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Traffic volume data are the important part of research and application of intelligent transportation systems (ITS). However, data
loss often happens due to various factors in the real world, which may cause large deviations in prediction or bad accuracy of
optimizations. Imputation is a valid way to handle missing values. A multilayer perceptron-multivariate imputation of chain
equation (MLP-MICE) regression imputation method optimized by the limit-memory-BFGS algorithm is proposed, considering
the temporal and spatial characteristics of traffic volume. Also, 32 groups of simulated imputation experiments based on the
detected traffic volume of road sections in the Guangdong freeway system are conducted, which take the scenarios of continuous
missing and jumped missing into account. )e results of the experiments show that the MLP-MICE can optimize the imputation
performance in the missing value of traffic volume with the MAPE of imputation results from 6.38% to 30%. Meanwhile, the
proposed model has higher imputation accuracy for the traffic volume data with a lower degree of mutation. Lastly, the per-
formance of the proposed model of imputation in short-term traffic volume prediction is discussed using the support vector
machine. )e results of it show that the MAPE of prediction under the proposed model is much lower than all-zero imputation.
)erefore, the proposed model in this study is positive on improving the accuracy of traffic volume prediction and intelligent
traffic control and management.

1. Introduction

Traffic volume data are an important part of Intelligent
Transportation Systems (ITSs); however, missing data are
widespread and inevitable problem due to the failure of
detectors and information processing errors, which cer-
tainly have negative effects on the application of ITS due
to the temporal and spatial characteristics of traffic flow
[1, 2]. Moreover, the data failure is likely to be culled in
the actual study because the size of overall data is large
[3], which will reduce the accuracy of prediction and
optimization of the road management system. )erefore,
effective imputation methods for missing traffic volume
data are necessary.

Imputation of missing data means to replace the missing
values with estimated values [4]. )e imputation methods
can be divided into single imputation and multiple impu-
tation according to the times of imputation [5]. Single
imputation includes statistical and machine learning-based

methods [6]. Mean imputation and regression imputation
are mainly statistical-based methods. Mean imputation is
easy to operate, but its performance is limited because of the
underestimation of imputation results and the neglect of the
relations with other variables [7], while regression impu-
tation is realized by obtaining alternative values by regres-
sion, such as spatial autoregression models [8] and logistic
regression [9]. Machine learning-based imputation methods
have been proposed with the development of data infor-
mation technology in recent years [10], such as support
vector regression [11], residual learning networks [12], and
semisupervised regression [13]. Hot deck imputation
[14, 15] and cluster imputation [16] are also widely used in
the imputation of missing data. Previous studies show that
the combination of single imputation methods can improve
the performance of imputation, for example, general re-
gression auto associative neural network (GRAANN) [17] is
a hybrid of mean imputation and machine learning, and
fuzzy c-means support vector regression genetic algorithm
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(Fuzzy C-means SVRGA) [18] is combined by clustering
imputation and machine learning.

Generally, multiple imputation (MI) requires at least two
times of imputation [19]. )e basic idea of MI is to create
multiple copies of data containing missing values, perform
the imputation of each copy independently, and then select
the imputation results according to certain evaluation criteria
[4, 20]. MI is efficient to improve the precision of imputation
[21–24] and Multivariate Imputation by Chained Equations
(MICE) [25] is a commonly used method forMI. It is verified
that good performance can be obtained from the hybrid of
MICE and regression imputation [26].

