  0.634

Intensity + Range  0.544 0.349 0.712  0.566 0.930 0.770 0.971 0.973  0.727

DACNN Intensity 0.820 0.866 0.953  0.928 0.961 0.928 0.986 0.988  0.929

Intensity + Range 0.844 0.944 0.965 0.954 0.969 0.951 0.992 0.990 0.951

5.2. Baseline Models with Multiscale Input Images and Results.
Figure 11 shows an overview of the deep networks trained
with multiscale input tiles to classify pavement objects. The
multiscale image tiles are generated at three scales, 50 x 50,

250 x 250, and 500 x 500, for each mode of intensity and
depth. As shown in Figure 11(a), multiscale tiles are con-
catenated as a 3-channel image to train the deep networks
with only intensity images. When training the networks with
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FIGURrE 10: Classification results of road cracks using different algorithms trained with intensity-only and intensity-range images. Seg-
mentation masks are created by aggregating classification results of 50 x 50 tiles.

both intensity and range images, as shown in Figure 11(b),
the 3-channel image of each mode are merged at the input
level (early fusion) and fed to the network.

Table 3 summarizes the performance of baseline models
on the classification of 8 pavement classes in terms of
precision, recall, and F-score. Comparing the results with the
single-scale version of the networks, incorporating the
contextual information into the networks improves the
average F-score of VGG16, VGG19, ResNet50, and Den-
seNet121 by 28.3%, 29.3%, 24.3%, and 24.4%, respectively,
when trained with intensity-only images. Furthermore,
extracting depth features along with intensity features in-
creases the average F-score of the VGGl6, VGGI19,
ResNet50, and DenseNet121 by 4.1%, 3.4%, 4%, and 5.1%,
respectively.

Although encoding the contextual information and
incorporating the depth data into the network significantly
enhances the performance of the baseline models, the
DACNN classifies the objects more robustly by having an

effective mid-fusion strategy. The DACNN outperforms
VGG16, VGG19, ResNet50, and DenseNet121 trained with
multiscale multimodal features by 2.8%, 2.5%, 4.8%, and
2.2%, respectively, on average in terms of F-score. More
specifically, the DACNN improves the crack classification
(as one of the most important distress types in pavement
condition assessment) by 8.8%, 7.2%, 8.7%, and 7% in
terms of F-score compared to VGG16, VGG19, ResNet50,
and DenseNet121, respectively. This demonstrates the ef-
fectiveness of attention modules for pavement object
classification.

6. Discussion

6.1. Qualitative and Quantitative Analysis of DACNN.
One of the most important comparison metrics to evaluate
the performance of multiclass classification models is their
capability to distinguish between classes. AUC (Area under
the Curve) of ROC (Receiver Operating Characteristics) is
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FIGURE 11: An overview of baseline classifiers trained with (a) multiscale intensity images and (b) multiscale intensity and range images.

TaBLE 3: Comparison of deep CNNss for classification of pavement objects using multiscale intensity and range input tiles.

Metric Method Input image Crack Crack seal Patch Pothole Marker Manhole Curbing Asphalt Avg
MVGGL6 Intensity 0755 0850  0.874 0.865 0949 0930 0982 0977 0.898

Intensity + Range 0.824  0.966 0929 0920 0958 0933 0990 0982 0.938

MAVGGLO Intensity 0775  0.883  0.859 0902 0959 0959 0984 0977 0912

Intensity + Range 0786  0.904 092 0914 0959 0910 098 0985 0921

Precision M.ResNets0 Intensity 0772 0894 0798 0.885 0952 0952 0976 0975 0.901
Intensity + Range 0781  0.940 0932 0898 0949 0917 0980 0984 0923

Intensity 0756 0839  0.869 0.883 0960 0934 0981 0975 0.900

M-DenseNetl2l 1 iensity + Range  0.811  0.889 0972 0920 0961 0933 0983 0984 0.932

DACNN (ours) Intensity 0.864 0897 0965 0947 0966 0919 0983 0986 0.941

Intensity + Range 0.887 0942 0972 0.953 0971 0965  0.993  0.987 0.959

MVGGLE Intensity 0640 0771 0838 0.854 0965 0910 0985 0984 0.868

Intensity + Range 0.699  0.831 0954 0919 0967 0946 0988 0989 0912

MVGGI9 Intensity 0632 0773 0883 0873 095 0906 0985 098 0.875

Intensity + Range 0758 0920 0952 0920 0961 0966 0989 0985 0931

Intensity 0.606 0617 0853 0775 0961 0897 0985 0984 0.835

Recall M-ResNetS0 1 tensity + Range 0735 0.693 0918  0.891 0970 0927 0989 0985  0.889
M.DenseNet 121 Intensity 0636 0766 0824 0810 0952 0906 0984 0985 0.858

