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In traffic scenarios, vehicle trajectories can provide almost all the dynamic information of moving vehicles. Analyzing the vehicle
trajectory in the monitoring scene can grasp the dynamic road traffic information. Cross-camera association of vehicle trajectories
in multiple cameras can break the isolation of target information between single cameras and obtain the overall road operation
conditions in a large-scale video surveillance area, which helps road traffic managers to conduct traffic analysis, prediction, and
control. Based on the framework of DBT automatic target detection, this paper proposes a cross-camera vehicle trajectory
correlation matching method based on the Euclidean distance metric correlation of trajectory points. For the multitarget vehicle
trajectory acquired in a single camera, we first perform 3D trajectory reconstruction based on the combined camera calibration in
the overlapping area and then complete the similarity association between the cross-camera trajectories and the cross-camera
trajectory update, and complete the trajectory transfer of the vehicle between adjacent cameras. Experiments show that the
method in this paper can well solve the problem that the current tracking technology is difficult to match the vehicle trajectory
under different cameras in complex traffic scenes and essentially achieves long-term and long-distance continuous tracking and
trajectory acquisition of multiple targets across cameras.

1. Introduction

Target tracking is one of the research hot spots in computer
vision, and it has been widely used in military, unmanned
driving, video monitoring, and other fields. -e current
target tracking algorithm [1] can be divided into three
categories from the observation model: the method based on
the generated model, the method based on the discriminant
model, and the method based on deep learning.

-e method based on the generative model is also called
the classical target tracking algorithm. -is method extracts
the features of the target in the current frame, constructs the
target model, and searches the best matching region with the
appearance model in the next frame as the prediction po-
sition of the target. Typical representative algorithms are as
follows: particle filter algorithm, mean shift algorithm, and

Kalman filter algorithm. -e method based on the dis-
criminant model regards the target tracking problem as a
classification or regression problem. In this method, the
target is separated from the background by combining the
background information with the feature extraction. TLD
(tracking-learning-detection) algorithm [2] is the repre-
sentative of a long-time tracking algorithm in this kind of
method. In view of the target deformation, scale change, and
occlusion in the process of long-time target tracking, TLD
combines tracking with a traditional detection algorithm
and updates the model and parameters online to make the
tracking more robust and reliable. -e target tracking
method based on correlation filtering also belongs to the
discriminant model method. Based on the minimum output
sum of squared error (MOSSE) algorithm [3], correlation
filtering is applied to target tracking for the first time.
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-rough fast Fourier transform, the calculation is trans-
ferred from time domain to frequency domain, and the
tracking speed is up to 615fps. -e speed advantage of the
target tracking algorithm based on correlation filtering
shows its potential in target tracking. KCF [4] algorithm
calculates the discriminant function by regression and in-
troduces the cyclic shift method for approximate dense
sampling. -e kernel method is introduced to map the input
to high-dimensional space, and hog feature is added to
improve the tracking effect while maintaining fast calcula-
tion. SRDCF [5] introduces spatial regularization and
weights the filter coefficients so that the filter coefficients are
mainly concentrated in the central area, and the influence of
boundary effects is alleviated.

In the method based on deep learning, C-COT [6]
combines the shallow surface information and deep se-
mantic information in-depth features, synthesizes the fea-
ture map information under multiple resolutions,
interpolates the response map in the frequency domain, and
then calculates the target position through iteration.
SiamRPN [7] algorithm proposes a Siamese network
structure based on RPN, which is composed of Siamese
network and RPN network. Siamese network shares weights
and maps the input to a new space to extract features. -e
RPN network generates candidate regions, which are used to
distinguish the target background and fine-tune the can-
didate content to achieve end-to-end input and output.
SiamMask [8] algorithm changes the previous rectangular
box aligned with the coordinate axis to represent the target
position, adds mask branch in Siamese network architecture,
and generates a rotating rectangle through the target mask,
which further improves the tracking accuracy.

Single object tracking (SOT) is the research content of
the above target tracking methods. Different from single-
object tracking, target tracking in practical application is
more multiobject tracking [9] (MOT).-e target is locked in
the given video sequence, and each target is distinguished in
the subsequent frame, and its motion trajectory is given.
According to the initialization method of the target box, the
multitarget tracking method is divided into two categories:
DBT (detection-based tracking) and DFT (detection-free
tracking). DFTneeds to manually initialize the location box
of the target, and it cannot deal with the new target problem
in the video; DBT can detect new targets automatically and
end the trajectory of the target leaving the visual field. In the
multitarget tracking method, the key problem [10] is to
detect the data association between nodes and existing
trajectories and the correlation between trajectories. Xiang
et al. [11] transformed the multitarget tracking problem into
Markov decision process (MDP). -e target trajectory is set
to four different states, and the trajectory state and state
transition process are described by MDP modeling and
decision-making. Sort algorithm [12] uses Kalman filter
algorithm to track the detected target, calculates the distance
between IOU (intersection over union) measurement target
frames, and performs optimal association matching through
Hungarian algorithm. Deep sort algorithm [13] is improved