)e imputation methods are widely used in the fields of
economy [8], computer [9, 13], biology [11], environment
[12, 27], medicine [21, 28], and so on. Most of them are used
to resolve the nonresponse of the questionnaire survey,
which has weak temporal and spatial correlation. Traffic
volume is a kind of data with strong temporal continuity and
spatial correlation, which should be considered in the im-
putation process of accuracy-improving [29]. Previous
studies show that traffic volume imputationmethods are also
mainly based on statistical learning and machine learning
[30]. Statistical learning methods take full advantage of the
statistical feature of traffic volume [31], and it mainly in-
cludes improved principal components analysis (PCA)
methods such as PPCA [32], KPPCA [31], fuzzy theory
[33, 34], and tensor completion [35–38]. Machine learning
methods estimate the missing value by machine learning
[30] or deep learning algorithms [39], for example, SVR
[40, 41], DSAE [42], KNN [43], CNN [44, 45], LSTM
[46, 47], GAN [48], and DEB [49]. Comparing with the
statistical learning method, the machine learning method
makes use of more characteristics of traffic volume, espe-
cially the temporal features [30]. And the spatiotemporal
(ST) features are considered such as ST-BiRT [38] and ST-
PTD [50]. )e details of the imputation methods used in
dealing with traffic volume data are shown in Table 1.

Most imputation methods for traffic volume are single
imputation methods, the results of which are generally
underestimated [18], and they are more suitable for complex
and large traffic systems with a large scale of traffic volume
data, where a combination with other kinds of methods is
not recommended due to the increasing calculation.
However, it is different for smaller systems with a small scale
of data; the imputation accuracy of it can be improved by
using a combination of multiple methods, while MI is an
effective one. In addition, such a combination can effectively
reduce the influence of abnormal fluctuations of traffic data
caused by external random factors on the final output result.

Neural network model is promising to obtain accurate
imputation results [39]. Multilayer perceptron (MLP), a
deep learning model, finds application in representing the
nonlinear features in traffic prediction, and missing value
imputation [41] has been chosen in this study. )erefore, to
study a simple traffic system and to fully use the performance
of MLP with MI to improve the precision of imputation, a
hybrid model of deep learning and multiple imputation
called MLP-MICE is proposed to impute the missing data of
detected traffic volume. Comparing with the unprocessed

data, inputting the data fixed by the proposed MLP-MICE
into the prediction model improves the accuracy effectively,
which benefit the intelligent traffic control andmanagement.
)e rest of this study is organized as follows. Section 2
introduces the methodology, including the framework of
MLP-MICE and each part of it. Section 3 verifies the pro-
posed model using freeway detected data and analyses the
performance. Section 4 concludes this study with some
remarks.

2. Methodology

2.1. Model Framework. )e structure of the model is shown
in Figure 1. Considering the temporal continuity and spatial
correlation of freeway traffic volume, MLP was used to
impute the missing traffic volume data, and the L-BFGS
algorithm was used to optimize the parameters of MLP. )e
model is divided into three parts, which are data preparation,
MLP imputation, and MICE process.

2.2. Data Preparation. )e input of the model is defined as
an M× q matrix denoted as D:

input � D

�

dt+1,1 · · · · · · · · · dt+1,q

dt+2,1 · · · · · · · · · dt+2,q

⋮ ⋮

dt+M,1 · · · · · · · · · dt+M,q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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,

(1)

where dt+i,j is the traffic volume of time interval i at location
q, M represents the number of time intervals for the im-
putation model, q is the number of detecting locations, and t
is the started time of detectable data for imputation. Suppose
N elements are missing from dt+m,n, where m represents the
starting time interval of the missing data, n represents the
location number, andM�m+N, whichmeans the data of all
the locations during and before the missing data are used to
input into the model. M needs to be determined by the data
distribution, and equation (2) can be used when the model
has been tested to have excellent imputation performance on
the missing rate α, in which Mmin is the minimum data
sample size to get relatively accurate results:

M � max Mmin,
N

α
 . (2)

Finally, the following equation normalizes the elements
of nonmissing values of the matrix to speed up the con-
vergence of the model as dt,q

′ :

dt,q
′ �

dt,q

max dt,q  −min dt,q 
t ∈ [t +1, M +1], q ∈ [1, q]. (3)

2.3. Multilayer Perceptron Imputation. )e multilayer per-
ceptron (MLP) neural network structure is interconnected
by many nodes and contains four layers.
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)e nodes belonging to different layers process the input
data through the activation function. )en, the results are
transmitted from layer to layer [51]. )e MLP regression
imputationmodel we use is illustrated in Figure 2. Define the
data a

