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Considering the operation efficiency of the metro system, the boarding queuing problem is a complex and intractable dilemma
caused by the security and ticket checking process in urban metro stations, especially for the mass-transit metro system in China.
In this study, a novel scheme of fare differentials based on demand control and congestionmanagement for reducing congestion in
the metro boarding process was proposed. In addition, we extended Vickrey’s point-queue model into a boarding congestion
model incorporating the bidesired departure time considering the security and ticket checking process in stations as a continuum
bottleneck.*e train-run and departure time choosing behaviors of passengers under different schedule gaps of the adjacent train
runs are explored when the boarding system achieves user equilibrium in the proposed model. *en, we examined the demand
regulatory mechanisms of fare incentives (fare differentials) in reducing the queuing boarding time in metro stations when the
optimization of the schedule gaps is ineffective in the pattern of mass-scale travel demand. *e analytical solutions of these two
optimal methods (schedule gaps and fare differentials) for boarding congestion management are presented. After comparing the
two congestion-reduced methods, the fare incentive rule has a better regulation effect on the smoothing of travel demand. *e
results of the sensitivity analysis using numerical simulations reveal the regulatory mechanism of fare differentials in reducing the
queuing time and increasing the incremental revenue. (1) *e demand threshold is only related to the boarding capacity and
schedule gaps (i.e., the greater the boarding capacity and schedule gaps, the greater the passenger capacity of themetro station). (2)
*e effect of fare incentives in reducing the boarding congestion is better if the lower fare is implemented in the later train runs. (3)
A lower fare differential between two adjacent metro runs can be used to regulate the proportion of staggered passengers in the
queuing line to reduce the crowd gathering in the metro station hall when travel demand is high, meanwhile, a higher fare
differential between two adjacent metro shuttles can increase incremental revenue effectively. (4)*e measure of fare differentials
causes worse results in both the reduction of the queuing time and the increase of the incremental revenue when the metro travel
demand is lower than the demand threshold. *is conclusion is consistent with the pattern of reality and experience. *erefore,
the definition and judgment conditions of demand thresholds, introduced in this study, can provide theoretical guidance when
implementing fare incentive policies in aviation and metro networks.

1. Introduction

With the rapid increase in travel demands in urban areas,
high passenger flow becomes a common phenomenon in the
metro systems of some large cities, especially during
morning rush hours. Scholars from various countries gen-
erally believe that adopting a dynamic and diversified ticket
strategy can effectively change the times at which passengers
travel, increase travel during nonpeak hours, and alleviate

peak passenger flow congestion. At the same time, the
analysis of passenger flow data shows that the passenger flow
of metro transit not only has peaks and troughs throughout
the day but also has obvious peaks and troughs during the
peak period itself. To ensure safety and improve the oper-
ational efficiency of the metro system, it is necessary to
explore the boarding queuing problem in metro systems.

*e boarding queuing problem is a complex and in-
tractable issue in the transportation system, owing to its
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significant influence on the travel choice behavior of pas-
sengers at the macro level and the operation efficiency of the
transport network at the microlevel. *e boarding process of
passengers is composed of various related links, such as ticket
purchase, security checking, lining for boarding, headway of
metro, and luggage handling. In the past few years, the dif-
ferent focuses of the studies on the boarding queuing problem
can be broadly classified into three types: (1) modeling, op-
timization, and simulation of the boarding process in different
transportation scenes (e.g., [1–6]); (2) analyzing the effects of
boarding congestion on travel behavior and departure time
choice (e.g., [5, 7, 8] and (3) improving the operation effi-
ciency of boarding congestion management (e.g., [6, 9, 10].

1.1. Different Modeling Perspectives of the Boarding Process.
In the modeling and simulation of boarding flows, the
boarding characters of passengers can be analyzed at the (1)
macroscale (no-individual differences) [2, 11] (2) microscale
(individual differences) [7, 10, 12, 13], or (3) middle-scale
(group behaviors of similar passengers) [8, 14–16], with
respect to the evaluation scale of factors affecting the
boarding behavior, including passenger’s motion and pre-
vious experience. Boarding models considering passengers
with no-individual differences are usually developed to
provide an effective method for the optimization of the
planning timetable by calculating the bus/metro dwell time
[7, 17, 18]. It can be used to evaluate the efficiency of op-
eration measures in public transit or other transportation
systems such as metro [19] and aviation [9, 20] systems.
Boarding models considering the individual preference of
passengers can better describe the effect of congestion-re-
duced strategies on individual boarding behavior. However,
boarding bottleneck models are usually presented using
numerical simulations because the analytical solutions
cannot be obtained easily [13]. As a result, boarding models
considering group behaviors of similar passengers formed in
the boarding process have gained attention. For example,
some measures of passenger classification are developed
based on the similar characteristics of seat number allocation
and the size of hand-luggage to speed up the metro boarding
process [21, 22]. In addition, the study of [8] established a
group-based boarding scheme using a similarity analysis of
the individual properties of four influencing factors. *ey
found that the positive impacts of group-based boarding
behavior on the operation efficiency can be more significant
with an increasing number of groups. Moreover [15], de-
veloped a bigroup (leader-follower) boarding model to
simulate the boarding process in a metro station. Numerical
examples show that the group-based principle is suitable for
the realistic modeling and simulation of boarding flows.

1.2. Impact of Boarding Congestion on Passenger Distribution.
Many studies have found that the service time of passengers
caused by peak-hour boarding congestion can affect the
travel behavior of passengers and their departure time choice
[6, 19], which occupies a significant position in the dwell
schedule of public transport [23, 24], and affects the capacity
design of service facilities such as security and ticket

checking equipment in metro stations [25]. [26, 27] in-
vestigated the equilibrium behavior of the departure time
choice of passengers when the security checking process in
rail stations and airports is regarded as boarding congestion.
[25] modeled the boarding congestion from a mixed non-
linear type (simulation one) to explore the effect of boarding
congestion on the arrival time distribution of passengers and
achieved an optimal result of both operation efficiency
improvement and passenger boarding time savings.

Recently, a date-oriented analytical method has been
developed to obtain arrival time distribution equilibrium of
passengers considering the boarding process in metro sta-
tions [23, 28]. [28] imported the date of the arrival time of
passengers collected in three metro stations into eight
existing model of distributions and found that the Hyper-
Erlang distribution is most suited to the behavior of de-
parture time choice of passengers under boarding conges-
tion. *e study of [23] established a model of the estimated
boarding time to explore the behavior of passengers arriving
on schedule and collected large-scale travel information
from the Greater Copenhagen Area covering the regional
metro network. *e simulation results show that the actual
timetable and high service frequencies help reduce 43% of
the boarding congestion.

1.3. Operation Efficiency of the Boarding Demand
Management. *e boarding demand management aims to
redistribute the concentrated travel demand in the waiting
station from the temporal and spatial perspectives and
improve the operation performance in different transport
systems. Two alternative methods of boarding congestion
management have been widely studied and can be roughly
classified into two categories: optimization-based boarding
process management [29–33] and incentive-based boarding
process management [2, 5, 34–36].