on the basis of sort algorithm. Fast r-cnn is used to detect the
target, and the Kalman filter is still used to track and predict
the target. In distance measurement, Mahalanobis distance
and the minimum cosine distance between the nearest depth
feature set successfully tracked by the target and the feature
vector of the detection result are integrated, and priority is
assigned to the target through cascade matching. -e
problem of track association of target occlusion is solved. In
the multitarget tracking method based on deep learning,
Feng et al. [14] proposed a unified multitarget tracking
framework. Siamrpn network is used for short-term target
tracking, and the appearance characteristics of the long-term
target are integrated. Reid network is used to improve the
tracking stability when the target is occluded and deal with
abnormal motion. Based on association matching, switch
aware classification (SAC) is proposed to achieve a good
multitarget tracking effect. However, due to the complexity
of the model, the tracking speed is slow, which cannot meet
the practical application.

It is still an important research task to track multi-
target continuously and track accurately in complex traffic
scenes. It is of great value to improve the utilization ef-
ficiency of traffic video monitoring data, timely and ac-
curately to grasp road traffic information and regional
road operation status. -e cross-camera multitarget
tracking can solve the problem that monocular camera
cannot track accurately for a long time and a long dis-
tance, which lays an important foundation for the ac-
quisition of wide-angle traffic information.

2. Principle of Multitarget Tracking

Traffic scene is a typical multitarget tracking application
scene. -is paper uses DBT detection target box to realize
multitarget vehicle tracking in traffic scene. -e process flow
of multitarget tracking based on DBT is shown in Figure 1.
-e target detector will first detect the target in each frame of
the video to obtain and identify multiple target positions.
Multitarget tracking process is to associate the current de-
tection result with the existing target track to extend the
track.

Next, we need to solve the problem of effective associ-
ation between trajectory and target. In cross-camera mul-
titarget tracking, the first step is to obtain the multitarget
vehicle trajectory in a single camera. Referring to the latest
research results of the team [15], the similarity between the
target frames is calculated based on IOU, and the Hungarian
algorithm is used to complete the association between the
new detection node and the existing vehicle trajectory. -e
definition and delimitation method of the stage and state of
the trajectory are proposed to better classify the trajectory.
-en, through cross-camera vehicle tracking, the problem of
3D trajectory reconstruction based on combined camera
calibration in the overlapping area is solved, as well as the
similarity association and cross-camera trajectory update
between cross-camera trajectories, and the trajectory
transfer between adjacent cameras is completed.
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3. Data Association Based on Cross-
Camera Calibration

For the multicamera monitoring scene with the overlapping
area, as shown in Figure 2. In a long area, there are many
cameras. From the end with the smaller camera number in
the monitoring area, renumber the cameras from 0 in turn.
Each camera is responsible for monitoring a section of the
Road area. In Figure 2, different color blocks are used to
mark the monitoring area of each camera. -ere is a view
overlap between adjacent cameras, and the overlap area is
indicated by yellow. On the premise of cross-camera cali-
bration, the similarity association can be completed by
calculating the similarity matrix of vehicle trajectories be-
tween adjacent cameras. -e basic idea is through the joint
calibration of multiple cameras, and the cameras are unified
in a world coordinate system, and the similarity matrix is
calculated according to the Euclidean distance of the track
points in the adjacent cameras in the world coordinate
system.

3.1. Cross-Camera Joint Calibration. According to the im-
aging principle of the monocular camera and the description
of the coordinate system in reference [16], the conversion
relationship from pixel coordinate system to world coor-
dinate system under the same camera can be obtained as
follows:
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0 1
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-e above formula is derived without considering dis-

tortion. If the distortion of the camera is considered, it can be
divided into radial distortion and tangential distortion. For
the image physical coordinate system, the corresponding
radial distortion correction is shown in equation (2), and the
corresponding tangential distortion correction is shown in
equation (3). -e corresponding formula can be introduced
for parameter correction.
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-e conversion process of the world coordinate system
between multiple cameras is as follows: first, a coordinate
origin is selected, and the corresponding subworld coor-
dinate system of each camera into the global unified world
coordinate system is constructed. -e schematic diagram of
calibration conversion between adjacent cameras in a large
area is shown in Figure 3. Taking two cameras as an example,
the monitoring road is two lanes. Suppose that 3 (a) is the
monitoring scene of camera i and 3 (b) is the monitoring
scene of camera i + 1, through cross-camera calibration, the
points under the field of view of each camera are converted
to the same world coordinate system, as shown in 3 (c).