[l−1]
1∼m, the weight matrixW, and the bias term matrix B,

where a
[l−1]
1∼m is the data that input to layer l and w

(l)
ij is the

element ofW, which denotes the weight of the ith node of the
layer l− 1 to the jth node of the layer l, and b

(l)
j is the element

of B, which represents the numerical deviation of the input
to the jth node of the layer l. z(l) represents the output dataset
of each node in layer l:
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. (4)

Choose tanh as the activation function and the following
expression can be obtained:

a
[l]

� tan h z
[l]

 

� tan h w
[l]

a
[l− 1]

+ b
[l]

 .
(5)
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Figure 1: Overall structure of the model.

Table 1: Measurement conversions.

Imputation method MAPE or RMSE Urban road or freeway Data sources

Principal component analysis (PCA) 76∼84 [32] Urban road China
14∼24 [31] Freeway America

Fuzzy rough set (FRS) 4.768∼6.533 [33] Freeway China
6.9766∼10.4998 [34] Freeway China

Tensor completion
4.0893∼5.3544 [35] Urban road China
10.3%∼12.71% [36] Freeway America
7.3%∼19.98% [37] Urban road China
0.91%∼64.95% [38] Urban road China

Support vector machine (SVR) 4∼14 [40] Both China
5.7232% [41] Urban road China

Denoising stacked autoencoders (DSAE) 13.9∼20.9 [42] Freeway America
Convolutional neural network (CNN) ≤24 [44] Freeway America

Long short-term memory (LSTM) 9.63∼17.54 [46] Urban road America
1.927∼9.192 [47] Freeway America

Generative adversarial networks (GAN) 3.66∼10.86 [48] Urban road China and America
Dual-stage error-corrected boosting regressor (GBR) 1.39%∼6.08% [49] Freeway America
Spatiotemporal-PTD 3.45∼8.35 [50] Urban road China
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When l is the output layer, it outputs the normalizing
estimation of the missing values. 
e activation method in
the output layer is softmax regression.

2.4. Parameters Optimization Based on L-BFGS. L-BFGS
algorithm (limit-memory-BFGS) is used to optimize the
parameters of MLP. L-BFGS is a kind of approximate
quasi-Newton method. It is commonly used to solve

unconstrained nonlinear programming problems with the
advantages of fast convergence and low memory overhead
(Algorithm 1).

De�ne x(i) is the ith element of setX, RWB(x(i)) is the result
of imputation for the value of the ith time interval with weight
W and the numerical deviation B for a certain location, y(i) is
the observed value of the ith time interval for this location,
andw(ij) are elements ofW. 
en, the loss function of the set
X, denoted as floss(X), can be described as follows:

d’t+i,1 ~d’t+i+N, 1 d’t+i,j-1 ~d’t+i+N, j-1 d’t+i,j+1 ~d’t+i+N,j+1 d’t+i,q ~d’t+i+N, q

Softmax

d’t+i,j~d’t+i+N, j

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Node of Layer

··· ···

Figure 2: Working principle of MLP.

De�nition:
θ0: the �rst run parameter of MLP
μ: the tolerable maximum positive number
iter: iteration of L-BFGS, iter� k(k� 0,1,2, . . .)
m: latest m groups of iteration results are used for calculation
ε: optimized step length

Procedure L-BFGS
Calculate B0 and a∇h(θk) according to θ0 and the value of the loss function

While |∇h′(θk)|> μ do
get (θk+ εr)�min(f(θk+ εir)) from:

Let: Δg � Δgk, B � Bk
for i� k− 1, k− 2, . . ., k−m:
εi � (Δθ

T
i · Δg/ΔgTi · Δθi)

Δg � Δg − εiΔgi
end for
r�B·Δg
for i� k−m, k−m+ 1, . . ., k− 1:
β � (ΔgTi · r/ΔgTi · Δθi)
r � r + Δθi(εi − β)

end for
stopwith resultBk∇h(θ) � −r
θk−renew � θk + εr, θ ∈ w, b{ }
k� k+ 1
|h′(θk)| � |h′(θk−renew)|

end while
end procedure

ALGORITHM 1: L-BFGS.
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floss(X) �
1
2M

∑
m

i�1
RWB x

(i)( ) − y(i)[ ]
2
+ δL2,

L2 �
���������
∑ w(ij)( )

2
√

, w(ij) ∈W.