Passenger classification, which is a commonly used
measure of optimization-based boarding process manage-
ment, is developed for the process of security and boarding
check to reduce the total boarding time. Most studies on
passenger classification based on different individual char-
acteristics concentrate on boarding issues, especially in the
airport boarding process [33, 37, 38]. *e family-based
boarding in cliques [33], the setting of fast checking queues
[14], and the hand-luggage based boarding in cliques [8]
have been proven to have a positive impact on efficiency in
the air boarding process.

*e policy of boarding demand management in airports
can also be useful in subway passenger management.
Moreover, the timetabling optimization [23, 32, 39, 40] and
the design of the dwell time [17, 24] can direct passengers
and obtain a better transport service by avoiding boarding
congestion. Results show that the loading of peak-hour
demand can be effectively transferred to downstream until
the demand of the system is solved.*erefore, optimization-
and incentive-based boarding process management are used
collaboratively in metro systems to smoothen the centralized
travel demand of passengers. However, the optimization-
based methods for metro boarding management involve
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high planning and management costs because they require
real-time monitoring and optimization for passenger flow.
In addition, these methods are strongly dependent on the
capacity of the boarding and checking facility, such as the
size of the boarding and waiting platform of the metro
station, the number of ticket or security checking facilities,
the headway of the metro, and the capacity of the designated
entrance and exit. *erefore, they are considered as less-
practical approaches due to the limited funds and space in
the boarding process.

*e incentive-based demand control strategies have more
flexible extensive application scenarios and low operating
costs compared to optimization-based methods. In addition,
incentive-based demand control strategies can utilize trade-
offs that exist between passenger preferences for departure
and arrival times, comfort and crowding, and travel cost
[2, 35]. *ree alternative incentive-based strategies, which are
all widely studied in the literature, include the staggered shifts
or early bird [41], fare differentials [5, 36], and real-time
information based methods [42]. Various studies regarding
these three strategies usually exploit the theory of user
equilibrium (UE) and system optimal (SO) under certain
conditions to balance the relationship between the disutility of
the schedule delay and the willingness to pay quantitatively
[43]. Many studies [44] have indicated that the measure of
stagger shift such as flexible working mechanism can bring
potential direct benefits to the efficient operation and sus-
tainable development of urban transit systems. *e measure
of staggered shifts implemented in Singapore [45], Melbourne
[46], Beijing [47], and Tehran [48] (usually in the form of free
“early bird tickets”) have been proved to be an effective policy
for congestion mitigation when the transit system reaches its
capacity [5, 49]. *e study of [41] introduced an interesting
lottery-based staggered incentive scheme to smoothen the
demand during commuting peak hours. *e results of an
experimental economic analysis indicate that this lottery-
based scheme not only helps reduce the boarding congestion
in peak hours but also boosts the usage rate of public transit
during off-peak periods. Considering that the use of off-peak
hours to travel normally has a high schedule delay cost for
passengers without strong flexible working hours, [35] de-
veloped a biobjective design scheme of fare differentials at two
neighboring train stations when the total travel demand is
uncertain and obtained two analytical results for reducing
boarding time: the SO solution and equity-based UE solution.
*e study of [50] explored how the policy of fare incentives
affects the peak-hour travel demand and choice behavior of
passengers given Australia’s public transit smart card data of
fare incentives imposed in the southeast area of Queensland.
A statistical analysis shows that the PT travel demand in-
creases as fare prices decrease, which results in overall revenue
gain. Meanwhile, the study of [42] established a simulation-
based model with three aspects of guidance information (in
this study, all passengers are assumed to obtain all details of
boarding congestion and know all information of timetable
and the crowding level on each run.) to explore the impact of
real-time information on passenger travel choice behavior
and obtain an ideal simulation result.

1.4. Approaches to Modeling Boarding Congestion in Metro
System. *e economic bottleneck model [51], which is
elaborated by [52, 53], is extensively used as a common
approach in economic analysis to model the boarding
congestion (crowding) and fare incentive schemes
[5, 6, 34, 54, 55]. *ere are five main types of fare incentive
methods that reduce the boarding or crowding congestion in
metro systems, including the flat fare scheme [56, 57], the
step fare scheme [58], the time-varying fare [2, 59], the trial-
and-error fare scheme (e.g., [34, 35], the fare reward scheme
[5], and the hybrid fare scheme [55, 60]. Over the past
decades, the initial measures of the flat fare scheme devel-
oped by [61, 62] is prevalent in the early development of
metro demand management due to its low-cost character-
istic. However, this method is gradually replaced by other
differentiated fare methods due to the disadvantage of in-
equitable social welfare (especially for passengers with short-
distance and off-peak demand) [36, 63]. In a previous study
by [2, 59], they derived a biobjective fare scheme for a metro
system to explore the equilibrium patterns of a three fare
scheme (no-fare, flat fare, and time-varying fare), and the
optimal system capacity and improved social welfare were
analyzed. In addition, they discovered that the time-varying
fare scheme can smoothen the overconcentrated travel
demand and generate more revenue than other metro fare
schemes.*e study of [58] proposed an analysis model of the
differentiated fare including single-step and multi-step
pricing strategies that aim to reduce the total cost of a metro
transit system. Here, they discussed the equilibrium arrival
time choice of passengers and obtained the optimal schedule
gap of metro runs under a certain demand pattern. *e
numerical simulation demonstrates that the more fare steps,
the more distribution of arrival times of passengers and the
lower the system cost. [34, 35] applied the traffic toll theory
of Vickrey’s bottleneck model to the studies of boarding/
alighting congestion and developed a novel fare measure
including a trial-and-error scheme to smoothen the peak-
hour commuting metro demand. *e study of [5] described
the complimentary tickets scheme to encourage commuters
to travel during off-peak hours, which they called the “fare-
reward scheme.” *e optimal fare differentials and the
optimal reward ratio were determined by an analytic so-
lution under demands. Considering the heterogeneity of the
preferred schedules of passengers, the study of [60] proposed
a hybrid metro fare scheme by mixing the fare-reward and
uniform fare scheme. *e analytical results (including UE
and SO solutions) and numerical simulation show that this
novel fare scheme can significantly reduce travel cost.

1.5. Objectives and Contributions of.is Study. In this study,
we adapted a novel fare incentive scheme to model the
boarding process, regarding the security and ticket checking
process as a limited bottleneck in themetro station. In addition,
we extended the Vickrey’s classical model into a boarding
congestion model with a bidesired departure time (hereafter
called a biboarding bottleneck model). *e train-runs selecting
and departure time choosing behaviors of passengers under
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different schedule gaps of adjacent train runs are explored
when the boarding system achieves UE in the proposed
boarding congestion model. *en, we examine the demand
regulatory mechanisms of fare incentives for reducing the
queuing boarding time in metro stations when the optimi-
zation of schedule gaps is ineffective in the pattern of mass-
scale travel demand. Meanwhile, we introduce a concept of
demand threshold (N∗) in the extended boarding congestion
model to determine whether the current travel demand has
already exceeded the capacity of the boarding service. *e
contribution of this study can be summarized as follows:

(1) Considering the boarding congestion in the security
checking and boarding process, a method is pre-
sented to determine the threshold of the travel de-
mand in metro stations. *is method can be used to
confirm the condition when introducing the mea-
sure of fare incentives to balance the boarding
congestion.

(2) Sensitivity analyses are conducted to investigate the
effect of fare incentives on boarding efficiency and
incremental revenue in analytical solutions and
numerical simulations. *e results answer the
question, “how should we use the measure of fare
incentives to balance the boarding congestion?”

