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'e number of cars on roadways around the world continues to increase year over year. However, the imbalance between traffic
supply and demand has not only brought traffic congestion but also caused serious safety problems. To reduce travel risk, this
study proposes a driver route planning method based on accident risk cost prediction for connected and automated vehicles.
According to the entropy weight method and an improved algorithm of K shortest paths, a route planning model with accident
risk as the main optimization objective was established. Firstly, an accident risk evaluation system was built based on traffic
accident data, and a quantitative prediction model of accident risk cost based on driver-, vehicle-, road-, and environment-related
factors was constructed. Secondly, the entropy weight method was used to calculate the weights of each indicator to determine
accident risk considering the aforementioned factors. 'en, the route planning model was established, and the solution algorithm
based on K shortest paths was designed to solve the optimal route by comprehensively considering accident risk cost and travel
time. 'e accident risk index of each road section in the example road network was assigned, and the risk of the road section was
quantified according to the accident risk cost model. 'ree candidate paths were calculated by using the path planning algorithm
proposed in this study; the total risk cost is 6.19, 6.26, and 6.39, respectively; and the total travel time is 29, 29, and 31, respectively.
After comparison, the optimal path and two alternative paths are obtained. 'e results show that the accident risk cost prediction
model based on historical accident data can be used to quantify driving risk. 'e proposed method can help drivers in the
connected and automated environment choose the optimal travel route with the lowest risk and shortest travel time and improve
overall traffic safety and efficiency.

1. Introduction

With the rapid development of the global road trans-
portation system, the imbalance between traffic supply and
demand has become pronounced, which has brought severe
traffic congestion and accidents and has seriously threatened
people’s lives and property. For example, in China, the
number of traffic accidents increased year over year from
2015 to 2020, and the number of casualties was also huge. On
average, about 60000 people died in traffic accidents each
year [1]. Advanced driving assistance systems (ADAS) and
connected and automated vehicles (CAV) can provide route
planning and intelligent guidance for drivers. 'ey are two

of the most important means to improve the safety and
efficiency of the traffic network, alleviate urban traffic
congestion, and mitigate travel risk. However, conventional
route planning takes the minimum distance or driving time
as the optimization objective, and there is relatively little
research based on the risk cost of road accidents. 'erefore,
this study quantified the accident risk and designed a route
planning model based on the accident risk cost to provide
drivers with a safer travel path, which can effectively reduce
the risk of traffic accidents and improve overall safety.

In recent years, there have been many research
achievements in traffic safety, which can be divided into two
categories: (1) evaluations of traffic safety based on accident
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data using the Bayesian network and the accident rate
method and (2) evaluations of accident risk carried out by
the analytic hierarchy process, entropy weight method, and
fuzzy evaluation method in accordance with the indicator
evaluation system based on the characteristics of people,
vehicles, roads, and the surrounding environment. In terms
of studying traffic safety using accident data, Mbakwe et al.
[2] established a model combining Delphi technology and
the Bayesian network to predict the accident rate and
evaluate national traffic safety. Chu [3] used the ordered logit
model to analyze the causes of serious accidents involving
buses traveling on expressways over a long driving time. 'e
study showed that fatigued driving, drivers or passengers not
wearing seat belts, drunk driving, and other behavioral
factors have a significant impact on the severity of accidents.
Mohan et al. [4] used the accident rate method to evaluate
urban traffic safety based on fatal traffic accident data in six
cities of India. 'e study found that the vast majority of
deaths in traffic accidents fall in vulnerable traffic subjects
(pedestrians, cyclists, electric vehicle drivers, andmotorcycle
users). Eusofe and Evdorides [5] and Gomes et al. [6]
evaluated traffic safety from the traffic management per-
spective based on accident data. At the same time, some
scholars have established models based on the crash data to
quantify the risk of road accidents and evaluate road traffic
safety. Xie and Yan [7] used kernel density function to fit the
spatial distribution of road network of traffic accident risk in
Kentucky and Burlington, New York, and estimated its
traffic accident risk status. Anderson [8] and Bil et al. [9]
identified the hotspots of road accidents by K-means clus-
tering, significance test, and other methods according to the
distribution of traffic risks on the road network. However,
these studies ignore the impact of driver behavior on traffic
safety risks, and several studies in the US report that ap-
proximately 90% of the light-vehicle crashes involved the
same type of human error such as impaired conditions,
inadvertent errors, and risky driving behavior [10–13].
'erefore, the impact of driver behavior on road accident
risk cannot be ignored. Jiang et al. [14] proposed a safe route
mapping (SRM) model, which uses real historical collision
data and driver simulation data obtained based on VISSIM
simulation to score road safety and establishes safety risk
heat maps for roads; drivers can use the road heat maps for
situational awareness and trip planning. Arbabzadeh and
Jafari [15] used the elastic net regularized multinomial lo-
gistic expression to establish a safety prediction model based
on driver based data and quantified the traffic safety risk as
the likelihood of adverse driving outcomes, to achieve real-
time scoring of road safety risks.

