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In recent years, China’s express delivery market has developed rapidly in the context of a booming economy. However, logistics
costs are still high, which will affect the decision-making and policy making of relevant departments. (erefore, it is essential to
optimize the last-mile assignment problem (LMAP) to meet the consumer’s demand for delivery time and reduce economic
expenditure. (e LMAP of express delivery requires multiple packages to be delivered to different destinations. Finding the path
with the minimum delivery cost and time is an NP-hard problem, and it is impossible to obtain the optimal solution by
enumerating all possible answers. (is study proposes a new express delivery path planning method based on a clone adaptive ant
colony optimization (CAACO) to find suboptimal solutions. Moreover, a new distribution cost fitness function constructed by
weighing the economic expenditure and time of express delivery is designed. Specifically, a new adaptive operator and a novel
clone operator are also designed to accelerate the speed of convergence. Finally, by comparing the performance of CAACO with
ant colony optimization (ACO), simulated annealing (SA), and genetic algorithm (GA), the effectiveness of CAACO in solving the
express LAMP is verified. In the simulation results, it is obvious that the economic expenditure and time of express delivery based
on the CAACO are lower than ACO, SA, and GA, and the convergence speed is also faster than the SA and GA. It can be seen that
CAACO has valuable benefits in solving LMAP.

1. Introduction

China’s express delivery industry started in 1979. After more
than 40 years of development, it has formed a strong market
scale. At this stage, China has developed as the world’s
largest express delivery country, and the express delivery
industry has been fully integrated into the lives of the people
[1]. It is also a necessary support for increasing the added
value of the tertiary industry, stabilizing the economy, and
promoting transformation.

(e express industry has broad prospects and huge
market potential. Among them, the path selection of last-
mile assignment problem (LMAP) is very important, and it
is the only link that directly contacts consumers face-to-face,
which is of great significance. (e delivery staff needs to
deliver the shipment to the designated location of consumers
in a complete and timely manner [2, 3]. Due to the relatively

scattered delivery locations, it is extremely urgent to opti-
mize the delivery path in order to deliver the shipment to the
designated location of the consumer as soon as possible and
reduce the cost of delivery.

(e ultimate goal of this study is to ascertain the optimal
path to express LAMP, neither the fastest path nor the
shortest path [4, 5]. (is path should meet the consumer’s
demand for delivery time and reduce the delivery economic
expenditure as much as possible. (e variable cost of last
mile is mainly composed of the time spent and the total
distance of delivery [6, 7]. Due to differences in the number
of traffic lights on each road, the average waiting time for red
lights, and road congestion index, in order to ensure that the
express delivery arrives at the designated delivery location of
consumers on time, sometimes it is necessary to choose a
road with a longer distance but fewer traffic lights or a lower
road congestion index.
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In recent years, the use of metaheuristics to find optimal
solutions has proven to be very effective [8–13]. For example, the
monarch butterfly optimization (MBO) proposed byWang et al.
(2015) is to solve the optimization problems such as display
combination and processing function by simulating the mi-
gration behavior of monarch butterfly in nature [14]. A slime
mold algorithm (SMA), which mainly simulates the foraging
and diffusion behavior of slime molds, was proposed in 2020. It
can simulate the process of negative and positive feedbacks
generated by slime mold propagation wave based on biological
oscillator by using adaptive weight and obtain the food optimal
connection network with good exploration ability and devel-
opment tendency, which has a good application prospect [15]. A
moth search algorithm (MSA) is an emerging meta-heuristic
intelligent optimization algorithm proposed in 2016. It simulates
the behavior of moths flying towards the moon at night and has
the advantages of simple structure, few parameters, high pre-
cision, and strong robustness [16]. In addition, heuristic algo-
rithms such as weighted mean of vectors (INFO) [17], colony
predation algorithm (CPA) [18], Runge–Kutta method (RUN)
[19], hunger games search (HGS) [20], and Harris hawks op-
timization (HHO) [21] have been proposed by scholars [22, 23].

A new express delivery path planning method based on
the clone adaptive ant colony optimization (CAACO) is
proposed in this study, which aims at minimizing economic
expenditure and time. To sum up, the main innovations and
contributions of this study are as follows:

(1) A new delivery cost fitness function is proposed to
evaluate the effectiveness of CAACO.

(2) Accuracy and execution efficiency of the algorithm
are improved by designing a new clone operator.

(3) An adaptive strategy is introduced into the ant
colony optimization (ACO) to accelerate the algo-
rithm convergence speed.

(4) CAACO proposed in this study can find the sub-
optimal distribution path with a low economic cost,
short delivery time, and less fuel consumption.

In the simulation experiment, the ability of CAACO to
find the optimal solution is compared with that of genetic
algorithm (GA) and simulated annealing (SA). Simulation
results show that the CAACO has better performance than
algorithms based on the SA and GA in allocating path
planning, and the global search capability of CAACO is
effectively improved by the adaptive and clone strategies
proposed in this study.