Intensity + Range 0.741 0929 0917 0943 0962 0946 0990 0988 0927

DACNN (ours) Intensity 0780 0837 0942 0909 0957 0937 0990 0991 0918

Intensity + Range 0.805  0.947  0.958 0.956 0966 0937  0.990  0.993 0.944

MVGGL6 Intensity 0.693  0.808 0856 0.859 0958 0920 0984 0981 0.882

Intensity + Range 0756  0.893 0941 0920 0961 0940 0989 0985 0.923

MAVGGL9 Intensity 0696 0824 0871 0887 095 0931 0985 0982 0.892

Intensity + Range 0772 0912 0936 0917 0960 0937 0988 0985 0926

Eccore M.-ResNets0 Intensity 0679 0730 0825 0827 0956 0924 0980 0980 0.863
Intensity + Range 0757 0797 0925 0.895 0960 0922 0984 0985 0.903

M DenseNet L1 Intensity 0691 0801  0.846 0845 0956 0919 0982 0980 0.878

Intensity + Range 0774 0908 0944 0932 0962 0940 098 098  0.929

DACNN Intensity 0.820 0866 0953 0928 0961 0928 098 0988  0.929

Intensity + Range 0.844  0.944  0.965 0954 0969 0951  0.992  0.990 0.951

a measure of how strongly the classifier separates the
classes. Higher the AUC, the better the model is capable of
predicting true classes. To evaluate the DACNN perfor-
mance, ROC curves for all investigated methods are plot-
ted in Figure 12. Comparing the AUC values, DACNN

demonstrates a stronger ability to separate classes while
predicting the pavement objects.

Figure 13 shows segmentation samples of DACNN
generated by integrating classified pavement tiles. The
corresponding heatmaps for the pavement classes are also
demonstrated for qualitative comparisons. A hotter color
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FIGURE 12: Receiver Operating Characteristic (ROC) curves. The presented DACNN achieves the highest area under the curve (AUC).

means a greater probability that the pixels belong to the
corresponding class. The heatmaps reveal that the DACNN
predicts the pavement object robustly with a strong sepa-
ration from the rest of the objects.

Figure 14 visualizes the performance of the classifiers in
terms of TP, TN, FP, and FN. Having the networks’ pre-
dictions, we are able to analyze their performance in more
detail. Especially in pavement applications, we care about
not only increasing TPs but also decreasing FNs and FPs
simultaneously. The reason is coming from: (i) having a high
FN means that positive distresses are missed leading to an
underestimation for road condition assessment, which is
dangerous for safety considerations; (ii) having a high FP
means that pavement tiles are misclassified as distresses
leading to an overestimation, which is not cost-efficient for
road assessment. As we can see in Figure 14, DACNN not
only increases TPs but also significantly reduces FPs and FNs
compared to all other methods. Other than DACNN which
presents the best results, encoding depth information into all
other networks also increases TPs and reduces FPs and FNs.
For the pavement objects with a more distinctive repre-
sentation in range images including cracks, crack seals,
patches, potholes, and manholes, the improvements are
more significant after combining the range data with in-
tensity images. Figure 14 shows that DACNN generates the
largest number of FPs and FNs for the crack classification.
The reason mainly comes from the low contrast between
cracks and the background within pavement images. Fig-
ure 15 demonstrates examples of DACNN predictions with
FPs and FNs on crack classification.

6.2. Contrast Enhancement. As described in section 3.2, a
histogram equalization technique, CLAHE, is employed to
adjust the intensity values and improve the contrast in range
images. CLAHE is a modified version of adaptive histogram
equalization that limits the contrast to avoid over-
amplification and noises in the images. Cliplimit value is the
threshold defined to apply a limit over the image contrast. In
this study, we conducted a grid search to optimize this
hyperparameter for DACNN algorithm. Table 4 summarizes
the DACNN performance while using different cliplimit
values. Considering the F-score values, cliplimit=4 is used
as the threshold value for CLAHE.

6.3. Computational Cost. We compare the computational
cost of investigated algorithms in this study in two cases: (i)
The networks are trained with only intensity input tiles; (ii)
The networks are trained with both intensity and range input
images. This way, we can examine how encoding depth
information to the networks affects the computational costs.
To highlight the trade-off between performance and speed,
our proposed method, DACNN is also compared to the
baseline approaches. Table 5 summarizes the computational
costs for different classification approaches used in this
study, in terms of the number of trainable variables, training
time per epoch, and inference time for 100 batches. While
the first column presents the costs for intensity-only trained
networks, including VGG16, VGG19, ResNet50, and Den-
seNet121, the second column presents the costs for the same
networks trained with both intensity and range images.
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FIGURrE 13: Classification results of the DACNN. Hotter colors mean a greater probability that the pixels belong to the specified class.