In terms of establishing accident risk assessment indi-
cators based on the characteristics of people, vehicles, roads,
and environment, Li et al. [16] and Zhao et al. [17] deter-
mined the risk evaluation index system of road trans-
portation of dangerous goods through literature research
and expert consultation and used analytic hierarchy process
(AHP) to evaluate the risk of transportation of dangerous
goods. Fernandez et al. [18] studied 535 drivers in Manila to
score and rank the factors and indicators affecting accident
occurrence (such as bad driving behaviors, cognition of

traffic signs, and distracted driving) by using a questionnaire
and an AHP to determine the weight of each index. 'e
results showed that bad driving behavior is the main cause of
accidents. Temrungsie et al. [19] established a road safety
evaluation index system according to the United Nations’
white paper on road safety. 'ey interviewed 100 experts
engaged in traffic-related industries in 'ailand, scored the
indexes, and analyzed the influencing factors of road traffic
safety using the AHP. 'ey found that the traffic manage-
ment in 'ailand was chaotic, and the implementation of
traffic regulations must be strengthened. Cai et al. [20]
established a traffic safety risk prediction index system
based on driving behavior data. 'ey proposed a road
traffic safety entropy calculation method based on the
entropy weight method and scaled the road traffic safety
risk level by K-means clustering. Guo et al. [21] collected
data on driver eye movement and vehicle traveling state
through driving simulations. 'ey constructed a driver
behavior index system, simplified the index by principal
component analysis, and finally calculated the weights of
the characteristic indexes by the entropy weight method to
evaluate the impact of behaviors on traffic safety.

Most of the influencing factors of route planning in the
existing research focus on minimizing the driving distance
and travel time. 'ese studies rarely consider the driver’s
personal characteristics, travel purpose, or the road envi-
ronment. Additionally, the priority for drivers to choose a
travel path is not consistent, so the meaning of “optimal” is
limited and subjective. 'e path recommended by a given
model does not necessarily meet the expectations of drivers.
'erefore, many scholars have incorporated factors affecting
driver choice into the route planning model: Pang et al. [22]
used the fuzzy neural network method to train the driver’s
historical trip data to reflect the driver’s travel preference
and provide guidance for the travel route selection of on-
board navigation equipment. Lee et al. [23] estimated the
delay caused by bad driving behaviors through discrete
selection analysis. 'en they compared the travel time of
different paths to recommend the route with the most re-
liable travel time. As mentioned above, there are many
factors affecting driver travel choice, and as such, path
guidance considering traffic safety has attracted increasing
attention. Karim and Sayed [24] established the shortest path
model integrating travel time and safety by analyzing the
relationship between traffic conflict and collision. Payya-
nadan et al. [25] used the collision accident data of elderly
drivers to quantify accident risk influencing factors, such as
left turn, U-turn, and travel distance. 'ey evaluated the
safety of the path on this basis to help elderly drivers choose
a safer route and reduce their accident risk. Zhang et al. [26]
established a prediction model of route travel time and
accident risk cost according to different parameters, such as
traffic volume and capacity, and designed the route planning
algorithm for drivers with different risk tendencies from the
perspective of generalized travel cost.

It can be observed from the above literature review that
many scholars have engaged in significant research on traffic
safety and route planning. However, there are still some
limitations:

2 Journal of Advanced Transportation



(1) Research on traffic safety based on accident data used
statistics from after the accident that has already
occurred. While this can show the postaccident
safety state, it lacks risk cost prediction to visualize
the preaccident safety state and suggest safer routes
to avoid accidents before they occur—which is ob-
viously more critical for prevention and control.

(2) Research on travel risk according to the index system
based on the physical characteristics of people, ve-
hicles, roads, and the surrounding environment
mostly combined objective analysis and subjective
evaluation to evaluate risk through surveys, expert
scoring, and the AHP. However, surveys are highly
subjective and greatly influenced by the risk pref-
erence and experience of scoring experts, and the
evaluation is neither accurate nor objective due to
the lack of data support.

Additionally, conventional route planning methods of-
ten take the minimum driving distance or travel time as the
optimal goal, rather than driver preference and driving
safety. Although there are route planning studies that do
consider preference and safety, there are still few studies on
constructing a route planning model based on the accident
risk cost specifically. 'erefore, based on accident data, this
study constructed a risk evaluation system using accident
characteristics, established an accident risk quantification
model based on the entropy weight method, and designed a
route planning algorithm that comprehensively considers
accident risk cost and travel time to provide the safest and
shortest route for drivers and improve overall safety.