(e continuation of this study is as follows: related work is
described in the second part of this study.(e distribution path
planning model is explained in the third part. Optimizing
express routing using the CAACOmethod is in the fourth part.
Simulation results and comparisons are analyzed in the fifth
part. (e conclusion is given in the sixth part.

2. Related Work

In LMAP, the cost and efficiency of express delivery are
directly affected by the choice of delivery path. A suitable
and efficient path planning algorithm that can reduce

economic expenditure is of great significance to improve the
efficiency of express delivery. (erefore, an effective dis-
tribution plan can reduce the economic expenditure of
distribution as much as possible under the limited distri-
bution resources and greatly increase the overall distribution
efficiency [24, 25].

Reference [26] proposed a strategy for dispatching a fleet
of drones and a truck to deliver packages. (e strategy
involves trucks for loading packages and transporting them
to the vicinity of the distribution point, and drones for door-
to-door delivery. For a transportation network that includes
locations where trucks can park and where drones can fly
and deliver, the study provides a mixed linear integer
programming formula to achieve the shortest overall de-
livery time. In order to expand the scope of distribution, the
authors proposed a GRASP meta-heuristic method. How-
ever, the strategy takes a long time to run, and it only
considers the time cost of delivery without considering the
economic cost.

In reference [27], a SA method was proposed for vehicle
routing problems (VRPs) in unmanned aerial vehicle (UAV)
delivery scenarios. In order to strike a balance between the
cost and delivery time of UAV delivery, the authors propose
two multitrip VRPs to minimize the cost and the total
delivery time, respectively. (ere is also a function that takes
into account the energy consumption model and the reuse of
unmanned aerial vehicles (UAVs). Although the simulation
results show that SA can stably find the suboptimal solution
in actual scenarios, the program execution speed is slow and
execution time is long.

In view of the problem that traditional ACO tends to fall
into local optimization when solving the path planning of
logistics robots, reference [28] proposed a path planning
method based on the ACO.(e dynamic adjustment of state
transition probabilities is achieved by introducing heuristic
operators into the calculation of path transition probabili-
ties. In this way, the ACO not only avoids stagnation but also
improves the pheromone update strategy. Although the
improved ACO can significantly reduce the number of it-
erations and shorten the path length, unfortunately, the time
complexity of ACO is still very high.

A path planning method based on Dijkstra (DB) to
minimize the delivery distance of UAV is mentioned in
reference [29], which makes use of public transport network.
By letting drones that deliver packages take on public
transportation and drive on top of it, the delivery range of
packages has been significantly increased. Since the multi-
mode network composed of the itinerary of public trans-
portation vehicles and the flight of drones is very complex,
the authors use a set of simple programs to turn it into a
simple network. In practice, the DB method is extended to
cases with uncertainty because public transport vehicles
cannot travel exactly at the specified time. It is a pity that the
complexity of the DBmethod is very high, and the execution
efficiency is very low.

Reference [30] carried out research on the emergency
transportation problem after natural disasters and con-
structed the objective function and complex constraints of
the optimal plan according to the two aspects of fairness and
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effectiveness. In order to simplify the solution process, the
hybrid ant colony optimization algorithm (denoted as
ACOMR) was proposed. By studying emergency traffic
problems in real natural disaster scenarios, an integer linear
programming model (cum-MDVRP) is established to
comprehensively consider cumulative vehicles and multi-
station vehicle routing problems. (e performance of the
cum-MDVRP model is good, and the effectiveness and
stability of the ACOMR algorithm are superior. In fact, the
possibility of the algorithm falling into premature conver-
gence is still relatively high.

(e last mile of logistics is the only significant part of
online commodity transactions where direct face-to-face
contact with consumers is involved.(erefore, it is necessary
to reasonably plan the distribution path so that the dis-
tributors can deliver the products in a timelymanner. On the
premise of having the service attitude and ability that satisfy
most consumers, the cost of logistics enterprises should also
be saved [1, 31]. (e proposed method needs to consider
time and economic factors to help the delivery staff to deliver
orders efficiently.

3. System Model

LMAP is an NP-hard problem, which belongs to integer
linear programming and needs a heuristic algorithm to solve
it.

(is section introduces an integer linear optimization
model for path planning to minimize the economic ex-
penditure and time of express delivery. (e mathematical
model of LMAP for express delivery can be expressed as a set
of paths between n sites and one station, where the node set
includes n sites numbered 1, 2, . . . , n{ } and one express
station numbered 0.