(6)

L2 is added in equation (6) to avoid the over�tting
phenomenon and local optimization, and δ is the coe�cient
of L2. 
e value of the loss function is related to the pa-
rametersW and B of the MLP. Let θ denote the set ofW and
B, and then, de�ne h(θ) as follows:

h(θ) � floss(X), inwhich θ � W,B{ }. (7)

θ needs to be generated by iteration to meet the near
minimum of floss(X) [52]. Let k denote the iteration times.
When the formula is expanded by Taylor expansion at θk
after k iterations, equation (8) can be obtained:

h(θ)�h θk( )+∇h θk( ) θ−θk( )+
1
2
θ−θk( )T∇2h θk( ) θ−θk( ),

(8)
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Figure 3: Flowchart of missing value imputation of the proposed model.
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where ∇h(θk) is the gradient vector of h(θ), ∇2h(θk) rep-
resents the Hessian matrix for h(θ), and R parameters are in
θk, and θk+1 can be obtained by the following equation :

gk � ∇h θk( 

�

zh

zθk1

zh

zθk2

⋮

zh

zθkR
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θk+1 � θk − H
−1
k gk.

(9)

To simplify the calculation, an approximation is made to
equation (9). Take the derivative at k+ 1 of h (θ), and express
it in the form of a gradient operator as in the following
equation:

∇h θk(  ≈ ∇h θk+1(  + Hk+1 θk − θk+1( 

⇔gk+1 − gk � Hk+1 θk+1 − θk( ,

Δgk � gk+1 − gk,

Δθk � θk+1 − θk,

Hk+1 � Bk+1,
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⇒
Δgk � Bk+1 · Δθk,

Δθk � B
−1
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(10)

Record Bk+1 for the first approximation:
Bk+1 � Bk + ΔBk. (11)

)erefore,
ΔBk � Δgk · Δθk( 

−1
− Bk · Δθk · Δθk( 
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−
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ΔθT
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)en, B−1
k+1 can be formulated as follows, where I is a unit

matrix:
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Figure 4: Locations of the five VDS.

Table 2: Statistical property of 15-minute traffic flow of each VDS
(unit: Veh).

VDS VDS-1 VDS-2 VDS-3 VDS-4 VDS-5
Average 138.5 317.8 185 152.6 146.3
Median 119 287 167 132 127
Maximum 667 814 559 484 665
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Figure 5: Kernel density estimation (KDE) probability distribution
curve of traffic flow.
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In order to simplify the calculation and reduce the re-
quired memory, the latest m groups of θk are used in the
calculation, and Bk+ 1 is approximated for the second time.
)en, the following equation can be expressed as
Bk � V

T
k−1 . . . V

T
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ΔθT
k−1 · Δgk−1

.

(16)

Equation (16) has two purposes: one is to find the feasible
direction of iterations, and the other is to determine the
specific calculation method of iterative optimization. )e
expression of the direction r is

r � −Bk · ∇h θk( . (17)

Table 3: Autocorrelation coefficient and correlation coefficient of VDS-1 to VDS-5.

VDS
Autocorrelation

coefficient Correlation coefficient

lag� 1 lag� 2 VDS-1 VDS-2 VDS-3 VDS-4 VDS-5
VDS-1 0.903 0.861 1 0.798 0.759 0.496 0.882
VDS-2 0.950 0.923 1 0.834 0.593 0.791
VDS-3 0.940 0.908 1 0.674 0.836
VDS-4 0.773 0.702 1 0.582
VDS-5 0.925 0.892 1

Table 4: Data fragmentation.