2. Research Method

To realize route planning based on accident risk, it was first
necessary to quantify the accident risk of the road section.
'is study used accident data and physical characteristic
indexes of drivers, vehicles, roads, and the surrounding en-
vironment, all factors that could have influenced the severity
of the accident in the data set, to construct the risk evaluation
system.'en, the quantitative model of accident risk cost was
established using the entropy weight method to calculate the
index weights. Based on this, the real-time risks of road
sections were calculated, the travel time of the road sections
was loaded, and the example network was constructed. 'en,
the algorithm of restricted loopless K shortest paths was
improved and applied to the model. Taking accident risk cost
as the main goal and simultaneously considering travel time,
the optimal path was found in the network. 'e overall
workflow of this study is shown in Figure 1.

2.1. Accident Risk Quantification

2.1.1. Accident Risk Quantification Model. In the traffic
system, the temporal and spatial changes of drivers, vehicles,
roads, and the surrounding environment will affect the
occurrence and severity of traffic accidents at any given time.
'ere are many existing studies on traffic safety analysis
through the construction of a risk index system, but there are

many subjective assumptions about the selection of indi-
cators and the determination of weights. 'erefore, this
study selected risk evaluation indicators from a traffic ac-
cident data set and calculated the index weights and the
comprehensive scores according to the real-time data. It
defined the comprehensive score as the accident risk, which
can reflect the impact of various factors on the accident risk.

Zi � 􏽘
m

j�1
dijwj i � 1, . . . , n. (1)

where Zi is the accident risk cost of the i
th road section; dij is

the actual data of the jth index corresponding to the ith road
section; wj is the weight of the jth index.

2.1.2. Index Weight Calculation. Several different methods
can calculate index weights, including the entropy weight
method, AHP, and principal component analysis. Among
them, the entropy weight method is an objective weighting
method, which has higher reliability and accuracy than
subjective weighting, and it can deeply reflect the dis-
tinguishing ability of indicators and determine better
weights. According to the basic principles of information
theory, information is a measure of the order degree of the
system, and entropy is a measure of the disorder degree of
the system. According to the definition of information
entropy, entropy can be used to judge the dispersion degree
of an index for a certain index. 'e smaller the information
entropy, the greater the dispersion degree of the index, and
the greater the impact of the index on the comprehensive
evaluation (i.e., weight). 'is method is more suitable for
describing the impact of abnormal values in drivers, vehicles,
roads, environmental, and other indicators on the severity of
accidents. For example, for several different traffic accidents,
if the value of one index changes greatly, while the value of
other indexes basically does not change, it indicates that the
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Figure 1: Research flowchart.
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indicator has led to the difference of accidents, and a greater
weight can be taken. 'erefore, this study selected the en-
tropy weight method to calculate the index weights. 'e
specific calculation steps are as follows:

(1) For n samples andm indexes, xij is the value of the j
th

index of the ith sample
(2) Normalize indexes for the homogenization of het-

erogeneous indexes
Positive index:

xij �
xij − min x1j, . . . , xnj􏽮 􏽯

max x1j, . . . , xnj􏽮 􏽯 − min x1j, . . . , xnj􏽮 􏽯
. (2)

Negative index:

xij �
max x1j, . . . , xnj􏽮 􏽯 − xij

max x1j, . . . , xnj􏽮 􏽯 − min x1j, . . . , xnj􏽮 􏽯
. (3)

(3) Calculate the proportion of the ith sample value
under the jth index:

Pij �
xij

􏽐
n
i�1 xij

,

i � 1, · · · , n,

j � 1, . . . , m.

(4)

(4) Calculate the entropy of the jth index:

ej � −k 􏽘
n

i�1
Pij ln Pij􏼐 􏼑, j � 1, · · · , m (5)

where k � 1/ln(n)> 0，meeting ej ≥ 0.
(5) Calculate information entropy redundancy

(difference):

dj � 1 − ej, j � 1, . . . , m. (6)

(6) Calculate the weight of each index:

wj �
dj

􏽐
m
j�1 dj

, j � 1, · · · , m. (7)

xij is the standardized data.

It should be noted that the entropy weight method can
calculate the index weight values, but there is a problem that
the entropy value of a zero index cannot be calculated in the
process of practical application. 'erefore, when an index
value was zero, a value of 0.00001 was added to the evalu-
ation index data of this group; adding such a small increment
not only enabled the data group to be valid, but it also
ensured a small impact on the difference of each index [20].