(e delivery path starts from the station 0, and after the n

sites are distributed once each, it returns to the station 0.
(erefore, the path of delivering n sites can be expressed as
U � (v1, . . . , vi, . . . , vn)(i ∈ [1, n], vi ∈ [1, n]), such that U

contains all indexes of delivery sites.
Two sites can form a link. For example, the link from site

x to site y can be expressed as e � x⟶ y (x≠y).(e cost
of link e is mainly limited by the three parameters of link
length, red light waiting time, and delivery speed. Among
them, the link length can be expressed as Le, the red light
waiting time can be expressed as Re, and the delivery speed
can be expressed as Ve.

3.1. Path PlanningModel. On the link e � x⟶ y (x≠y),
the distribution cost of express delivery DC(e) consists of
economic and time, where economic expenditure is rep-
resented by ECe and time is represented by TCe. So, the
distribution cost of passing link e can be represented as
follows:

DC(e) � ECe · ξec + TCe · ηtc, (1)

where ξec is the weighting coefficient of fuel consumption
cost and ηtc is weighting coefficient of time. (e distribution
cost takes into account not only the economic cost but also

time. In this way, the optimal path based on low distribution
cost has low economic expenditure and short time.

Suppose the length of link e is Le, and the average waiting
time of the red light is Re, the economic expenditure through
link e can be represented as follows:

ECe Le, Re(  � Le · o + Re · q(  · p, (2)

where o is the fuel consumption rate of express delivery
vehicles, q is the fuel consumption rate of the car at idling
speed, and p is the fuel price.

Assume that the average travel speed of the delivery
personnel through link e is Ve, the time of passing through
link e can be represented as follows:

TCe Le, Ve, Re(  �
Le

Ve

+ Re . (3)

For example, when the length of link e is 5 km, the
express delivery vehicle consumes 8 L fuel per 100 km, and
the fuel price is 7.13 yuan per liter, the average waiting time
of the red light is 0.1min, the average driving speed of the
delivery person is 1 km/min, and the automobile fuel
consumption rate at idling speed is 0.04 L/min. According to
equation (2), we can get ECe(Le, Re) � (5km · 0.08L/km +

0.1min · 0.04L/min)· 7.13yuan/L � 2.852yuan. According to
equation (3), we can get TCe(Le, Ve, Re) � (5km/1km/
min + 0.1min) � 5.1min.

3.2. Decision Variables. According to the path planning
model described in Section 3.1, on the condition that
constant parameters such as fuel efficiency o, fuel speed q,
and oil price p of express vehicles are known, the economic
cost ECe can be obtained by inputting decision variables Le

and Re on link e according to formula (2). According to
formula (3), the decision variables for obtaining delivery
time TCe are Le, Re, and Ve. (en, formula (1) is used to
calculate the DC(e) of the e.

3.3. Path Functions. Suppose a deliveryman starts at the
delivery station 0, the delivery path is U � (v1, . . . , vi,

. . . , vn)(i ∈ [1, n], vi ∈ [1, n]).

3.3.1. Economic Expenditure Function. (e economic ex-
penditure of U can be calculated by the following formula:

EC(U) � 
e∈U

ECe Le, Re( , (4)

where EC(U) is the total economic expenditure of delivering
n express items according to U, e is a link on U, and ECe is
the economic expenditure of passing through link e.

3.3.2. Delivery Time Function. (e delivery time of U can be
calculated by the following formula:

TC(U) � 
e∈U

TC Le, Ve, Re( , (5)
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where TC(U) is the total time of U, e is a link on U, Le is the
length of link e, Ve is the average speed through link e, and
Re is the total red light waiting time for delivering n express
items according to U.

3.3.3. Distribution Cost Function. (e distribution cost of
the delivery path U consists of economic expenditure and
time, which can be calculated by the following formula:

DC(U) � 
e∈U

DC(e), (6)

where DC(U) is the distribution cost for delivering n express
items according to U.

3.4. Objective Function. According to the path planning
model based on economic expenditure and time minimi-
zation conditions, the objective of LMAP for express de-
livery is to find a path with the least economic expenditure
and time that starts from the delivery station 0, delivers n

express parcels in a certain order, and then returns to the
express station 0.

Fitness is an index used to measure the pros and cons of
individual organisms in nature. (e fitness function refers to
the correspondence between the combination of the basic
attributes of all individuals in practical problems and their
fitness. (is study calculates the fitness by calculating the
economic expenditure and time of the express path to an-
alyze the advantages and disadvantages of the path. (e
fitness function is shown in the following formula:

Fitness � min DC(U){ }. (7)

3.5. Restrictions. Finding the suboptimal delivery path to
minimize economic expenditure and time is the main goal of
LMAP for express delivery. (e express delivery starts from
the station 0, traverses all sites once, and then returns to the
station 0. (e path must meet the following constraints:

0≤EC(U)≤ECmax, (8)

0≤TC(U)≤TCmax. (9)

Among them, ECmax represents the maximum economic
expenditure acceptable to the courier company and TCmax
represents the longest time a delivery person works in a day.