(3) *e result of the fare differentials shows that the flat
fare scheme is not beneficial for some passenger
travel patterns.

*is study aims to find an optimal way in reducing the
boarding congestion. *is study also answers the following
questions:

(i) Can we design appropriate measures to help reduce
the boarding congestion without infrastructure
expansion

(ii) When can we introduce the measure of fare in-
centives balancing the boarding congestion

(iii) How do we design a fare incentive scheme to
smoothen the peak-hour demand

(iv) Can these policies achieve the expected results

*e rest of the paper is organized as follows: in Section 2,
we present the review of the literature. In Section 3, we
discuss the descriptions of the boarding bottleneck model
and cost formulations for staggered commuters. In Section
4, the sensitivity analysis of the staggered shifts is conducted.
Here, the evolution of the boarding process in a metro
station is also shown in the analysis. In Section 5, we ex-
amine the effectiveness of fare incentives in the boarding
model when the queuing system achieves UE, and the
numerical illustrations are shown. Finally, the conclusions
are presented in Section 6.

2. Model Framework

Considering the security and ticket checking process as the
main boarding bottleneck, we focus on introducing a novel
biarrival time-based boarding congestion model to analyze

and evaluate the operational effectiveness of fare incentives
for the boarding congestion problem in metro stations. *e
notations used in this study are listed as follows.

2.1. Notations. Model parameters (all positive scalars)

i: Set of metro service runs i/i ∈ 1, 2{ }

i � 1: Metro train cluster during rush hours
i � 2: Metro train cluster during flat hours
α: Unit cost of walking time from entrance of metro
station to platform
β: Unit cost of early arrival penalty
τi: *e fare of the i-th metro service run
t∗i : Departure time of the i-th metro service
Δt: Schedule gap between metro train clusters during
rush hours and flat hours
Δτ: *e fare differentials of metro train clusters during
rush hours and flat hours
s: Boarding (checking) capacity of metro station
(person/gate/min)
ω: Number of metro trains during rush hours and flat
hours
N: Total number of passengers
Ni: Total number of passengers of different metro
service runs

Time-varying variables

qi(t): Queuing length for passengers on i-th metro
service run with arrival time t

Ti(t): Total travel time for passengers on i-th metro
service run with arrival time t

Tw
i (t): Total queuing time for passengers on i-th metro

service run with arrival time t

T
f
i (t): Total free-flow walking time for passengers on

i-th metro service run with arrival time t

Tb
i (t): Boarding time of passengers on i-th metro

service run with arrival time t

Ei(t): Early boarding delay for passengers on i-th metro
service run with arrival time t

ri(t): Arrival rate of passengers on i-th metro service
run with arrival time t

ci(t): Boarding cost of passengers on i-th metro service
run with arrival time t

ta
i : Earliest arrival time for commuters who take i-th
metro service run
tb
i : Latest arrival time for commuters who take i-th
metro service run

2.2. Model Description and Main Assumption.
Considering the metro transport line that connects a resi-
dential city and a destination, a continuum of N homo-
geneous passengers go to the metro station to take their
desired train runs during rush hour, forming a boarding
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queuing bottleneck with capacity s in consideration of the
requirements in security, identity, and ticket checking; the
details can be seen in Figure 1. Supposing that there are two
different metro service runs in the same line during rush
hour, denoting their departure time as t∗1 , t∗2 , respectively,
and there are also two groups of corresponding passengers,
N1, N2, regarding the schedules above as their desired
boarding time. Let T

f
i (t) be the free-flow walking time of

different groups of passengers from the entrance gate to the
checking infrastructures who arrive at the entrance of the
station at time t. Here, we assume that passengers differ only
by the departure time t∗i and fare differentials Δτ of their
desired metro service runs. *erefore, without the loss of
generality, we have T

f
1 (t) � T

f
2 (t) � 0. In addition, the

following assumptions are made in this study:

(i) In general, after the security check, passengers will
walk to the waiting hall to conduct the ticket
checking process. *en, they will board on the
desired metro service runs. We assume that the
waiting time between security checking and ticket
checking is zero due to a fact that passengers must
take the desired runs if they were already in the
waiting hall, but they must miss their desired train if
they fail to pass the security process punctually.
*erefore, the waiting time before ticket checking
can be ignored in this study.

(ii) *e walking time from the checking infrastructures
to the waiting platform is ignored in this study since
there is no queuing congestion during this process.

(iii) *e desired departure time t∗1 , t
∗
2 satisfies t∗1 − t∗2 > 0.

*erefore, the timetable interval of these two
neighboring metro runs is Δt � t∗2 − t∗1 .

2.3. Estimating the Queuing Congestion: Vickrey’s Classic
BottleneckModel. *e pedestrian flow forms a queue before
entering the checking bottleneck when their arrival rate ri(t)

exceeds the service capacity based on the Vickrey’s classic
bottleneckmodel (without considering the pattern caused by
the spillover). *e boarding congestion in the metro station
occurs during the interval t ∈ [ta

1 , tb
2] by combining as-

sumptions (i), (ii), and (iii). In addition, ta
1 and tb

2 can be also
regarded as the passengers’ earliest and the latest time to
encounter queuing, respectively.

Here, Ai(t) and Di(t) are the cumulative arriving and
boarding curves of different groups of passengers who arrive
to the metro station at time t, respectively. *e passengers’
queuing length for the i-th metro service run can be modeled
using the following:

qi(t) � Di(t) − Ai(t) � 􏽚
t + Ti(t)

t
sdx, (1)

qi(t) �
􏽚

t

ta
i

ri(x) − s( 􏼁dx, if qi(x)> 0,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩
(2)

Here, Ti(t) is the passengers’ total commuting time for
the i-th metro service run. In this model, we regarded the
waiting time Tw

i (t) as the walking free-flow time
(Tf

1 (t) � T
f
2 (t) � 0). *e change rate of the queuing length

can be simplified as an ordinary differential equation.

dqi(t)

dt
� r t − t

a
i( 􏼁 −

s, if qi(t)> 0,

min r t − t
a
i( 􏼁, s􏼈 􏼉, otherwise.

⎧⎪⎨

⎪⎩
(3)

Based on (1), (2), and (3), the total travel time for dif-
ferent groups of passengers who arrive to the station at time t

and take the i-th metro service run is

Ti(t) � T
w
i (t) �

qi(t)

s
. (4)

2.4. EstimatingQueuingCost:Vickrey’s Time Schedule Penalty
Scheme. Based on the classical ADL model of the morning
commute problem [52, 64], the generalized passengers’
queuing cost ci(t) is formulated in this subsection when the
staggered passengers’ desired departure time is t∗i and their
arrival time is t.