VDS Missing data Number of missing data Missing rate (%)
VDS-1 010709-010723 15 2.3
VDS-2 020409-020446,020448 38 5.7
VDS-3 — 0 0
VDS-4 040357,040392,040507 3 0.4
VDS-5 050670-050673 4 0.6

Table 5: Imputation results of continuous missing experiments
(MAPE).

VDS missing
rate (%)

VDS-1 VDS-2 VDS-3 VDS-4 VDS-5
Continuous missing: subset I

10 8.21 5.01 12.38 13.75 12.37
20 7.34 4.86 9.84 12.5 9.48
30 8.25 4.44 8.88 11.65 7.92
40 8.41 8.44 9.77 18.41 6.38
50 20.66 8.42 8.16 23.92 16.19
60 48.02 8.82 22.55 76.63 25.97
70 57.26 9.29 36.7 72.46 20.22
80 57.99 17.78 36.67 70.12 29.47

Continuous missing: subset II
10 28.79 13.04 24.96 11.19 48.01
20 56.16 14.63 25.29 11.75 48.48
30 43.54 12.4 34.99 11.46 65.95
40 122.45 49.97 40.58 28.83 58.48
50 243.51 172.79 14.38 13.99 162.64
60 182.74 158.25 52.27 11.86 149.89
70 402.28 130.66 44.61 20.10 214.85
80 437.74 143.48 258.09 121.44 170.83

Jumped missing: subset I
10 19.36 14.34 10.38 18.42 20.45
20 20.48 13.23 7.60 15.33 24.84
30 19.58 12.69 6.46 17.93 25.10
40 17.01 11.70 7.79 15.23 23.38
50 11.23 15.11 10.82 19.74 14.64
60 19.60 17.65 10.92 30.99 23.51
70 68.41 39.38 39.36 52.96 59.41
80 80.42 64.31 69.68 57.63 75.78

Jumped missing: subset II
10 81.73 34.40 37.06 20.89 28.68
20 63.29 29.21 22.40 33.24 26.11
30 121.62 50.11 27.97 48.75 47.77
40 138.06 55.89 30.76 53.66 54.15
50 199.04 86.17 25.27 50.43 98.64
60 138.16 91.35 29.80 52.79 89.44
70 303.07 86.42 99.19 55.77 91.69
80 291.91 72.55 140.31 81.36 107.50
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A two-loop recursion algorithm can be used to obtain
the speci�c direction of parameter optimization and the
optimized step length ε according to equation (17).


e L-BFGS algorithm is shown as follows:

2.5. Multivariate Imputation by Chain Equation. 
e pa-
rameters of MLP are updated when the algorithm ends.
Multivariate imputation by chained equations (MICE) is a
multiple imputation method that can realize ¡exible im-
putation of missing values as shown in the following four
steps [53]. 
e process of MICE is shown as follows.

Step 1: construct a data frame with a capacity.
Step 2: �ll the data frame with the imputation results
from MLP and the evaluation of each result. Di¢erent
types of missing should have di¢erent �lling functions.
Step 3: repeat step 2. If the data frame is �lled, go to step
4.
Step 4: select the �nal imputation result of the missing
values from the data frame according to the evaluation.


rough the above process, the MLP-MICE regression
imputation method optimized by the L-BFGS algorithm is
proposed. 
e complete process of the imputation model
proposed in this study is shown in Figure 3.

3. Results and Discussion

3.1. Empirical Analysis. 
is study takes the detected tra�c
volume data of VDS (Video Detection Systems) in 5 locations

around an interchange of the freeways in Guangdong
Province as an example, which is shown in Figure 4, to
conduct an empirical analysis of the proposed model. Tra�c
volume is extracted by image recognition from each VDS.
e
data used in the study are collected from 0:00 onMay 1, 2020,
to 24:00 on May 7, 2020, including two workdays and �ve
holidays, which cover many various scenarios. Name each
VDS of a di¢erent location, from VDS-1 to VDS-5. 
e time
interval of data collection is 15minutes, and 672 pieces of data
are collected in total. 
e statistical property of the 15-minute
tra�c volume of each VDS is shown in Table 2.


e probability distribution of the collected data is
drawn by kernel density estimation (KDE), as shown in
Figure 5. 
e higher the peak of probability curve, the more
concentrated the tra�c volume. 
e further to left the area
enclosed by the coordinate axis and curve, the lower the
overall tra�c volume.