2.2. Construction of Route Planning Model. 'e traditional
route planning algorithm is to add the weights of each side in
the network graph to find the shortest path. K shortest paths

(KSP) problem is a deformation of the shortest path
problem. Different from the traditional shortest path
problem, the purpose of the KSP problem is to find multiple
alternative optimization paths between the start point and
the end point in the network graph and form the shortest
path group to meet the user’s selection needs to the greatest
extent [27]. Based on the improvement of the algorithm of K
shortest path in existing research [28], this study designed a
route planning algorithm meeting multiple objectives; that
is, in the K shortest path set obtained by calculating the
accident risk cost, the path with the shortest travel time T
and lowest risk was chosen as the optimal path.

2.2.1. KSP Problem. Suppose G � (V, E) represents a net-
work graph, where V is the set of n nodes and E is the set of
m edges. Each edge ek in E is represented by a node pair; that
is, ek � (i, j), and ci,j is the length of this side. Suppose s and
t are two nodes in graph G. 'e path p from s to t in the
diagram is represented by the node sequence; that is,
p � (v1 � s, v2, · · · , vh � t). s and t are respectively the start
node and end node of p. 'e length c(p) of p is the total
length of all sides on p; that is, c(p) � 􏽐(i,j)∈pcij.

'e path set from s to t is represented by Pst.'e shortest
path problem is to find the path p∗ with the smallest length
from s to t. 'e KSP problem is a generalization of the
shortest path problem. In addition to determining the
shortest path, it also needs to determine the second shortest
path and the third shortest path until the Kth short path is
found. pk represents the Kth shortest path from s to k.

According to path constraints, KSP problems are usually
divided into two types: a general KSP problem and a re-
stricted loopless KSP problem.'e general KSP problem has
no restrictions on the path. 'e restricted loopless KSP
problem requires that the obtained path is simple, and it
cannot contain a loop. 'e network graph in this study did
not contain loops, so only the restricted loopless KSP
problem was analyzed.

2.2.2. Restricted Loopless KSP Algorithm. 'is study used the
deviation path algorithm to solve the restricted loopless KSP
problem. 'e core of the deviation path algorithm is how to
find pk+1 by using the shortest deviation path of the obtained
p1, p2, . . . , pk. Firstly, the Dijkstra algorithm was used to
find the shortest path from s to t and put it into the path set
Pk as p1. After calculating p1, p2, . . . , pk􏼈 􏼉 of the previous k

paths, the calculation process of pk+1 was as follows:

(1) Take each node vi except the end node in pk as the
possible deviation point, and calculate the shortest
path from vi to the node t. To avoid repetition with
the previously found path, the side separated from
the node vi could not be the same as the side sep-
arated from vi on the previously found shortest path
p1, p2, · · · , pk.

(2) Splice the shortest path from the found vi to the node
t with the path from s to vi on the current node pk to
form a candidate path of pk+1 and save it in the
candidate path set Pk

′.
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(3) Select the shortest path from the candidate path set
Pk
′ as pk+1, and put it into the path set Pk.

Repeat the above steps until K paths are obtained.

2.2.3. Multiobjective Route Planning Model. 'e above
section describes the basic concept and solution algorithm of
the KSP problem. In the next phase of the study, a multi-
objective path planning model was designed based on the
deviation path algorithm to obtain the optimal route.
Comprehensively considering the accident risk cost and
route travel time, the specific steps of the improved algo-
rithm of KSP was as follows:

(1) Initialize network to determine the start point s and
end point t of path as well as K alternative paths.

(2) Load the accident risk cost of each section and the
travel time of each section calculated by (1) into the
traffic network.

(3) Aiming at the accident risk cost, obtain the shortest
path from s to t by using the Dijkstra algorithm,
which is recorded as (k � 1).

(4) If k≥K, then move to the final step. If k<K, then all
other nodes vi except for the end point t on pk are
regarded as deviation nodes, and there are totally x

pieces of (0≤ i≤x).
(5) Traverse all deviation points, find the shortest path

from each deviation point vi to the end point t, splice
the path from the start point s to vi with the shortest
path from vi to the end point t on pk, and save it in
the set as Pk

′, as a candidate path.
(6) If the candidate path set Pk

′ is empty, go to the last
step. If it is not empty, calculate the travel time of
each candidate path and find the path with the
shortest time; that is, pk+1. Remove the path from the
set Pk
′, and put it into the set Pk and return to step 4.

(7) From the K candidate paths, select the path with the
shortest travel time as the optimal path to obtain the
results.

3. Research Results

3.1. Data. To achieve objective weighting and analyze the
correlations between indicators according to the data
characteristics, this study used traffic accident data from
the National Highway Traffic Safety Administration
(NHTSA) from the year of 2019 [29]. NHTSA uses data
from many sources, including the Fatality Analysis
Reporting System (FARS) which began operation in 1975.
FARS provides data about fatal crashes involving all types
of vehicles; therefore, it was possible to obtain indicators of
impact on traffic accidents from this data set. 'e basic data
was saved in comma separated values (CSV) files. For the
2019 data collection year, there were 23 data files.'is study
selected the files that describe the states of people, vehicles,
roads, and the surrounding environment at the time of the
accident.