For passengers choosing the i-th metro service, their
travel cost includes the boarding time cost, schedule early
penalty, and fare cost of the metro service. Let c1(t),, c2(t) be
the total boarding cost for passengers with the desired de-
parture time t∗1 , t∗2 with arrival time t, respectively.

c1(t) � αT1(t) + β t
∗
1 − t − T1(t)( 􏼁 + τ1, (5)

c2(t) � αT1(t) + β t
∗
2 − t − T1(t)( 􏼁 + τ2, (6)

where α and β are the unit cost of queuing time and schedule
early penalty, respectively. In (5) and (6), τ1 and τ2 are the
fares for passengers with desired departure times t∗1 and t∗2 ,
respectively (We assume τ > α> β in this study adopted from
the parameter estimation in Vickrey’s bottleneck model by
[65] and the research of optimal pricing in rail transport
considering bottleneck congestion [66]). *e fare is constant
between the same OD pair in the operational metro service
line. Moreover, we introduce a factor of fare differentials

t

Queuing ProcessStation
Entrance 

Waiting
Platform 

Checking Process Waiting for BoardingWaiting for Checking

Tf (t)
N/s

Ti
b (t)Ti

b (tia) Ti
b (tia) = ti*t+Ti

f (t)

Ti (t) Ei (t)

Figure 1: *e temporal and spatial boarding process in a metro station.
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(Δτ � τ2 − τ1) in different metro service runs to get a better
effect of the boarding congestion control. According to
assumptions (i), (ii), and (iii), the desired boarding time for
different groups of passengers can be regarded as the de-
parture time of the corresponding metro service runs.

In our boarding congestion model, passengers prefer to
select the optimal departure times to make trade-offs among
the queuing time, schedule delay time, and ticket price.
Finally, the system will result in a dynamic user equilibrium
(DUE). First, we discuss the properties of the DUE for
passengers with desired departure time t∗1 and metro service
fare τ1. Moreover, ta

1 and tb
1 are the earliest and latest arrival

times for passengers, respectively. We differentiate (5) with
respect to t and set it to zero (dc1(t)/dt � 0). *en, the
arrival rate to the metro station when the boarding system
achieves equilibrium is given by the following equation:

r1(t) �
α

α − β
· ω · s, t ∈ t

a
1, t

b
1􏼐 􏼑. (7)

*e passengers who choose the earliest arrival time ta
1

will not meet queuing, and the passengers who choose the
latest arrival time will get on the trains on time under the
consideration of no late arrival. *e travel costs of this group
of passengers meet the following requirements:

c1 t
a
1( 􏼁 � β t

∗
1 − t

a
1( 􏼁 + τ1,

c1 t
b
1􏼐 􏼑 � α t

∗
1 − t

b
1􏼐 􏼑 + τ1.

(8)

*e earliest and latest arrival times for this group of
passengers are given by equations (10)–(11) by combining
the condition of full-capacity operation during the boarding
process t∗1 − ta

1 � N1/s.

t
a
1 � t
∗
1 −

N1

s
,

t
b
1 � t
∗
1 −

β
α

N1

s
,

(9)

T(t) �
β

α − β
t − t

a
1( 􏼁, t ∈ t

a
1 , t

b
1􏼐 􏼑. (10)

Subsequently, we can easily obtain the individual travel cost
for passengers on the metro service run with desired departure
time t∗1 when the boarding system achieves UE state.

c1(t) � β ·
N1

s
+ τ1. (11)

*rough a similar approach, the individual travel cost for
passengers on the metro service run with desired departure
time t∗2 is

c2(t) � β ·
N2

s
+ τ2. (12)

*e benchmark pattern of the passengers has the same
properties of the arrival time choice when the schedule gap
of neighbor metro runs is Δt � 0 and the total demand
satisfies N � N1 or N � N2, then different groups of pas-
sengers will achieve UE independently. Assume there are no

fare differentials between two neighboring metro service
runs in the benchmark pattern τ � τ1 � τ2, then the total
boarding-queue time (TBT) and total travel cost (TTC) are
expressed as follows:

TBT �
β
α

·
N

2

4ωs
, N � N1 orN � N2,

TTC � β ·
N

2

ωs
+ Nτ, N � N1 orN � N2.

(13)

3. Biboarding Bottleneck Model with No-
Fare Differentials

In this section, we discuss all possible congestion patterns in
the boarding system when the fares of neighboring metro
service runs are the same. In addition, the queuing time and
boarding cost analysis are conducted to obtain the optimal
schedule gap when the boarding system achieves UE. *e
total boarding cost for two groups of passengers on different
metro service runs can be expressed as follows:

TBC � 􏽘
i�1,2

αTi(t) + β t
∗
i − t − Ti(t)( 􏼁 + τi􏼈 􏼉. (14)

3.1. Fundamental Properties of the Biqueuing Model.
Based on the principle of UE in the queuing bottleneck
model, the passengers with different desired departure times
have the same boarding cost and all passengers arriving at
the metro station will board their desired runs. However, we
provide propositions to explain the equilibrium properties
in the mixed boarding system for further analysis.

Proposition 1. With a given schedule gap of the metro
service between rush hours and flat hours Δt and headway of
metro s, the UE of the mixed boarding system cannot be
achieved when N2 >Δt · s.

Proof. A boarding queue forms during rush hour due to the
limited capacity of the metro headway in the boarding
process. *erefore, the maximum number of passengers
arriving to the metro station and boarding the metro train
runs successfully between time t∗1 and t∗2 is Δt · s. All these
passengers have a desired departure time t∗2 and board the
corresponding metro runs. If N2 � Δt · s, the earliest arrival
passenger who wants to take the metro run with a departure
time t∗2 will meet the latest one who takes the previous metro
run with a departure time t∗1 based on the property of the
boarding pattern shown in Figure 2(b). *erefore, if the
arrival passengers between the time t∗1 and t∗2 exceed
maximum bottleneck capacity in number (N2 >Δt · s), there
must be extra passengers with desired departure time t∗2
arriving at the station before the time t∗1 because they will
miss their desired metro run if their arrival time is later than
t∗2 . *ere will be a mixed queue composed of different types
of passengers on the waiting platform. Suppose that the
staggered passengers meet the mixed queue when they arrive
to the metro station at time t, then the queuing cost for the
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staggered passengers who arrive at the station at time t can
be expressed as follows:

c1(t) � αT(t) + β t
∗
1 − t − T(t)􏼂 􏼃 + τ1, (15)

c2(t) � αT(t) + β t
∗
2 − t − T(t)􏼂 􏼃 + τ2. (16)

With the condition of no fare differential (τ1 � τ2) and
Δt � t∗2 − t∗1 > 0, the boarding cost of passengers who have
the desired departure time t∗2 is higher than other passengers
who want to depart at time t∗1 (c1(t)< c2(t)) when
N2 >Δt · s. *erefore, the assumption of N2 >Δt · s does not
hold. □

Proposition 2. With a definite schedule gap of metro service
runs Δt and boarding bottleneck capacity s, the number of
staggered passengers is equal (N1 � N2) if the boarding

system with biservice runs achieves UE under the condition of
N2 ≤Δt · s.