4. Path Planning for Express Distribution Cost
Based on CAACO

A new express delivery path planning method based on the
CAACO is proposed in this study, which aims at minimizing
economic expenditure and time. It is worth mentioning that
ants’ path-finding behavior during foraging is the inspira-
tion for this idea [32, 33].

Ants release substances called pheromones along the
path they travel as they search for food. At the same time,
ants are more inclined to choose the path with high

pheromone concentration and leave the pheromone on it
again, forming a positive feedback mechanism. As a result,
more and more ants take the shortest path to the food
source, and the pheromone concentration on the shortest
path gets higher and higher. Eventually, the ants in the
colony can find a food source along the shortest path
[34–36]. However, the traditional ACO is slow to find the
optimal solution. (e CAACO introduces the adaptive
strategy and the clone strategy into the traditional ACO in
order to plan the optimal path of express delivery faster and
more accurately.

(is section introduces several important parts of the
CAACO, mainly parameter declaration, population ini-
tialization, fitness calculation, path selection method, op-
erator optimization, pheromone update formula, and
termination conditions.

4.1. Coding Scheme. Since coding directly affects the dis-
tribution cost, adaptability, and pheromone changes in the
process of CAACO implementation, program coding is the
primary task to solve the LMAP of express delivery based on
the CAACO. Although there are many encoding methods
used today, such as real numbers and binary numbers, not
every encoding is suitable for all algorithms. In order to
increase the search space, this study uses real number coding
after careful consideration.

Suppose there are m ants numbered 1–m, n express sites,
and one delivery station, each ant should generate an express
delivery path. As shown in Figure 1, in the path planning
problem of minimizing the distribution cost of express
delivery, the starting point of each ant should be the delivery
station 0. Moreover, each ant returns to the station 0 after
delivering n sites, which satisfies the following formula:

ak,l ≠ ak,s(k ∈ (1, m), l ∈ (1, n), s ∈ (1, n), l≠ s), (10)

where ak,l represents the No. 1 site delivered by ant k.
(e delivery path of the ant k is expressed as

(ak,1, ak,2, . . . , ak,n−1, ak,n). It is necessary to ensure that the
delivery path is one of the full permutations of numbers 1–n.
For example, when n is 50, the delivery path may be
(28, 48, . . . , 16, 40), as shown in Figure 1.

(e totality can be expressed by the following formula:

A �

a1,1 a1,2 · · · a1,n−1 a1,n

a2,1 a2,2 · · · a2,n−1 a2,n

· · · · · · ak,l · · · · · ·

am−1,1 am−1,2 · · · am−1,n−1 am−1,n

am,1 am,2 · · · am,n−1 am,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k ∈ [1, m], l ∈ [1, n], ak,l ∈ [1, n] .

(11)

4.2. Ant Colony Initialization. In order to establish a con-
nection between the express delivery problem and CAACO,
this section codes the ant colony based on the express de-
livery model. (erefore, m ants should be randomly gen-
erated as the initial colony before the iteration. (e m ants
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contained in the initial colony can be expressed as
A � A1, A2, . . . , Am−1, Am . (e ant k is expressed as
Ak � ak,1, ak,2, . . . , ak,n−1, ak,n .

4.3. Fitness Evaluation. Since the ant’s path selection scheme
is evaluated according to its corresponding fitness value, the
fitness function has a great influence on the CAACO’s
performance. In the multicondition constraint express de-
livery optimization problem, when the number of traffic
lights arrangement rules, the average waiting time of the
traffic lights, the delivery time cost coefficient, the oil price,
the delivery speed, and other conditions are met, the dis-
tribution cost of each ant in the ant colony during the
express delivery process can be obtained by formula (6).
Furthermore, the smaller the distribution cost, the better the
path.

4.4. Fault Recognition. (e distribution path planned for the
LMAP should include each express sites once, that is, no
individual should have a duplicate express sites number.

In the iterative process, the CAACO avoided multiple
visits to the same express sites by using a taboo table when
individuals in the population selected paths. In the normal
case, individuals in an ant colony should be a legitimate
viable solution. Meanwhile, the CAACO tested individuals
in the population to avoid incalculable failures. If the same
express stop number appears, the individual will be dis-
carded and a new solution will be randomly generated.

4.5. Path Selection. (e m ants in the ant colony can select
sites based on the distribution cost and pheromone content
on the path. Among them, the sum of pheromones on the
link (x, y) between site x and site y is denoted by τxy, and
the distribution cost is denoted by uxy.