3.2. Data Preprocessing. After obtaining the data files, it was
necessary to systematically screen the risk indicators in the
data set according to the four elements of the transportation
system: people, vehicles, roads, and environment. For the
selection of indicators, firstly, this study defined the indi-
cator factors contained in transportation risk through
existing literature research, expert consultation, and analysis
of accident investigation reports in recent years [3, 16, 17]
and then selected the indicators in data files to delete the
unnecessary indicators. For example, the relevant data files
of the involved people describe the information of all per-
sons involved in collisions, including the demographic in-
formation of the driver and passengers and the driving
maneuvers before the accident. As most accidents are related
to driver behaviors, this study only used data from drivers’
demographic information and behaviors, so the indicators
related to passengers were ignored. After screening each file,
22 indicators, including time of accident, driver gender, road
alignment, and weather, were obtained to construct the
indicator set of accident cost impact factors (see Table 1).
'e data structure in the data file was complex, and the
sample size was large. It was necessary to clean the data and
delete abnormal data, including null values, unreported
values, and reported-as-unknown values. 'e original data
of indicators was saved in the data table in the form of
numbers.'e indicator meanings corresponding to different
numbers can be obtained by checking the FARS Analytical
User’s Manual [29] (see Table 1).

After determining the impact factors, the impact factors
located in different data files needed to be integrated into one
data file to facilitate the subsequent calculation by the entropy
weight method. After deleting the abnormal data, different
indicators included different data sample sizes. 'erefore,
this study used the accident number to connect the selected
data files and merge them into a data table. 'e combined
data table contained 26218 accident data points, and data on
each accident contained 22 cost impact indicators. 'rough
simple statistical analysis of the processed data (see Table 2),
it was found that drivers involved in 3113 accidents were aged
between 15 and 20, accounting for 11.9%. Younger drivers
generally have a more aggressive driving style and usually
ignore traffic regulations, which have a certain impact on
accident risk. Additionally, there were 5673 accidents in-
volving drivers aged elder than 65, accounting for 21.6%.
'rough comparison, it was observed that the proportion of
traffic accidents among elderly drivers was higher than that
among young drivers aged between 15 and 20.'is is because
elderly drivers generally response slowly, and it is easy to
cause accidents if they do not respond to emergencies in time.
Simple statistical analysis cannot accurately explain the
impact of each indicator on accident risk. 'erefore, in the
next phase of the study, the entropy weight method was used
to calculate the weight of each indicator to determine the
impact of each indicator on accident risk.

3.3. Quantification of Accident Risk Cost. 'is study used
python to realize the entropy weight method. First, in the
merged data table, the number of columns—excluding the
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Table 1: Indicator set of accident cost impact factors.

No. Index Definition Description
1 A_D15_20 Crashes involving a young driver (aged 15–20) Young driver involved crash (aged 15–20)� 1, otherwise� 2
2 A_D65PLS Crashes involving an older driver (aged 65+) Older driver involved crash (aged 65+)� 1, otherwise� 2
3 A_DIST Involving a distracted driver Involving a distracted driver� 1, otherwise� 2
4 A_DROWSY Involving a drowsy driver Involving a drowsy driver� 1, otherwise� 2
5 A_RELRD Relationship to the traffic way On roadway� 1, off median� 2, off shoulder� 3, off roadway� 4
6 A_SPCRA Involving speeding Speeding involved crash� 1, otherwise� 2
7 DRYNK_DR Number of drunk drivers Number of drunk drivers� 1, 2, 4, no drunk drivers� 0
8 REST_USE Restraint system use None used� 0; otherwise� 1
9 Sex Driver gender Female driver involved crash� 2, otherwise� 1
10 A_LIC_S License status Valid� 1, invalid� 0

11 PREV_ACC Previous recorded crashes Number of previous recorded crashes� 1, 2, 3, 4, 5, 6, 7, 8, no
record� 0

12 A_LT Involving a large truck Large truck involved CRASH� 1, otherwise� 2
13 HAZ_INV Hazardous material involvement No� 1, yes� 2
14 A_RU Land use (rural/urban) Rural� 1, urban� 2
15 A_INTSEC Intersection Intersection� 1, nonintersection� 2
16 VALIGN Roadway alignment Straight� 1, curve� 2

17 VSURCOND Roadway surface condition Dry� 1, wet� 2, mud, sand� 3, dirt or gravel� 4, snow� 5, water
(standing or moving)� 6, slush� 7, ice/frost� 8

18 VTRAFCON Traffic control device No controls� 0, otherwise� 1
19 A_DOW Day of week Weekday� 1, weekend� 2
20 A_TOD Time of day Daytime� 1, nighttime� 2

21 WEATHER Atmospheric conditions
Clear� 1, cloudy� 2, rain� 3, fog� 4, freezing rain or drizzle� 5,
snow� 6, sleet or hail� 7, severe crosswinds� 8, blowing sand,

soil, dirt� 9, blowing snow� 10

22 LGT_CON Light condition Daylight� 1, dark-lighted� 2, dawn� 3, dusk� 4, dark-not
lighted� 5

Table 2: Descriptive statistics.