Comparing the first two columns reveals that the extra
computational costs brought by encoding depth information
to the baseline models were almost negligible. However, the
average F-score increased by 16.5% for objects with dis-
criminative features in the range of images (crack, crack seal,
pothole, manhole, and patch). The third column shows the

computational costs for DACNN when the depth branch is
removed, and the last column shows the cost for DACNN
trained with both intensity and range images. It can be
concluded that by providing a limited extra source of
computations, we can improve the classification results.
Training with intensity-only, DACNN enhances the



16 Journal of Advanced Transportation

Crack Crack Seal Patch Pothole Manhole Marker Curbing Asphalt Average
ResNet50-1 = VGG19-1 m VGG16-1+D
= ResNet50-1+D m VGGI19-1+D = DACNN-I
DenseNet121-1 = VGGle6-1 = DACNN

= DenseNetl121-1+D
()

Crack Crack Seal Patch Pothole Manhole Marker Curbing Asphalt

Average
ResNet50-1 m VGGIl6-1 m VGGI19-1+D
= ResNet50-1+D ® VGGI16-1+D = DACNN-I
DenseNet121-1 m VGGI19-1 = DACNN

= DenseNet121-1+D

(®)

“II'..-....... S o

Crack Crack Seal Patch Pothole Manhole Marker Curbing Asphalt Average
ResNet50-1 = VGGl6-1 = VGGI19-I+D
= ResNet50-1+D = VGGI16-I+D = DACNN-I
DenseNet121-1 = VGGI19-1 = DACNN

= DenseNet121-1+D
()

FIGURE 14: Normalized (a) TP, (b) FP, and (c) FN of each class using different algorithms.
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Figure 15: Examples of DACNN predictions with FPs and FNs on crack classification.
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TaBLE 4: Effect of different threshold values for histogram equalization on DACNN results.

Metric Cliplimit=2 Cliplimit=3 Cliplimit=4 Cliplimit=5
Precision 0.924 0.973 0.959 0.967
Recall 0.913 0.878 0.944 0.906
F-score 0.918 0.923 0.951 0.936

TaBLE 5: Comparison of computational costs for different classification approaches.

Computational costs Baselines (intensity-only) Baselines (intensity-range) DACNN (intensity-only) DACNN (intensity-range)

Number of parameters 51M 51M 61 M 63M
Training time/epoch 67.1s 82.6 175.6s 247.5s
Inference time/100 batches 42s 43s 8.7s 10.2s

classification results by capturing contextual information by
31.6% in F-score compared to the baseline methods (first vs.
third column). Training with both intensity and range,
DACNN improves the classification results by an adaptive
fusion strategy by 23.3% in F-score compared to the baseline
methods (second vs. fourth column). It should be noted that
DACNN is not developed with the goal of having a real-time
classification. In most practices, automated assessments of
road conditions are performed offline where accuracy and
robustness are the most important factors.

7. Conclusions

A deep learning-based model termed DACNN is presented
to improve the performance of multiclass classification for
road objects. Both intensity and range images are fed to the
DACNN to enrich the image representation learned by the
network. Discriminant feature representations obtained by
encoding range images help the network to capture complex
topology and to handle noises and illumination variances.
Furthermore, feeding multiscale input images into the
DACNN enables the network to catch both local and global
fields of view, which is beneficial for classifying pavement
objects with various sizes and shapes. We designed dual
attention modules as an effective way to fuse scale-specific
and mode-specific features to model the semantic interde-
pendencies in spatial and channel dimensions. The position
attention selectively aggregates the feature at each position
by a weighted sum of the features at all positions, and
channel attention selectively emphasizes interdependent
channel maps by integrating associated features among all
channel maps. This way, the network learns better the rel-
evant content for each specific object at each scale and mode
contributing to more precise classification results.

The effectiveness and feasibility of the DACNN were
compared with four baseline CNN models. The comparison
results showed that the DACNN outperforms all com-
pared CNNs. The results also showed that encoding depth
information into the networks improves the classification
results of VGG16, VGG19, ResNet50, DenseNetl121, and
the DACNN by 11.9%, 13.2%, 7.7%, 9.3%, and 2.2% in
terms of averaged F-score, respectively, compared to

when these models are trained with intensity-only images.
The classification improvements are even more significant
for pavement objects that are distinctive in range images
by having height differences with neighboring pixels. For
example, incorporating depth data with intensity infor-
mation improves the crack classification by 17.9%, 10.2%,
10.9%, 11.2%, and 2.4% in terms of averaged F-score in
VGG16, VGG19, ResNet50, DenseNetl2l, and the
DACNN, respectively. In addition to encoding depth data,
DACNN yields more improvements by capturing global
context through multiscale input tiles, as well as focusing
on the most important feature representations through
attention modules. The DACNN outperforms VGGI16,
VGG19, ResNet50, and DenseNetl2l by 23.3%, 22%,
25.4%, and 22.4%, respectively, in terms of averaged
F-score, while they are all trained with range-intensity
tiles.

Although the developed DACNN achieves great per-
formance in pavement object classification, some limitations
still exist in our model. Therefore, extra effort is required to
make our model more practical and effective. Firstly, our
model classifies 50 x 50 pavement tiles into different cate-
gories. Although 50 x 50 mm? spatial resolution is acceptable
in most road surveys, a pixel-level segmentation is required
for some pavement applications such as crack width mea-
surements. Secondly, quantifying the severity of pavement
distresses is of necessity for road condition assessment, but it
cannot be obtained directly from our model. Lastly, self-
attention mechanisms capturing long-range dependencies in
the network can be explored for further improvements.
Furthermore, one can conduct hyperparameter studies for
the training of the network and provide quantitative
comparisons.
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