(e path selection rules of the ants are as follows: each ant
starts from the delivery station 0, traverses all sites once, and
then returns to the delivery station 0.Moreover, each ant leaves
a trail of pheromones in its path as it finishes its delivery. Before

the CAACO iteration, pheromone content on all legitimate
links is the same. (e selection of the next site about ant k is
influenced by pheromone content and the consumption value
of distribution costs. Pxy indicates the probability that the ant
gets from site x to site y. In this case, this study uses a taboo
table to control an access to each site for only once. When the
ant k selects the No. 1 delivery site, the first l − 1 identified sites
are stored in the taboo table.(e possible value range of theNo.
1 delivery site should be set B, which is the set
1, 2, . . . , n − 1, n{ } excluding the elements in the taboo table.

(e probability of selecting other sites can be calculated
by calculating the number of pheromones on the path and
the distribution cost, so as to select the next site. In the No. 1
generation, the probability of ants choosing the link (x, y) is
calculated by the following formula:

P
xy

(t) �
ταx,y(t)u

β
x,y(t)

i∈Bτ
α
x,i(t)u

β
x,i(t)

(x ∈ [1, n], y ∈ B, x≠y). (12)

DC �

dc1,1 dc1,2 · · · dc1,n−1 dc1,n

dc2,1 dc2,2 · · · dc2,n−1 dc2,n

· · · · · · dcx,y · · · · · ·

dcn−1,1 dcn−1,2 · · · dcn−1,n−1 dcn−1,n

cn,1 cn,2 · · · cn,n−1 cn,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(x ∈ [1, n], y ∈ [1, n]).

(13)

ux,y �
1

cx,y

. (14)

In formula (12), τx,y(t) is the pheromone content on the
link (x, y) of the No. t generation. Among them, ux,y

represents the reciprocal of the distribution cost from site x

to site y, which is called distribution benefit. α corresponds
to the weighted index of pheromone content, and β cor-
responds to the weighted index of distribution cost con-
sumption, thereby affecting the pheromone concentration
and distribution cost consumption. When the other pa-
rameters except α are unchanged, as α increases, the
probability of ants choosing a path with a higher pheromone
concentration increases. When the other parameters except
β are unchanged, as β increases, the probability of ants
choosing a path with higher distribution efficiency increases.

From formulas (13) and (14), the distribution benefit ux,y

can be calculated, where DC represents the distribution cost
consumption value of the link (x, y).

4.6. Pheromone Update. In order to find the best delivery
path, it is necessary to calculate and update the pheromone
on each path. In fact, when the ant passes through the link
(x, y), it will leave a pheromone on this path. As the al-
gorithm continues to evolve, the pheromone content on
each link continues to volatilize during the evolution pro-
cess. In the CAACO, each ant traverses all sites once from
station 0 and then returns to station 0 and leave pheromone
on the delivery path. In round (t, t + 1), the pheromone on
link (x, y) is modified to
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τxy(t + 1) � (1 − ρ) · τxy(t) + Δτxy(t, t + 1). (15)

Δτxy(t, t + 1) � 
m

k�1
Δτk

xy(t, t + 1). (16)

In formula (15), Δτxy(t, t + 1) represents the pheromone
content left by ants on the link (x, y) in the (t, t + 1) round.
ρ represents the pheromone volatilization factor, which
affects pheromone volatilization rate. According to formula
(16), Δτk

xy(t, t + 1) represents the pheromone content of the
ant k on the link (x, y) in the (t, t + 1) round.

(e ant colony pheromone concentration of CAACO is
updated and calculated by the following formula:

τk
xy � uxy · Q, (17)

where Q is a constant representing the unit concentration of
pheromones left by the ant along its path and uxy represents
the distribution benefit value of the link (x, y). In this
model, ant colonies use the entire pheromone environment.
When ants find a transmission route, they release
pheromone.

4.7. Termination Condition. (e program automatically
determines whether the stop condition is met during the
CAACO execution. After the optimal solution of the al-
gorithm enters a long-term stable state, when the algorithm
end condition is met, the program will stop after outputting
the result.

4.8. Adaptive Operator. When using the CAACO to solve
the LMAP of express delivery, the convergence rate of the
algorithm is very fast due to its positive feedback mecha-
nism. But it is easy to fall into premature convergence, which
makes it impossible to find the delivery path with the lowest
distribution cost. (is is because the ants select the link
based on the pheromone content on the path. (e path
selection range of ants is limited to some high pheromone
content paths because the pheromone content of multiple
ant paths may be much higher than other paths, which
reduces the global search ability of the algorithm.

For this reason, this study chooses an adaptive operator
for optimization. Actually, by modifying the pheromone
volatilization factor, the probability of being selected for a
path that is rarely selected is slightly increased.

(e adaptive operator updates the pheromone by adding
the adaptive method of the pheromone volatilization
function, as shown in the following formulas:

τxy(t + 1) � (1 − ρ)
1+λ(t)

· τxy(t) + Δτxy(t, t + 1)τ ≥ τmax,

τxy(t + 1) � (1 − ρ)
1− λ(t)

· τxy(t) + Δτxy(t, t + 1)τ < τmax,

⎧⎪⎪⎨

⎪⎪⎩

(18)

λ(t) �
t

c
, (19)

where λ(t) is the pheromone volatilization index formula
proportional to the iterative generation number, t is the
iterative algebra, and c is a constant.