Number Index Statistical value (proportion)
1 A_D15_20 1� 3113 (11.90%), 2� 23105 (88.10%)
2 A_D65PLS 1� 5673 (21.60%), 2� 20545 (78.40%)
3 A_DIST 1� 2169 (8.30%), 2� 24049 (91.70%)
4 A_DROWSY 1� 538 (2.10%), 2� 25680 (97.90%)
5 A_RELRD 1� 16236 (61.90%), 2� 381 (1.50%), 3� 987 (3.80%), 4� 8614 (32.80%)
6 A_SPCRA 1� 6720 (25.60%), 2�19498 (74.40%)
7 DRYNK_DR 0�19424 (74.10%), 1� 6592 (25.10%), 2� 201 (0.80%), 4�1 (0.0004%)
8 REST_USE 0�14934 (57.00%), 1� 11284 (43.00%)
9 Sex 1� 17064 (65.10%), 2� 9154 (34.90%)
10 A_LIC_S 0� 8349 (31.80%), 1� 17869 (68.20%)

11 PREV_ACC 0�19989 (76.20%), 1� 4538 (17.30%), 2�1197 (4.60%), 3� 345 (1.30%), 4�104
(0.40%), 5� 33 (0.13%), 6� 9 (0.03%), 7� 2 (0.0008%), 8�1 (0.0004%)

12 A_LT 1� 3665 (14.00%), 2� 22553 (86.00%)
13 HAZ_INV 1� 26116 (99.60%), 2�102 (0.40%)
14 A_RU 1� 12113 (46.20%), 2�14105 (53.80%)
15 A_INTSEC 1� 6260 (23.90%), 2�19958 (76.10%)
16 VALIGN 1� 20020 (76.40%), 2� 2088 (8.00%), 3� 3628 (13.80%), 4� 482 (1.80%)

17 VSURCOND 1� 22060 (84.10%), 2� 3442 (13.10%), 3� 95 (0.36%), 4� 239 (0.91%), 5� 55
(0.21%), 6� 58 (0.22%), 7� 269 (1.00%)

18 VTRAFCON 0� 20041 (76.40%), 1� 6177 (23.60%)
19 A_DOW 1� 15755 (60.10%), 2�10463 (39.90%)
20 A_TOD 1� 12845 (49.00%), 2�13373 (51.00%)

21 WEATHER
1� 19153 (73.10%), 2� 4254 (16.20%), 3� 2125 (8.10%), 4� 288 (1.10%), 5� 33
(0.13%), 6� 261 (1.00%), 7� 33 (0.13%), 8� 44 (0.17%), 9� 6 (0.02%), 10� 21

(0.08%)

22 LGT_CON 1� 12655 (48.30%), 2� 4867 (18.60%), 3� 553 (2.10%), 4� 598 (2.30%), 5�172
(0.66%), 6� 7373 (28.10%)

6 Journal of Advanced Transportation



column communicating accident number—was defined as the
number of indicators, and the number of rows—excluding the
row communicating index names—was defined as the number
of schemes, i.e., evaluation subjects. 'en, the data were
standardized, during which it was necessary to judge whether
the indicator was a positive indicator or a negative indicator. A
positive indicator is an indicator that is better when it gets
larger; on the contrary, a negative indicator is an indicator that
is worse when it gets larger. In this study, for the indicator
A_DIST (involving a distracted driver), the value of 1 indicated
that distracted driving was involved in the accident, and the
value of 2 indicated that distracted driving was not involved. A
higher value was better for the evaluation result.'erefore, this
was a positive indicator. Similarly, each indicator was judged
and the code was entered. Finally, the entropymethod function
was defined, and the weights of the variables were calculated.
'e index entropy and weights were obtained through cal-
culation (see Table 3) to realize the objective weighting based
on historical accident data. It was mentioned in Section 2.1.2
that the smaller the entropy of the index, the greater the weight.
Table 3 shows that the indicator of VTRAFCON (traffic control
device) was the smallest entropy and the largest weight.
'erefore, whether there are traffic control measures at the
location of the accident will have a great impact on accident
risk. Finally, by substituting the index weights into (1), the
calculation equation of the accident risk cost of vehicles driving
in a certain section was determined.