In Table 3, lag represents the di¢erent order of autocor-
relation.Ahigh correlation is consideredwhen the correlation
coe�cient is greater than 0.5. Table 3 illustrates that the ad-
jacent VDS has a signi�cant correlation, which means the
detected tra�c volume has not only temporal relation but also
spatial relation among VDSs near each other.

In the process of data collection, data loss is inevitable
due to the breakdown of electronic equipment or other
environmental factors. 
e data are sorted and labeled in the
form of a VDS-days-time series. For example, 010236 rep-
resents the 36th data collected on the second day of VDS-1.

e speci�c missing data from real-world VDS are shown in
Table 4.

20

40

60

80

10% 20% 30% 40% 50% 60% 70% 80%

M
A

PE
 (%

)

(Subset I)

VDS:

VDS−1

VDS−2

VDS−3

VDS−4

VDS−5

0

100

200

300

400

10% 20% 30% 40% 50% 60% 70% 80%

Missing Rate

M
A

PE
 (%

)

(Subset II)

(a)

20

40

60

80

10% 20% 30% 40% 50% 60% 70% 80%

M
A

PE
 (%

)

(Subset I)

VDS:

VDS−1

VDS−2

VDS−3

VDS−4

VDS−5

100

200

300

10% 20% 30% 40% 50% 60% 70% 80%

Missing Rate

M
A

PE
 (%

)

(Subset II)

(b)

Figure 6: Imputation experimental results of Subset I and Subset II: cross analysis of (a) continuous missing scenarios and (b) jumped
missing scenarios.
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According to the data of case study, we can see that data
missing happens. Although the data missing rate is not very
high in this case, it will still have some impact on data
applications. On the other hand, for the imputationmodel in
this study, the small data missing rate ensures that there are
su�cient observed values for the model test and perfor-
mance analysis.

Imputation experiments of di¢erent scenarios are
carried out and comparisons are made with other
methods. 
e missing rate denotes the degree of missing
in the dataset, which a¢ects the output of the imputation
model. 
ere are two patterns of missing value, which are
continuous missing and jumped missing. Continuous
missing happens when the VDS cannot work for a long

Table 6: Experimental results of simulated imputation.

VDS VDS-1 VDS-2 VDS-3 VDS-4 VDS-5
Variance of adjacent di¢erence 44.42 59.08 34.90 40.25 36.22

VDS imputation result (best MAPE)

Continuous missing Subset I 8.25 4.44 8.88 11.65 7.92
Subset II 28.79 13.04 24.96 11.19 48.01

Jumped missing Subset I 11.23 15.11 10.82 19.74 14.64
Subset II 63.29 29.21 22.40 33.24 26.11
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Figure 7: Probability distribution of the adjacent di¢erence of tra�c volume among VDS.
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time for some reason, while jumped missing happens
when the VDS temporarily breaks down. To simulate the
experiment of di¢erent missing scenarios, set the missing
rate from 10% to 80% for both continuous missing and
jumped missing, and 10% is used as the span. 
e MLP
used in this case has two hidden layers which consist of 4
nodes and 2 nodes separately, and letM be 60 according to
the analysis of the detected data.

Select data of the 1st–120th time intervals of all the lo-
cations as the dataset of the simulated imputation experi-
ment. De�ne the 1st–60th elements as subset I and the
61th–120th as subset II. During the experiment, a piece of
continuous data with a length of ten was randomly removed
to simulate the continuous missing scenario. Ten discon-
tinuous data were randomly removed to simulate a jumped
missing scenario. Meanwhile, to verify the superiority of the
imputation model, MLP, random forest, and decision tree
were selected as the control groups of the experiment.


e experiment uses mean absolute percentage error
(MAPE) to evaluate the imputation performance:

MAPE �
100%
n

∑
n

i�1

€yi − yi
yi

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣. (18)

In equation (18), yi represents the ith observed value and
€yi represents the ith imputation result. 
e smaller the
MAPE, the better the imputation performance.