4.9. CloneOperator. By reserving the adaptive individuals to
the maximum extent, the cloning operator significantly
improves the convergence performance of CAACO. At
the same time, the global search ability of CAACO does
not decrease because of the application of clone oper-
ator. In addition, the best-fit individual in the pop-
ulation is selected as the clone parent. (e specific
optimization operation of clone operator in CAACO is
shown as follows:

In each iteration, the ant individual with the lowest
distribution cost is selected as the parent p to clone some
identical replicas, and then each clone is subjected to mu-
tation operation. (at is, for each clone c, two random
integers v and s satisfy v ∈ [1, n], s ∈ [1, n], v≠ s. (en, the
No. v and No. s sites are swapped, which is swap(ac,v, ac,s).
After these operations, a new delivery path is created. When
all the copies are mutated, the distribution cost of all the
copies is calculated and the copy with the smallest distri-
bution cost is recorded as r. If the distribution cost of r is
smaller than the parent p, then the delivery path of r replaces
the p.

4.10. CAACO Steps. (e main steps of CAACO are as
follows:

Step 1. Set parameters of path collection and con-
straints of the LMAP. Define the pheromone volatili-
zation coefficient and the initial pheromone content of
each path. Set the maximum number of iterations is set
to Gt max, and the initial number of iterations is Gt � 0.
(e ant colony consists of M ants.
Step 2. Record the iteration algebra, Gt � Gt + 1.
Step 3. Enumerate the next ant, k � k + 1.
Step 4. Increase the number of sites, i � i + 1.
Step 5. First, the probability of the next possible delivery
location is calculated according to formula (12). Sec-
ond, the next delivery location is chosen by roulette.
Step 6. If i � n, continue to step 7; otherwise, reset i � 0,
then skip to step 3.
Step 7. By calculating the fitness of each ant individual,
the best individual parent is selected and cloned.
Step 8. (e best clone after mutation is selected and has
the probability to replace the parent.
Step 9. (e pheromone content of each link is updated
according to formula (15).
Step 10. When Gt � Gt max, the result will be printed
and the program will stop; otherwise, reset k � 0, and
then go to step 2.

Figure 2 shows the entire execution flow of the CAACO
algorithm.
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5. Discussion on Simulation Results

In order to reflect the performance of CAACO, this section
compares the CAACO with ACO, GA, and SA. (e iterative
process of ACO is basically the same as that of CAACO, but
the adaptive operator and clone operator are not added for
optimization to reflect the optimization effect of CAACO.
(e significance of population in GA is the same as CAACO,
each individual represents a feasible solution, and the
random generation of the original population is also con-
sistent with CAACO.

(e iterative process of GA mainly includes selection,
crossover, and mutation. (e selection operation is to ran-
domly select some individuals from the old population (which
can be repeatedly selected) to form a new population. However,
due to the characteristic of LMAP that each site only passes
once, the crossover and mutation processes of GA need to be
paid extra attention to avoid illegal solutions [37], in which the
cross operation chooses subtour exchange crossover (SEC).
First, the two individuals f and g to be crossed should be
selected, then the set of express sites pos should be randomly
selected, and the relative positions of the sites belonging to pos
in f and g should be crossed (Figure 3). Exchange order of
single point (EOS) was selected for themutation operation. For
the individual f to perform the mutation operation, two

different position indexes index1 and index2 should be ran-
domly calculated first, and then the numbers of these two
positions should be exchanged (Figure 4).

(e SA starts from a higher initial temperature, and with
the continuous decline of temperature parameters, it

Calculate the fitness of ant colony,
determine the optimal solution

Clone the optimal
individual and mutate
the cloned individual

Judge and replace the
parent

Clone Operator
Adaptive Operator

τij (t+1) = (1-ρ)1+λ(t)·τij (t) + ∆τij (t,t+1)

λ(t) = t
c–

τ ≥ τmax

τ < τmaxτij (t+1) = (1-ρ)1-λ(t)·τij (t) + ∆τij (t,t+1)
Global Pheromone Update

Whether the stop
condition is met?

Output the result, the
algorithm ends.

Begin

Initialize the ant colony system

Ant structure solution

Local pheromone update
no

no

yes

yes
Whether all ants
have constructed

the solution?

Figure 2: Flow chart of CAACO.