Proof. According to Proposition 1, the mixed boarding
system can achieve UE if the number of arrival passengers
between the time t∗1 and t∗2 are less than the maximum
bottleneck capacity (N2 ≤Δt · s). In addition, according to
the condition of UE (equal cost for all commuters in the
commuting system, c1(t) � c2(t)), we can get the result
N1 � N2 when N2 ≤Δt · s by combining the boarding cost
formulas presented in (11) and (12). □

Theorem 1. If the total travel demand of the metro biservice
runs satisfies the condition N≤ 2Δt · s, and the number of
different passengers is equal (N1 � N2), the biboarding sys-
tem achieves UE when the number of passengers with different
desired times is equal (N1 � N2).
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Proof. According to Proposition 1 and Proposition 2, we
know that the boarding system with staggered passengers
cannot achieve UE when the number of passengers satisfies
N2 >Δt · s. If N1 � N2, the boarding system of staggered
passengers can achieve UE when N2 ≤Δt · s. Considering
N � N1 + N2, if N1 � N2, the boarding system can achieve
UE when N≤ 2Δt · ωs. □

Theorem 2. If the total travel demand for biservice runs of
the metro service satisfies the condition N> 2Δt · s, the
number of passengers who want to depart at time t∗2 is equal to
Δt · ωs (N2 � Δt · ωs) and the number of passengers with
another desired time t∗1 is N − N2 (N1 � N − N2) when the
commuting system achieves UE.

Proof. See Appendix.
All four possible equilibrium boarding patterns with

mixed passengers who have different desired departure
times is presented in Figure 2 when the key time points (ta

1,
tb
1, ta

2, tb
2) are derived. For instance, if the schedule gap of

neighboring metro runs, Δt � t∗2 − t∗1 , is smaller (see in
Figure 2(c)), some passengers on two neighboring metro
runs will meet in the checking process, which means that
they will mix and line up for checking and boarding between
the time ta

2 and t∗1 . If Δt � t∗2 − t∗1 is extremely large (much
larger than (N1 + N2)/s), the checking and boarding of
passengers with different desired departure times happen at
different times, separating their boarding activity, as shown
in Figure 2(a). However, the checking and boarding capacity
of the metro station is wasted between the time t∗1 and ta

2, at
this time there are no passengers waiting for the security
check, which reduces the operational efficiency of the
boarding system during peak hours. *e boarding pattern
shown in Figure 2(b) is a critical one between the patterns in
Figures 2(a) and 2(c). *e difference is that two types of
passengers are more connected (i.e., the earliest arrival
passenger with desired departure time t∗2 joins the boarding
queue behind the latest arrival passengers with desired
departure time t∗1 ) as the schedule gap Δt of neighboring
metro runs becomes smaller. It follows that there is no
wasted time in the checking and boarding process between
the two types of passengers on adjacent metro runs.
*erefore, it is very important to set an optimal schedule
interval between two neighboring metro runs that will
improve the operation efficiency of the boarding system and
control the gathering of passengers during rush hours. □

3.2. Coordination of Optimal Schedule Gap with No-Fare
Differentials. *e coordination of the schedules of the metro
service runs are investigated to reduce the total boarding
queuing time and travel cost when there are no fare dif-
ferentials. Assume N∗ � 2Δt · s as the threshold of the travel
demand in two neighboring metro service runs, then the
queuing time and boarding cost under the condition of UE
in staggered passengers will be analyzed in two patterns:
when the total travel demand does not exceed the threshold
of demand in two neighboringmetro service runs N≤ 2Δt · s

and when the total travel demand exceeds the corresponding
threshold. N> 2Δt · s

According to Proposition 2 and *eorem 1, for the first
pattern (N≤ 2Δt · s), the number of passengers with dif-
ferent desired departure times is equal (N1 � N2) when the
biboarding system achieves UE. For the total boarding
process, the boarding queuing length displays two equal
peaks, whose value is half of the benchmark pattern, as
shown in Figure 2(a).

TBT and TTC can be expressed by (17) and (18) by
combining equations (11)–(13).

TBT �
β
α

·
N

2

4s
, (17)

TTC � β ·
N

2

s
+ Nτ, (18)

where τ is the same for staggered passengers under the
assumption that there are no fare differentials.

According to Proposition 2 and *eorem 1, if the total
travel demand in two neighboring metro service runs sat-
isfies the patternN> 2Δt · ωs, the number of passengers who
will take the next metro run is equal to Δt · s (N2 � Δt · s)
when the biboarding system achieves UE. Subsequently, the
number of passengers who will take the first metro is N − N2
(N1 � N − N2). Under the condition of UE, TBT and TTC
can be expressed as follows:

TBT �
β
α

·
N

2
1

s
, (19)

TTC � β ·
N

2
1N1N2

s
+ αT

f
+ τ􏼐 􏼑 · N. (20)

We can get the formulas of the TBT and TTC with
different demand patterns by combining equations
(18)–(21).

TBT �

β
α

·
N

2

4s
, N≤ 2 · Δt · s,

β
α

·
N

2
1

s
, N> 2 · Δt · s,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(21)

TTC �

β ·
N

2

s
+ Nτ, N≤ 2 · Δt · s,

β ·
N

2
1 + N1N2

s
+ Nτ, N> 2 · Δt · s.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

According to (21) and (22), the total queuing time in the
boarding bottleneck model is determined by the total
number of passengers and the boarding bottleneck capacity.
*e total queuing time of the biboarding bottleneck model is
affected by the number of passengers that have the desired
work start time t∗1 when the total number of passengers
satisfies N> 2 · Δt · s. Conversely, the total queuing behavior
does not matter for passengers who have the desired work
start time t∗1 .
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4. Biboarding Bottleneck Model with
Fare Differentials

*e fare differentials of the adjacent metro service run is set
as Δτ in this section. In addition, the effect of the fare in-
centive (fare differentials) on the smoothing of the travel
demand during peak hours and reduction of the boarding
time of the biboarding system is analyzed. *is section
discusses the regulation effect of the incentive fare in dif-
ferent boarding patterns based on the conditions discussed
previously.

4.1..eEffect of Fare Incentives in LessDemandPattern (when
N≤ 2 · Δt · s). Based on Section 3.1, if there are no fare
differentials between staggered passengers (Δτ � 0), the
number of passengers on different service runs is equal
(N1 � N2) when the queuing system achieves UE. In this
case, the travel cost of two types of travelers is given by (11)
and (12). *e travel costs of two types of passengers with the
same arrival time are different when the measure of fare
differentials is implemented. Here, travelers will choose the
service runs with the lowest fare to reduce their travel costs.
*e equilibrium proportion of staggered passengers in
different metro runs changes compared with no-fare dif-
ferentials. According to *eorem 1, the total travel demand
of the biboarding system is necessary to satisfy the condition
of N≤ 2Δt · s if the biboarding system can achieve UE.
Combining (11) and (12), and c2(t) � c1(t), N � N1 + N2 is
given by the following equation:

N1 �
N

2
+

s

2β
Δτ,

N2 �
N

2
−

s

2β
Δτ.

(23)

*e number of staggered passengers who prefer to select
the second metro satisfies 0≤N2 ≤Δt · s due to the boarding
bottleneck limitation. We obtain the equilibrium condition
of the biboarding system under the effect of fare differentials
by including this condition in (23).