3.2. Results’ Analysis. 
e results of experiments of MLP-
MICE are shown in Table 5.

Table 5 and Figure 6(a) show that the model has the best
imputation performance for continuous missing-subset I
when the missing rate is 30%. 
e imputation accuracy of
the model changes abruptly when the missing rate is 60%.
And the model has the best imputation performance for
continuous missing-subset II when the missing rate is 10%.

e imputation accuracy of the model changes abruptly
when the missing rate is 40%.

Table 5 and Figure 6(b) show that the model has the
best imputation performance for jumped missing-subset
I when the missing rate is 10%. 
e imputation accuracy
of the model changes abruptly when the missing rate is
60%.

When the missing rate is between 10% and 30%, the
MAPE of the most imputation result is between 6.38% and
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Figure 8: Comparison of the subsets’ di¢erences of the VDS. (a) Subset di¢erences’ comparison and (b) imputation performance
comparison.

Table 7: Comparison of imputation results of di¢erent models on continuous missing (MAPE).

Imputation method Subset I (α�10%) Subset II (α� 30%) Imputation method Subset I (α�10%) Subset II (α� 30%)
MLP-MICE 4.42 14.88 Random Forest 5.72 17.11
MLP 5.75 16.17 Ababoost 6.77 29.71
KNN 7.33 25.51 Gradient rise 5.71 17.37
Decision tree 8.68 19.77 Bagging 7.51 21.44
SVR 8.38 91.97 Extremely random tree 7.69 24.15
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30%, which illustrates that the proposed model has good
imputation performance [31–50].

In this case, the adjacent di¢erence is de�ned as the
absolute value of the di¢erence between the adjacent

tra�c volumes in the same VDS during a certain period.
Total di¢erence in a data subset is called subset di¢er-
ences, which measures the degree of the mutation of data
subsets. 
e less ¡uctuation of the tra�c volume in a
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Figure 9: Imputation results and comparison of the proposed model with other models on the same data subset. (a) Continuous missing
and (b) jumped missing.
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Table 8: Prediction experiment results of other VDS.

VDS no. Imputation method SVR-MAPE (%) VDS no. Imputation method SVR-MAPE (%)

VDS-1 MLP-MICE 46.12 VDS-4 MLP-MICE 19.71
All zero 128.40 All zero 19.75

VDS-2 MLP-MICE 26.13 VDS-5 MLP-MICE 16.99
All zero 14.78 All zero 18.16

VDS-3 MLP-MICE 24.19
All zero 44.97
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Figure 10: Continued.
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certain period happens, the smaller the value of subset
di¢erences is.

Table 6 and Figure 7 show the adjacent di¢erence
probability distribution among VDS-1, VDS-2, and VDS-4
is relatively uniform, while the variances are larger among
VDS-1 to VDS-5. Comparing with jumped missing, the
imputation performance of continuous missing of these
three detectors is better, and VDS-3 and VDS-5 with rela-
tively concentrated adjacent di¢erences have better impu-
tation results in jumped missing. 
e curve concentrates to
the left, which means stable data because the adjacent dif-
ference probability distribution describes the degree of the
mutation of the tra�c volume. 
erefore, when the tra�c
volume changes signi�cantly, the continuous missing im-
putation performance is better. When the tra�c volume
changes stably, the imputation performance for jumped
missing is better.


e main di¢erence between subset I and subset II is the
value of subset di¢erences, as shown in Figure 8. 
e results
of Table 5 and Figure 8(a) show that the imputation model
has better performance for subset I, which means that MLP-
MICE has better imputation performance for data subsets
with smaller “subset di¢erences.”