Suppose the number of express sites n=5

1f

f

f

5 3 2 4

1 5 3 2 4

g 1 5 2 3 4

1g 4 2 5 3

1g 4 2 5 3

1 4 5 2 3

Determine crossing position

Cross

pos = [3, 4, 5]

Figure 3: Crossover operation (SEC).
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randomly searches for the global optimal solution of the
objective function in the solution space in combination with
the characteristics of mutation and probabilistic selection
and can jump out of the local optimal solution in probability
and eventually approach the global optimal solution [22].
(emeaning of the solution in SA is the same as themeaning
of the individual in CAACO. In addition, in the iteration
process of SA, the temperature T change is calculated
according to formula (21), and EOS is selected as the dis-
turbance process of SA mutation operation. If the new
solution obtained by mutation is superior to the original
solution, the new solution is accepted. Otherwise, a new
solution is selected according to the probability PC of
formula (20), which is beneficial to escape from local
convergence:

PC �

1, if DC(new)<DC(fre),

exp −
DC(new) − DC(fre)

T
 , if DC(new)>DC(fre).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(20)

T(t + 1) � ς · T(t),

T(0) � T0,
 (21)

where new is the new solution after mutation, and fre is
the original solution, T0 constant representing the initial
value of T, T is a variable that decreases as the number of
iterations t increases, and ς is the coefficient of change.

(e performance of CAACO is tested in the simulation
experiment, and simulation results of CAACO are com-
pared with ACO, SA, and GA under the same hardware
and software conditions by adjusting different express
delivery sites’ quantity. (erefore, the software and
hardware environments are uniformly equipped with
Intel(R) Core (TM) i7 2.20 GHz CPU and a unified version
of Windows 10. On this premise, it proves that CAACO
has a superior performance in solving the problem of
express delivery path planning based on minimizing
distribution cost.

In the comparison process, it is necessary to ensure that
these four algorithms use the same distribution cost
weighting formula for express delivery paths and control the
number of individuals in the CAACO, ACO, and GA
populations to be the same. In addition, CAACO and ACO
parameters are determined through continuous program
testing. (e GA and SA use the original parameter setting
[27, 37]. Tables 1–4 show the parameter values of each al-
gorithm. In the CAACO, a pheromone volatile factor ρ was
0.1, pheromone content weighted index α is 0.5, distribution
cost consumption weighted index β is 5, and pheromone
content per ant Q is 20. In the ACO, the parameters are
consistent with those of CAACO. In the GA, a crossover
probability is set to 0.5 and mutation probability to 0.1 [37].
In the SA, the initial temperature is set to 1000, the

Suppose the number of express sites n=5

2f

f

5 3 1 4

2f 1 3 5 4

2 5 3 1 4

f 2 1 3 5 4

Determine the location of variation

Mutation

index1 = 2 index2 = 4

Figure 4: Mutation operation (EOS).

Table 1: Parameters of CAACO.

CAACO
Pheromone volatilization factor ρ 0.1
Weighted index of pheromone content α 0.5
Weighted index of distribution cost consumption β 5
Pheromone content of each individual ant Q 20

Table 2: Parameters of ACO.

ACO
Pheromone volatilization factor ρ 0.1
Weighted index of pheromone content α 0.5
Weighted index of distribution cost consumption β 5
Pheromone content of each individual ant Q 20

Table 3: Parameters of GA.

GA
Crossover probability 0.1
Mutation probability 0.5

Table 4: Parameters of SA.

SA
Initial temperature 1000
Temperature attenuation
coefficient 0.95

Number of temperature
iterations

Approximately 2∗ number of
sites
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temperature attenuation coefficient is 0.95, and the number
of temperature iterations increases with the number of fast
sites, which is about 2 times of the number of fast sites [27].
With everything in place, the program is run to get the
results of CAACO, ACO, GA, and SA algorithms.

For the express delivery path planning problem of mini-
mizing distribution cost, when the number of iterations,

population size, and other parameters remain unchanged, as the
number of sites changes, the minimum distribution cost of
CAACO, ACO, GA, and SA changes. (e relationship is given
in Table 5.

Figures 5(a)–5(d) show the simulation results of
CAACO, GA, and SA under four different express quantity
conditions. From Figures 2(a)–2(d), based on the four

Table 5: Minimum distribution cost of different number of sites.

Algorithm 30 sites 50 sites 70 sites 90 sites
SA 162.1811 230.6079 249.9613 293.0244
GA 155.6000 211.7276 236.7995 275.7588
ACO 151.9915 199.6935 225.6022 258.6268
CAACO 149.1365 190.4494 219.8949 254.1350
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Figure 5:(e distribution costs of the four algorithms are compared after 200 iterations at different numbers of sites: (a) 30 sites; (b) 50 sites;
(c) 70 sites; (d) 90 sites.
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different expressions, the CAACO planned path not only has
a lower distribution cost than SA and GA but also has a faster
convergence speed.

As shown in Figure 5(d), the CAACO’s high perfor-
mance is more obvious when the number of sites to be
delivered is 90. In the first 50 iterations, the distribution cost
of CAACO was greatly reduced, and the convergence speed
was significantly higher than that of GA and SA. In the 50 to
200 generation iterations, the distribution cost of CAACO is
close to 254.1350, the distribution cost of ACO is close to
258.6268, the distribution cost of GA is close to 275.7588,
and the distribution cost of SA is close to 293.0244.