β
N − 2Δt · s

s
≤Δτ ≤ β

N

s
. (24)

*erefore, the travel cost of the staggered travelers who
depart from the station to their destination at time t∗2 is
higher than others at time t∗1 when the travel demand does
exceed the boarding threshold (N≤ 2 · Δt · s) and fare dif-
ferentials between neighboring metro runs satisfy the
condition βN − 2Δt · s/s≤Δτ ≤ βN/s. *erefore, some
travelers change their choice of metro service from t∗2 to t∗1 .
*e boarding cost of travelers on the t∗1 -th metro service run
increases with their number in this process of demand
transfer. Moreover, the number of staggered passengers
satisfies N1 � N/2 + s/2βΔτ and N2 � N/2 − s/2βΔτ when
the new UE is achieved. *e TBT can be derived as follows:

TBT �
β
α

N
2

4s
+

s

4αβ
(Δτ)

2
. (25)

Similarly, considering the minimization of travel cost, all
travelers prefer t∗1 as their desired departure time when the
fare differentials satisfy the condition Δτ > βN/s. In contrast,
all commuters prefer t∗2 as their desired departure time when
the fare differentials satisfy the condition Δτ < βN− 2Δt · s/s.
*e boarding queuing time in these two patterns can be
expressed as follows:

TBT �
β
α

N
2

2s
. (26)

Combining (25) and (26), the change of the total queuing
time with different fare differentials can be expressed as
follows:

TBT �

β
α

N
2

2s
, Δτ > β

N

s
orΔτ < β

N − 2Δt · s

s
,

β
α

N
2

4s
+

s

4αβ
(Δτ)

2
, β

N − 2Δt · s

s
≤Δτ ≤ β

N

s
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

4.2. Effect of Fare Incentives for a Higher Demand Pattern
(when N> 2 · Δt · s). *e relationship of passengers in dif-
ferent metro service runs satisfies the mixed equilibrium
proportion (N2 � Δt · ωs and N1 � N − N2) if there are no
fare differentials between different metro runs (Δτ � 0) with
high travel demand. If we introduce the measure of fare
differentials to smoothen the travel demand between dif-
ferent metro runs, the biboarding system with fare differ-
entials meets two possible patterns (patterns 1 and 2). In
pattern 1, the biboarding system can still adjust the travel
cost using endogenous variables (proportion of passengers
with different desired departure times) to achieve a new UE
within a certain controllable range of fare differentials.
Conversely, in pattern 2, within an uncontrollable range of
fare differentials, the system cannot adjust the travel cost
using endogenous variables to achieve UE, leading to only
one type of passenger in the metro network during peak
hours (this pattern is likely the benchmark).

First, we analyzed and discussed the pattern when the
moderating effect of fare differentials on staggered travelers
can be controlled. Here, there must be N2 � Δt · s when the
biboarding system achieves UE. By combining the travel cost
formula shown in equations (A.1), (A.2), and (A.7) in
Appendix with c2(t) � c1(t), N1 � N − Δt · s, we obtain the
following:

t
a
2 � t
∗
2 −

β
α

N − 2Δt · s

s
+
1
α
Δτ − Δt,

t
b
2 � t
∗
2 −

β
α

N − Δt · s

s
+
1
α
Δτ.

(28)

Journal of Advanced Transportation 9



*e controllable range of fare differentials can be
expressed below in (29) by combining tb

1 ≤ ta
2 ≤ t∗1 and

equation (A-3) (i.e., tb
1 � t∗1 − β/αN − Δt · s/s).

−βΔt≤Δτ ≤ β
N − 2Δt · s

s
. (29)

*erefore, the passengers on different metro service runs
can achieve UE with the mixed proportion (N1 � N − Δt · s

and N2 � Δt · s) when the travel demand of two neighboring
metro service runs is higher than the boarding threshold
(N> 2 · Δt · s) and the fare differentials satisfy the condition
−βΔt≤Δτ ≤ βN − 2Δt · s/s. *e TBT is

TBT �
β
α

N
2

− 2(Δt · s)
2

2s
−

(Δt · s)
2

α
Δτ. (30)

*e travel cost of staggered travelers with desired de-
parture time t∗2 becomes less than other travelers with de-
parture time t∗1 if the travel demand of two neighboring
metro service runs exceeds the threshold level (N> 2 · Δt · s)
and the fare differentials satisfy the condition Δτ < − βΔt.
*e original equilibrium proportion of different travelers is
broken if passengers prefer to choose t∗2 as their desired
departure time, leading to the failure in the measure of fare
differentials. Meanwhile, some travelers choose the desired
departure time t∗2 arriving at the waiting room or platform
before time t∗1 due to the boarding bottleneck and do not
take the metro run that has vacant seats and will soon depart
from the station at time t∗1 . Instead, they will wait until the
next metro run that is less expensive, resulting in a wastage

of transportation resources of the metro system and
boarding congestion.

Similarly, the travel cost of passengers with the desired
departure time t∗2 becomes more expensive than others who
have the desired departure time t∗1 when the fare differentials
of neighboring metro service runs satisfy Δτ > βN/s. When
passengers prefer to choose t∗1 as their desired departure
time, the TBTof these two similar patterns can be expressed
as follows:

TBT �
β
α

N
2

2s
. (31)

Finally, the travel cost of passengers on the t∗2 -th metro
run is more expensive than others who take the t∗1 -th metro
run when the fare differentials of neighboring metro service
runs satisfy βN − 2Δt · s/s<Δτ < βN/s and the total travel
demand exceeds the threshold level (N> 2 · Δt · s). *ere-
fore, travelers change their choice of metro service runs from
t∗2 to t∗1 . Moreover, the boarding cost of travelers on the t∗1 -th
metro service run increases with their number in this process
of travel demand transfer. *e number of staggered pas-
sengers satisfies N1 � N/2 + s/2βΔτ and N2 � N/2 − s/2βΔτ
when the new UE is achieved. *ese patterns are shown in
Figure 2(c). *e TBT in this pattern is

TBT �
β
α

N
2

4s
+

s

4αβ
(Δτ)

2
. (32)

Combining (30), (31) and (32), the function of the TBT
with fare differentials is expressed as follows:

TQT �

β
α

N
2

2s
, Δτ < − βΔt orΔτ > β

N

s
,

β
α

N
2

− 2(Δt · s)
2

2s
−

(Δt · s)
2

α
Δτ, −βΔt≤Δτ ≤ β

N − 2Δt · s

s
,

β
α

N
2

4s
+

s

4αβ
(Δτ)

2
, β

N − 2Δt · s

s
≤Δτ ≤ β

N

s
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)

Based on the discussion above, with the fixed pa-
rameters, such as the unit cost of penalty β, the schedule
gap Δt, and the capacity of the service s, the choice of
arrival time at the station and metro service runs is not
affected by the size of the total travel demand if the fare
differentials satisfy the condition Δτ < − βΔt or
Δτ > βN/ωs, and the adjustment effect of the incentive
measure on the neighboring metro service demand by fare
differentials is not effective. Meanwhile, for a determined
travel demand N during a metro rush hour, if the fare
differentials satisfy the condition −βΔt≤Δτ ≤ βN/ωs when
the travel demand exceeds the threshold level and if the
fare differentials are Δτ � βN − 2Δt · ωs/ωs, the incentive
measure of fare differentials reduces the boarding con-
gestion. Here, the travelers in the checking process have

the shortest queue length and the shortest queuing time. If
Δτ � 0, the boarding system has the shortest queue length
when the fare differentials satisfy the condition
−βΔt≤Δτ ≤ βN/ωs when the travel demand is less than the
threshold level. *is means that the incentive measures of
fare differentials have a negative effect on the regulation of
the travel demand.

5. Numerical Analysis

*e UE with the minimum disutility in the biboarding
system when applying the measures of fare differentials is
presented in this section. Various studies [5] conducted
numerical analysis and verification for the related sensitivity
properties of fare differentials to explore the influencing
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factors in the biboarding bottleneck model, providing the-
oretical guidance for improving future work.