3.4. Case Study of Route Planning. In the previous step, the
index weights were calculated, and the calculation equation
of road accident risk cost was determined. In the next step,
the route planning example network was constructed to
realize the route planning with accident risk cost as the
optimal goal based on the improved K shortest path algo-
rithm. 'e example road network constructed consisted of
10 nodes and 14 road sections. 'e specific road network is
shown in Figure 2. By assuming the real-time driver, vehicle,
road, environment, and other parameters of the road net-
work, the corresponding attributes of each road section were
given; that is, the actual values of 22 indicators included in
each road section were determined. On this basis, the ac-
cident risk cost of each road section was calculated according
to (1). At the same time, the travel time of each road section
was assigned. 'e results are shown in Table 4.

Python was used to implement the route planning model
algorithm. First, the Dijkstra algorithm and deviation path
algorithm function were defined. 'en, the network struc-
ture and the start and end points of the network were de-
termined.'e network parameters were input, Kwas set to 3
(i.e., three candidate paths were calculated), and the Dijkstra
algorithm function was called to calculate the shortest path
p1 � (v1, v3, v4, v5, v9, v10) from v1 to v10 aiming at the ac-
cident risk cost, and the path risk cost was 􏽐 Zi � 6.19.'en,
the deviation path algorithm was called to determine the
second shortest path. 'e detailed calculation steps of p2 are
as Table 5.

Table 5 shows that there are five deviation points in total
for finding p2. It was necessary to calculate each deviation

point to ensure whether a new candidate path could be
generated. After traversing each deviation point, four can-
didate paths were obtained. 'e accident risk cost of each
path was 6.39, 6.58, 6.26, and 7.86. 'e travel time of each
candidate path was calculated as 31, 31, 29, and 33, re-
spectively. At this time, the path with the shortest travel time
was selected as p2. 'erefore, the output second path was
p2 � (v1, v3, v4, v8, v9, v10).

Similarly, the third shortest path was calculated
according to the improved deviation path algorithm. 'e
model output of the third path was
p3 � (v1, v2, v4, v5, v9, v10). At this time, k� 3 was met, three
candidate paths were obtained (see Table 6), and the pro-
gram stopped calculation. Referring to Table 6, the path with
the shortest travel time was selected as the optimal path. 'e
travel time of paths p1 and p2 was 29, but the risk cost of p1
was lower, so p1 � (v1, v3, v4, v5, v9, v10) was selected as the
optimal path of the network (see Figure 3).

Most conventional path planning methods take the
shortest travel time as the optimization goal. 'erefore, this

Table 3: Weights of accident cost impact factors.

Number Index ej wj

1 A_D15_20 0.967 0.027
2 A_D65PLS 0.958 0.035
3 A_DIST 0.970 0.024
4 A_DROWSY 0.975 0.020
5 A_RELRD 0.938 0.050
6 A_SPCRA 0.953 0.038
7 DRYNK_DR 0.953 0.039
8 REST_USE 0.907 0.077
9 Sex 0.942 0.047
10 A_LIC_S 0.946 0.044
11 PREV_ACC 0.955 0.037
12 A_LT 0.965 0.029
13 HAZ_INV 0.977 0.019
14 A_RU 0.926 0.060
15 A_INTSEC 0.955 0.037
16 VALIGN 0.957 0.037
17 VSURCOND 0.963 0.030
18 VTRAFCON 0.852 0.122
19 A_DOW 0.936 0.053
20 A_TOD 0.918 0.067
21 WEATHER 0.952 0.039
22 LGT_CON 0.917 0.068

v1 v2

v3 v4 v5 v6

v7 v8 v9
v10

s

t

a1

a2

a3
a4

a5 a6 a7

a8 a9 a10 a11

a12 a13 a14

Figure 2: Road network.
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paper compares the proposed model with the model that
only consider the shortest travel time. Using the Dijkstra
algorithm to calculate the shortest path with travel time as
the goal, the shortest path is p4 � (v1, v2, v6, v10) and the
travel time is 24. Compared with the route selection result of
the model proposed in this study, it can be seen that con-
sidering the accident risk cost of the route does not have a
great impact on the route selection. 'e travel time of path
p1 is 29; compared with path p4, it takes more time for
drivers to travel. However, because the model takes mini-
mizing travel risk as the primary goal and minimizing travel
time as the second goal, choosing p1 greatly improves the
travel safety of drivers.

Table 4: Network parameters.