As can be seen from Figures 5(a)–5(c), when the number
of sites is 30, 50, and 70, the CAACO is superior to the ACO,
GA, and SA in terms of express delivery path planning.
Although ACO can converge to a local optimal solution

earlier, it is easy to fall into premature convergence. (e GA
and SA have a slower convergence speed and lower global
search capability.

In summary, under the same constraints of the same
number of iterations and other parameters, the CAACO
performs well in solving the express route planning problem
based on the minimization of delivery cost.

(e histogram in Figures 6(a)–6(c) compares the per-
formance of CAACO, ACO, GA, and SA in the LMAP path
planning from three aspects of distribution cost, economic
expenditure, and time. Apparently, the overall distribution
efficiency of CAACO is better than ACO, SA, and GA under
a different number of express sites.

It can be seen from Figures 7(a)–7(d) that after 10 it-
erations, the distribution cost of CAACO has been signifi-
cantly lower than ACO, GA, and SA. Moreover, in the next
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Figure 6: (a) Distribution cost, (b) economic expenditure, and (c) time of the four algorithms are compared under a different number of
sites.
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190 times of convergence, the CAACO has a stable con-
vergence rate, while the GA and SA have a slower con-
vergence rate. Although the convergence speed of ACO is
faster than GA and SA, its global search ability is poor.
Apparently, with the increase in the number of sites, the
CAACO’s high performance is fully reflected. In short, the
results show that CAACO is more effective than ACO, GA,
and SA in solving LMAP.

In Figures 8(a)–8(c), the results of the four algorithms
being executed 20 times are analyzed by scatter diagrams when
the number of sites is 40, 60, 80, and 100, respectively. Ob-
viously, the CAACO has the most dense points, and the results
obtained are generally better thanACO,GA, and SA, and as the
number of express sites increases, the CAACO is better.

In Figures 9(a)–9(c), the results of the four algorithms
being executed 20 times are analyzed by box plots when the
number of sites is 40, 60, 80, and 100, respectively. It is easy
to see, compared to the ACO, SA, and GA, that the CAACO
has the narrowest box, the best stability in finding subop-
timal solutions, and the very low probability of outliers.

As listed in Table 6, the computational complexity of
CAACO, ACO, and GA is O(mn2), and that of SA is
O(Tmaxn

2), where m represents population capacity, n rep-
resents the number of sites, and Tmax represents the number of
iterations at each temperature in SA. However, as the number
of nodes increases, the parameter T of SA should also increase
to find better results. In the case of a large number of sites, the
SA takes more time than the CAACO. Although the CAACO
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Figure 7: (e distribution costs of the four algorithms are compared every 10 generations at different numbers of sites: (a) 40 sites; (b) 60
sites; (c) 80 sites; (d) 100 sites.
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Figure 8: (e stability of (a) delivery cost, (b) economic expenditure, and (c) time is displayed through the results of four algorithms
executed 20 times when the number of sites is 40, 60, 80, and 100, respectively.
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consumes some time due to the addition of clone operator and
adaptive operator, it is not inferior to ACO and GA in terms of
computational complexity.

6. Conclusion

With the booming development of logistics industry, it is
urgent to reduce the delivery time and cost, so it is necessary to
design a new algorithm to find the delivery path with less

delivery time and lower economic cost. In the optimization
process of CAACO, an effective population coding scheme is
specified first, and the population is initialized.(en, the fitness
is calculated, the delivery path is selected, and the pheromone
on the path is updated. On the one hand, by adding an adaptive
operator, the convergence rate of CAACO in the early stage is
controlled to achieve the purpose of strengthening CAACO’s
global search capability. On the other hand, by adding a clone
operator tomaximize the preservation of adaptable individuals,
the convergence performance of CAACO is significantly im-
proved. In terms of simulation, this study compares the per-
formance of CAACO with the ACO, GA, and SA. (e results
show that CAACO’s convergence speed is faster, and the
performance of finding express delivery paths that minimize
economic expenditure and time is good. Since the LMAP is
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Figure 9: (e stability of (a) distribution cost, (b) economic expenditure, and (c) time is compared through the results of four algorithms
executed 20 times when the number of sites is 40, 60, 80, and 100, respectively.

Table 6: (e computation complexity of four algorithms.

Algorithm CAACO ACO SA GA
Computation
complexity O(mn2) O(mn2) O(Tmaxn

2) O(mn2)
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based on theminimum economic cost and the shortest delivery
time involves various theories and technologies, there are still
more problems to be solved in CAACO. In the future, we will
continue to accumulate experience in practical applications to
improve the algorithm.
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