3.2. Calculation of Association Matrix. -e association
matrix calculation of cross-camera vehicle trajectories is to
calculate the Euclidean distance between adjacent camera
trajectories to be matched after the trajectories are trans-
formed from image coordinates to world coordinates.
Suppose that the vehicle trajectories under each camera are
divided into two sets: T � RT∪NT{ }, RT represents the real
track set in the scene, NT represents the new track set that
has just changed from the undetermined track to the real
track, and the similarity matrix of vehicle trajectories be-
tween adjacent cameras is D � (dij), dij ≥ 0, where dij is
calculated as follows:

dij �


m
i�1 Pk − Pk

′




m
. (4)

In formula (4), m is the number of trajectory nodes
involved in the calculation. In this paper, m≤ 15 is deter-
mined by the number of nodes of the trajectory to be
matched between adjacent cameras under the same frame
number; pk is the world coordinate of the track point in the
real track RT of the current camera; pk’ is the world co-
ordinates of the track points in the new track NT of the
adjacent cameras, and the frame numbers of pk and pk’ are
the same, indicating the vehicle position at the same time.
Taking m � 5 as an example, the calculation process of dij

between vehicle trajectories across cameras is shown in
Figure 4.

4. Multitarget Vehicle Tracking
Algorithm across Cameras

Cross-camera vehicle tracking relies on the unified cali-
bration between multiple cameras and single-camera mul-
titarget vehicle tracking. Its main work is to associate the
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tracking results of each camera. First, the global trajectory set
GT is established to save the global trajectory information of
the vehicle target from entering the monitoring area to
leaving the monitoring area. When the target leaves the
monitoring area, the corresponding vehicle target infor-
mation is recorded in the file. After the cameras in the
monitoring area are synchronized and the video frames are
associated with each other, the new trajectory nodes will be
updated into the global trajectory set GT.

Assuming that there are n cameras in a large moni-
toring area, the flowchart of the cross-camera vehicle
tracking algorithm is shown in Figure 5, and the steps of
the cross-camera vehicle tracking algorithm are as
follows:

Step 1: the vehicle trajectory ofN cameras is obtained at
the same time. -e multitarget vehicle trajectory in a
single camera is obtained by the method in Section 2.
Step 2: association between adjacent cameras is tracked.
-e vehicle track in each camera is divided into two

sets: real track set RT and new track set NT. -e track
matching association method is set with the current
camera number i. Considering the two-way driving of
the vehicle, the similarity matrix is calculated between
the real track set under i camera and the new track set in
i− 1 and i + 1 of adjacent cameras. -e final matching
association results are as follows:

(i) -e real trajectory does not match, indicating that
the vehicle has not entered the overlapping area,
and the trajectory attributes do not need to be
changed.

(ii) -e new trajectory does not match. As a new target
entering the monitoring range, the target ID and
trajectory color are assigned and recorded the
starting frame number of the trajectory.

(iii) -e real trajectory is successfully matched with the
new trajectory, and the attributes of the vehicle
trajectory are updated by migration. -e matching
trajectory information is migrated to the new
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Multi-target tracking
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Figure 1: Multitarget tracking process.
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Figure 2: Multicamera scene stitching.
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trajectory, including target ID, trajectory color,
and updated some trajectory attributes. Among
them, the camera number and the starting frame
number of the track under the camera are used to
draw the target track under the camera.

Step 3: the global track is updated. Every frame needs to
update the global trajectory:

(i) For unmatched real trajectories, the newly added
trajectory nodes need to be updated into the global
corresponding trajectories

(ii) -e unmatched new trajectory is used as a new
target, and its trajectory is newly added to the
global trajectory

(iii) Between the successfully matched real trajectory
and the new trajectory, in addition to the above-

mentioned trajectory attribute changes, it is also
necessary to fuse the trajectory nodes in the
overlapping area of the two trajectories

Figure 6 shows the successful matching of vehicles be-
tween adjacent cameras. When the target vehicle moves
from the current camera to the next camera, the vehicle will
be in the overlapping area of the two cameras. -e suc-
cessfully matched vehicle target ID needs to be unified, and
the vehicle trajectory color will follow the initial color at-
tribute. In Figure 7, when a black car is driven from camera 0
field of view to camera 1, the black car can be detected in
both camera fields of view in the overlapping area. -e two
cars connected by the yellow line are the position of the black
car under the two cameras. -e target vehicle is matched in
the overlapping area, and the vehicle information is trans-
ferred to camera 1.