From Figure 8(b) and Table 5, we can see that, for the two
subsets, the higher the subset di¢erences, the lower the
imputation performance ofMLP-MICE. And for continuous
missing, the model has higher imputation performance for
data subsets with small subset di¢erences. While for jumped
missing, the imputation performance is not strictly related to
the subset di¢erences. However, in general, the imputation
performance for data subsets is better when the subset

di¢erence is smaller. We can draw the conclusion that MLP-
MICE has high imputation performance for the data subsets
where the mutation degree is low.

To verify the performance of the proposed model, re-
gression imputation methods such as MLP, KNN, decision
tree, SVR, and random forests are chosen for comparison
experiments. Input subsets I and II into separate models and
set the missing rate to 30% and 10%, respectively.
e results
are shown in Table 7.

Table 7 shows that the MAPE of the proposed model is
lower than the other methods in each test. To verify the
performance of existing missing imputation models, MLP,
decision tree, and random forest are chosen by the average
MAPE of imputation on both data subsets to do more tests
on subsets I and II on continuous missing and jumped
missing. Set the missing rate to 10–80% with the gradient at
10% and compare them with the imputation results of MLP-
MICE, respectively. 
e results in Figure 9 show that MLP-
MICE has good imputation performance and also proves the
superiority of the proposed imputation model.

Finally, the proposed model is tested in the short-term
prediction of tra�c volume. 
e MLP-MICE with a missing
rate of 20% is constructed to perform regression imputation
on jumped missing and continuous missing of the collected
dataset in Section 3. Meanwhile, all-zero imputation was
taken as the comparison. Short-term prediction of tra�c
volume is carried out with the support vector machine
model.


e dataset that complete the missing value by di¢erent
imputation methods was taken as the input data, and the
short-term tra�c volume prediction on the last six hours (24
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Figure 10: MLP-MICE imputation application analysis results of VDS-1 to VDS-5. (a) VDS-1, (b) VDS-2, (c) VDS-3, (d) VDS-4, and (e)
VDS-5.
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data volumes) was taken as an example. Comparing with the
datasets whose missing values are all replaced by 0, the
MAPE calculated from the prediction of the dataset with
MLP-MICE repairing is significantly better. )e results are
shown in Table 8 and Figure 10.

Figure 10 shows that the prediction accuracy of VDS-1,
VDS-3, VDS-4, and VDS-5 increases compared to all-zero
imputation, while VDS-2 decreases because continuous
zeros are recognized as outliers by SVR, which makes the all-
zero imputation dataset predicted by SVR better. Despite the
above defects, the average of the MLP-MICE imputation
MAPE is 26.63%, while the MAPE of all-zero imputation is
45.21%. )erefore, the MLP-MICE can effectively improve
the accuracy of short-term prediction of traffic volume.

4. Conclusions

)is study proposes the MLP-MICE imputation model
optimized by the L-BFGS algorithm, in which temporal and
spatial characteristics of freeway traffic volume have been
considered. According to the experiments and application
analysis of the real-world data, the following conclusions can
be drawn. (i) )e proposed MLP-MICE in this study has
better imputation performance and a strong superiority
compared with other models. (ii) )e imputation perfor-
mance of the proposed model is better for continuous
missing than for jumped missing. In the imputation process
of the missing value of traffic volume data, the more
smoothly the data change, the better the imputation per-
formance of MLP-MICE in jumped missing is. When the
traffic volume changes significantly, the imputation per-
formance of MLP-MICE for continuous missing is im-
proved. (iii) Whether continuous missing or jumped
missing, there is always a gap of imputation performance
among different data subsets that are from the same dataset
but have a diverse degree of mutation.)e smaller the degree
is, the better the imputation performance of the missing
value is. )e gap between the imputation performances
widens with the concentration of datasets and narrows with
the divergence of datasets. (iv) For freeway traffic volume
data, the proposed model is applied to conduct a short-time
traffic prediction can get a more accurate result than only
filling the missing data with zero. However, spatial and
temporal characteristics of traffic flow are mainly considered
for the imputation model in this study, but features such as
weather, road conditions, and travel demand may also have
an influence on the imputation performance, which can be
considered in further study.
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