In this study, we selected the Museum of Heilongjiang
Province station as the study location, as shown in Figure 3.
We also set s � 10 passenger/min, α � min, and β � . *e
relevant numerical simulation results are discussed as follows.

5.1. Relationship of Schedule Gap and Capacity (Δt, s).
Based on the previous sections, the number of commuters
N2 is affected by the schedule gap Δt and the total boarding
capacity s, and the threshold of total travel demand is
N∗ � 2Δt · s. *e decision space of passengers between two
neighboring metro service runs can be identified if the total
travel demand is confirmed. Here, we list the three different
cases (i.e., N � 600, N � 1200, and N � 1800), and Figure 3
shows the allocation detail of different groups of passengers

by varying s and Δt. Figure 4 shows the relationship between
the schedule gap and the boarding capacity when the de-
mand of the neighboring metro service runs is fixed. Points
A, B, and C represent three cases of passengers’ demand in
the metro station. Here, the red l1, black l2, and blue dotted
lines l3 shown in Figure 4 present the boundary choice
patterns when N2 � Δt · s for N� 600, N� 1200, and
N� 1800, respectively. *e upper part of the line indicates
that the domain of staggered passengers (N1, N2) always
satisfies N1 � N2 � 600 when the queuing system achieves
UE, and we can see that it is not affected by Δt and s. For
example, when the total travel demand is N � 1200, point A
(50, 30) is at the upper part of line l2 when the values of the
schedule gap and total boarding capacity are determined.
*is means that the maximum number of passengers N2 is
150 since it is higher than half of the total travel demand
(Δt · s> 600). *erefore, after the passengers have made a
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choice, the proportion of staggered passengers under the
condition of UE is N1 � N2 � 600 (as shown in case 1
presented in Figure 2). In contrast, point C (10, 5) in the
lower-left part of line l2 indicates the case of N>N∗. Here,
there are more passengers selecting the metro runs with an
earlier schedule because the number of passengers who
select the runs with desired departure time t∗1 will be decided
by the domains of (Δt, s). *e number of passengers who
select the metro runs with departure time t∗2 always satisfies
N2 � Δt · ωs and N1 � N − N2. *e maximum number of
passengers N2 is 50 when the domains of (Δt, s) is point C
and the number of staggered passengers is N1 � 1150, as
shown in point C in Figure 4. *e boarding pattern is shown
in case 3 in Figure 2. If the setting of Δt and s are distributed
online l2 (Δt · s � 600), the boarding queue can be described
in case 2 in Figure 2. Meanwhile, the boarding system has the
highest operation efficiency. *erefore, by comparing the
different total travel demands, the probability of boarding in
cases 1 (point A) and 2 (point B) becomes lower and higher,
respectively, as the total travel demand increases.

5.2. Numerical Analysis on the Schedule Choice under the
Influence of Boarding Bottleneck. Here, we analyze and
discuss the impact of the different staggered schedule gaps
between metro train clusters during rush and flat hours Δt
and different fare differentials Δτ based on the different
biboarding patterns. Based on the previously presented
propositions and theorems, the threshold of the total travel
demand is N∗ � 2Δt · s, which is defined by the black
straight line A1A2 in Figure 4. In Figure 4, area A indicates
that the boarding patterns of the total travel demand is less
than the threshold (N< 2Δt · s), while area B shows that the
total travel demand exceeds the threshold (N< 2Δt · s).

Table 1 shows the timetable (upstream) of metro runs
during rush flat hours in the Museum of Heilongjiang
Province station and Table 2 lists cases 1–6 and the settings
of the schedule parameters of different metro runs. In ad-
dition, Figure 5 displays the sensitivity adjustment of dif-
ferent schedule gaps Δt on the strategy of metro runs
selection. *e red dotted lines P1P2 and P2P4 represent the
optimal proportion of two staggered passengers when the
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system achieves UE in the patterns that the total travel
demand is less or more than threshold N∗, as shown in
Figures 5(a)–5(c), respectively. We take one setting of the
two measures (t∗1 � 8: 00, t∗2 � 9: 00; τ1 � 5, τ2 � 5) as an
example to discuss in this section, as shown in case 2
presented in Table 2 and Figure 5(b). Here, the threshold of
demand is N∗ � Δt · s � 1200. *e number of passengers
who choose the metro runs with departure time t∗1 is equal to
passengers who choose the next metro runs (N1 � N2 � 400,
point Q1) at area A of Figure 5(b) when the biboarding
system reaches UE and the total travel demand is less than
the threshold N∗ (N � 800). *is relationship is represented
by the red dotted line P1P2 in Figure 4. Similarly, as shown in
point Q2 located at area B of Figure 5(b), if the total travel
demand exceeds the threshold N � 1400>N∗, the number
of passengers who choose the metro runs with departure
times t∗2 and t∗1 are N2 � 600 and N1 � 800, respectively,
when the biboarding system reaches UE. *erefore, there
must be some passengers who select the runs with departure
time t∗2 that arrive at the station before time t∗1 , and will wait
for the checking and boarding after all passengers of the
previous run with a departure time t∗1 . *is pattern is shown
in Figure 2(c).

Meanwhile, the setting of parameters for different fare
differentials shown in cases 4–6 listed in Table 2 indicates the
sensitivity adjustment of the fare differentials gap Δτ on the
strategy of the metro service runs selection. *e optimal
proportion of two staggered passengers under the adjust-
ment of fare differentials is different from the patterns of
no-fare differentials, as shown in Figures 5(d)–5(f ). *e
point of UE in line A1A2 causes an offset, as shown in
point P2 in Figures 5(d)–5(f ). Correspondingly, the red
dotted lines P1P2 and P2P4 represent the optimal pro-
portion of two staggered passengers when the system
achieves UE when travel demand is less or more than
threshold N∗, respectively. One setting of two measures
(t∗1 � 8: 00, t∗2 � 9: 00; τ1 � 0, τ2 � 10) are chosen as an
example for discussion, as shown in case 5 in Table 2 and
Figure 5(e). Affected by fare differentials, the equilibrium
proportion of staggered passengers changes when the
threshold is N∗ � Δt · s � 1200 compared with patterns of
no-fare differentials. *e number of staggered passengers
satisfies N1 � N/2 + ωs/2βΔτ and N2 � N/2 − ωs/2βΔτ

when the travel demand is less than the threshold level
(N< 1200), as shown in zone A in Figure 5(e), expressed as
the red dotted line P1P2. In Figure 5(e), the black line A1A2
intersects at point P3 (500,700) and is the optimal travel
demand and proportion of staggered travelers, which also
can be stated as—if the number of passengers N1 and N2
are 700 and 500, respectively, the fare incentive is the
highest (the boarding pattern is consistent with
Figure 2(b)). Moreover, the proportion of staggered pas-
sengers still satisfies N1 � N/2 + ωs/2βΔτ and N2 � N/2 −

ωs/2βΔτ until N2 � 600, as shown in P2, if the total travel
demand begins to exceed the threshold level. Subse-
quently, if the number of passengers N2 remains constant
and the number of passengers N1 increases, and the
mixed boarding queue is similar to the pattern shown
in Figure 2(c). In Figure 5(f ), only the fare of the
later metro run is more expensive than the previous one
(Δτ > 0) compared with Figures 5(d)–5(e), and the mea-
sure of fare differentials reduces the boarding conges-
tion in the station. However, the boarding congestion
becomes worse if the fare differentials satisfy the condition
of Δτ < 0.