camera i+1

p1
p2 p3 p4

P5

T2

p5'p4'p3'p2'p1'

camera i

T1

Figure 4: -e principle of trajectory calculation.
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Figure 3: -e calibration conversion between adjacent cameras.
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5. Experiment and Analysis

Since this method is still in the simulation testing stage, there
is no special scenario suitable for the experiment in the open
data set. Cross-camera vehicle tracking takes the simulation
test scene built-in campus as an example, in which two
cameras collect images synchronously. After the detection
results of the yolov3 detector are obtained, we load reference
[15] and the algorithm in this paper to carry out the waiting
tracking experiment and obtain the following experimental
results. -e following is a scene test of overtaking. -e silver
car first enters the surveillance area of camera 0, and the
black car overtakes, as shown in Figure 7. In the collection of
58 frames of photos, two cars can be detected at the same
time under camera 0. Since the silver car enters the field of
view first, it will be detected first, with ID� 1. Enter after the
black car, ID� 2. After overtaking the black car, it first enters

the camera 1 field of view. However, when the vehicle is
driving across the camera, ID values are assigned in the
order in which it first enters the entire monitoring area. After
the cross-camera trajectory is matched, the trajectory in-
formation is migrated, so the ID of the silver car in camera 1
is still 1, and the trajectory color is blue, which is the same as
the trajectory information of the vehicle under camera 0.-e
black car is the same as above for trajectory information
migration. Figure 8 shows the tracking result of camera1 at
frame 78.

After the two scenes are calibrated across cameras, the
vehicle trajectory can be drawn in the panoramic view of the
cross-camera reconstruction of the surveillance scene.
Taking the 70th frame photo of the multitarget vehicle
tracking panoramic reconstruction image as an example,
you can intuitively see the entire overtaking process of the
vehicle under the two cameras, as shown in Figure 9. -e

Camera 0

New track set Real track set New track set Real track set New track set Real track set

Camera i Camera n

Association match between new track and
real track

New track does not
match

Successful match

Target information
migration

New target, join the
global track set

Real track does not
match

Update global track set

Figure 5: Cross-camera vehicle tracking flowchart.

Figure 6: Matching results of adjacent camera scenes (experimental result graph, not editable).
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result of this panoramic reconstruction allows a real over-
view of the operating state of the vehicle from a macro
perspective and is not affected by the loss of the occluded
trajectory. -e reliability of the data is a major technological
breakthrough.

In order to further verify the effectiveness of the pro-
posed method, the trajectory coincidence degree TC is used
for description, and its definition formula is as follows:

TC �
0≤i<m,0≤j<n PiA − PjB



<T

m∗ n
. (5)

Among them, m, n represents the number of discrete
points on trajectory A and trajectory B, and PiA, PjB are

points on trajectory A and trajectory B. By calculating the
absolute distance between each point in trajectory A and
each point in trajectory B, and then accumulating the
number of distances less than the threshold Tdivided by the
product of the number of discrete points on the two tra-
jectory curves, the evaluation value of the coincidence degree
of the two trajectories is obtained. -e degree of trajectory
coincidence obtained in the experiment is shown in Table 1.

It can be seen from Table 1 that the method in this paper
unifies the cameras in a world coordinate system for target
tracking and association matching. Results: the coincidence
degree between trajectories was the lowest in camera0 and
camera1, and the effect of trajectory-based target behavior
analysis was the same as that of observation from high

Figure 7: Frame 58 of camera 0 experimental result graph, not editable.

Figure 8: Frame 78 of camera 1 experimental result graph, not editable.

Figure 9: Reconstructed panorama (experimental result graph, not editable).

Table 1: Coincidence of trajectory under different cameras.

Trajectory coincidence degree Camera 0 (%) Camera 1 (%) Restructure (%)
— 8 23 5
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altitude. So that the problem of occlusion overlap does not
appear in the 2D image, and it can intuitively reflect the
whole running state of the target in the large scene. Not only
that, the proposed method also meets the real-time
requirements.

6. Conclusion

-rough the joint calibration between multiple cameras,
the cameras are unified under a world coordinate system.
-e Euclidean distance between the trajectory nodes
under the overlapping area at the same time is used to
measure the similarity between the trajectories, and the
trajectory association matrix is calculated to realize the
matching between the real trajectory in the current
camera and the new trajectory under the adjacent camera.
Target tracking and association matching under single
camera and cross-camera complete the trajectory transfer
of the vehicle between adjacent cameras and realize the 3D
bird’s-eye view reconstruction of the vehicle trajectory.
-e result proves that the operating state of the vehicle can
be viewed from a real macro perspective, and the data are
reliable, which is a major breakthrough. It makes the
long-term and long-distance continuous tracking of
multiple targets across cameras reliable and accurate.
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