5.3. Numerical Analysis on Boarding Congestion and Incre-
mental Revenue under the Influence of Fares Differentials.
We set the schedule of the neighboring metro service runs as
t∗1 � 8: 00, t∗2 � 9: 00 based on the definition of the threshold
in travel demand N∗ � 2Δt · s (in this study we get
N∗ � 1200) to explore the effect of different incentive
measures of fare differentials for improving the boarding
congestion model, and we analyzed its effect on the incre-
mental revenue of the metro system.

Figure 6 shows the changing trend of the total queuing
time of travelers with fare differentials under five patterns of
travel demand (N � 800, N � 1000, N � 1200, N � 1400,
and N � 1600). If the value of fare differentials satisfies
Δτ < − 30 or Δτ >N/20, all passengers choose the same
metro service run and the total boarding time is constant
(this pattern is shown in lines P1P2 and P3P4 in Figure 6
when the total travel demand is N � 1200). In contrast, if
−30<Δτ <N/20, the changing trend of the queuing time of
the passengers with different fare differentials can be divided

Table 1: *e timetable (upstream) of metro runs during rush and flat hours in the Museum of Heilongjiang Province station.

Metro line Timetable (upstream) of metro runs during rush hours Timetable (upstream) of metro runs during flat hours
1 7:59, 8:03, 8:05, 8:08, 8:13, 8:16, 8:20, 8:25, 8:30, 8:36; 8:41 8:48, 8:55, 9:04, 9:13, 9:23, 9:32
2 8:02,8:04, 8:06,8:09, 8:15, 8:19, 8:22, 8:27, 8:33, 8:38; 8:44 8:50, 8:57, 9:08, 9:17, 9:28, 9:39

Table 2: *e setting of schedule gap/fare differentials during rush and flat hours.

Case Setting of schedule gap Setting of fare differentials Figure
1 t∗1 � 8: 30, t∗2 � 9: 00 τ1 � 5, τ2 � 5 Figure 5(a)
2 t∗1 � 8: 00, t∗2 � 9: 00 τ1 � 5, τ2 � 5 Figure 5(b)
3 t∗1 � 8: 00, t∗2 � 10: 00 τ1 � 5, τ2 � 5 Figure 5(c)
4 t∗1 � 8: 00, t∗2 � 9: 00 τ1 � 6, τ2 � 3 Figure 5(d)
5 t∗1 � 8: 00, t∗2 � 9: 00 τ1 � 6, τ2 � 0 Figure 5(e)
6 t∗1 � 8: 00, t∗2 � 9: 00 τ1 � 6, τ2 � 2 Figure 5(f )
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into two patterns, N>N∗ (e.g., N � 1600) and N<N∗ (e.g.,
N � 800). *e total boarding queuing time decreases line-
arly first and then increases exponentially as the fare dif-
ferentials increase when N>N∗ (e.g., N � 1600) if the fare
differentials of the neighboring metro with service runs
satisfy Δτ ∈ [−30, 80]. At Δτ � 20, the boarding system

achieves the minimum total queuing time, as shown in point
A5 in Figure 6. At this time, the number of travelers who
choose the metro runs with departure time t∗2 is
N2 � Δt · s � 600, and the earliest passenger who arrives at
the station at time t∗1 meets the latest passenger taking the
previous metro train. Similarly, the minimum queuing time
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Figure 5: Equilibrium allocation detail between passengers with different desired departure times.
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is obtained at point Δτ � 0 when N<N∗ (e.g., N � 800), as
shown in Figure 6 point A1.*erefore, we concluded that the
incentive measures (fare differentials) for smoothing travel
demand is only effective when the demand is high. Con-
versely, unreasonable incentive measures will have a nega-
tive effect on the regulation of the metro system when the
demand is low.

Figure 7 shows the changing trend of the total revenue of
the travelers with fare differentials under five patterns of
travel demand (i.e., N � 800, N � 1000, N � 1200,
N � 1400 and N � 1600). First, compared with the no-fare
differentials, the fare differentials can significantly increase
the total revenue of the neighboringmetro service runs when
the fare of the later runs is higher than the one before.
However, the measure of fare differentials negatively affects
the total revenue when the fare of the later runs is less than
the one before (Δτ < 0). Second, the sensitivity of the travel
behavior of the passengers for fare differentials decreases as
the total travel demand increases (e.g., the optimal fare
differentials are Δτ � 40 and Δτ � 20 when N � 1600 and

N � 800, respectively). Finally, the optimal fare differentials
should be Δτ � N/40 (points B1, B2, B3, B4, and B5).

6. Conclusion

*is study proposes a biboarding bottleneck model that
combines the measures of fare incentives for the boarding
congestion problem in a metro station. On this basis, we also
proposed a novel definition of the threshold to determine
when to use the measures of fare differentials to help smooth
the travel demand. *e theoretical analysis and numerical
simulation show that the measures of fare differentials can
control crowd gathering in the metro station when the travel
demand is high, reducing the boarding congestion of pas-
sengers in the station and increasing the total fare revenue.
However, the measure of fare differentials gave bad results
when the travel demand is less than the threshold and the
fare of later runs is less than the previous one.

Although this study tried to consider all the relevant
factors when modeling the boarding behavior in the metro
station, the model proposed in this study cannot accurately
reflect the actual pattern since we used a microeconomic
model to perform a macroeconomic evaluation of man-
agement measures. In the future, the travel behavior and
characteristics of heterogeneous metro passengers will be
considered.

Appendix

UE Pattern When Travel Demand is
Higher Than Threshold

According to *eorem 1, under the condition of UE in the
system, the number of different passengers is N1 � N − N2,
N2 � Δt · s when travel demand is higher than the standard
threshold (N> 2 · Δt · s). *is means that the number of
travelers with the desired departure time t∗2 is fixed when the
neighboring metro schedule gap Δt is fixed in the case of
N> 2 · Δt · s. Conversely, more travelers choose the t∗1 -th
train run when N> 2 · Δt · s, as shown in Figure 2(c). If we
know that:

c2 t
a
2( 􏼁 � α · t

∗
1 − t

a
2( 􏼁 + β · t
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2 − t
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1 − t

a
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*en, we can calculate the earliest and latest arrival time
of travelers on t∗1 -th train runs as follows:

t
a
1 � t
∗
1 −

N − Δt · s

s
, t

b
1 � t
∗
1 −

β
α

N − Δt · s

s
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c1(t) � β ·
N1

s
+ τ1. (A.4)

, and by combining equations (A.1), (A.2), and (A.4), the
earliest (latest) arrival time, total queuing time, and travel
cost of travelers on t∗2 -th train runs can be expressed as
follows:

1

−400 −20 0 20 40 60 80

3

5

N=800

N=1000

N=1200

N=1400

N=1600

A1

A2

A3

P1 P2
P3

P4
A4

A5

To
ta

l b
oa

rd
in

g-
qu

eu
e t

im
e T

Q
T

Fare differentials 

7

9

×105
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