Road section A_D15_20 A_D65PLS A_DIST . . . VSURCOND A_LIC_S Zi Travel time t0

a1 2 2 2 . . . 1 1 1.44 6
a2 2 2 2 . . . 2 1 1.82 7
a3 2 2 2 . . . 7 1 2.95 10
a4 2 1 2 . . . 1 1 1.02 6
a5 2 1 2 . . . 1 2 1.20 5
a6 1 2 2 . . . 1 1 1.31 7
a7 2 2 2 . . . 2 1 1.52 8
a8 2 2 2 . . . 1 1 1.40 5
a9 2 2 2 . . . 1 1 1.48 4
a10 2 2 2 . . . 1 1 1.19 5
a11 2 2 2 . . . 2 1 2.39 7
a12 2 2 2 . . . 2 0 1.60 6
a13 2 1 2 . . . 1 1 1.09 8
a14 2 2 2 . . . 1 0 1.05 6

Table 5: Deviation path algorithm.

Deviation
point Start to deviation Inapplicable

side
Inapplicable
node(s)

Shortest path from
deviation to end Generated candidate path

Put into
Pk
′ or
not

v1
null
(0)∗

v1⟶ v3 null
v1⟶ v2⟶ v4,
⟶ v5⟶ v9⟶ v10

(6.39)

v1⟶ v2⟶ v4,
⟶ v5⟶ v9⟶ v10

(6.39)

Yes

v3
v1⟶ v3

(1.44)
v3⟶ v4 v1

v1⟶ v3⟶ v7,
⟶ v8⟶ v9⟶ v10

(5.14)

v1⟶ v3⟶ v7,
⟶ v8⟶ v9⟶ v10

(6.58)

Yes

v4
v1⟶ v3⟶ v4

(2.64)
v4⟶ v5 v1, v3

v4⟶ v8⟶ v9, ⟶ v10
(3.62)

v1⟶ v3⟶ v4,
⟶ v8⟶ v9⟶ v10

(6.26)

Yes

v5

v1⟶ v3⟶ v4,
⟶ v5
(3.95)

v5⟶ v9 v1, v3, v4
v5⟶ v6⟶ v10

(3.91)

v1⟶ v3⟶ v4,
⟶ v5⟶ v6⟶ v10

(7.86)

Yes

v9

v1⟶ v3⟶ v4,
⟶ v5⟶ v9

(5.14)

v9⟶ v10 v1, v3, v4, v5 None None No

∗'e numbers in the brackets of the table indicate the accident risk.

Table 6: Shortest paths.

Shortest path 􏽐 Zi Travel time T

p1 � (v1, v3, v4, v5, v9, v10) 6.19 29
p2 � (v1, v3, v4, v8, v9, v10) 6.26 29
p3 � (v1, v2, v4, v5, v9, v10) 6.39 31

v1 v2

v3 v4 v5 v6

v7 v8 v9 v10

s

t

a1

a2

a3
a4

a5 a6
a7

a8 a9 a10 a11

a12 a13

a14

p2
p3

p1 (Optimal path)

Figure 3: Path selection results.
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According to the above path selection results and
comparison analysis, the path planning model proposed in
this study takes the risk cost as the primary goal, compre-
hensively considers the travel time of the path, and realizes
the multiconstraint path guidance. 'e optimal path min-
imizes the travel time on the basis of the lowest risk cost. It
can not only ensure the travel safety but also the travel
efficiency.

4. Conclusions and Future Research

'is study established an accident risk evaluation system
based on traffic accident data; constructed a quantitative
model of accident risk cost based on drivers, vehicles, roads,
and environmental factors; calculated the weight of each
index by the entropy weight method; and determined the
accident risk of a road section. 'en, based on an improved
K shortest path algorithm, a route planning model con-
sidering risk cost and travel time was designed, which can be
applied to driving assistance systems to help drivers choose a
better, safer, and faster travel path and improve overall traffic
safety and efficiency. 'e conclusions of this study are as
follows:

(1) Based on historical accident data, this study con-
structed a risk index evaluation system, used the
entropy weight method to calculate the index
weights, and established the accident risk cost cal-
culation model, which realizes the objective quan-
tification of driving risks and overcomes the
disadvantage of subjectivity in traditional risk
evaluation methods.

(2) Based on the improved K shortest path algorithm, a
route planning model meeting multiple objectives
was designed. 'e model considers the path risk cost
and travel time simultaneously and selects the op-
timal travel path with the lowest risk and shortest
time for drivers. 'e proposed method is theoreti-
cally and practically applicable for road trans-
portation risk assessment and accident prevention.

'e model proposed in this paper considers the impact
of drivers, vehicles, roads, and the surrounding environment
on traffic accidents. However, due to the lack of index data
reflecting real-time traffic flow characteristics (such as traffic
flow, traffic composition, etc.) in the data set, the impact of
real-time traffic flow characteristics on accident risk is not
calculated. Also, this study assumes only a small proportion
of vehicles are guided by the route planning method so that
the method changes neither the traffic flow states nor the
driving risk. At the same time, the K shortest path algorithm
used in this study outputs a large number of repeated paths,
which is inefficient and can only be used in acyclic networks,
so it is difficult to deal with path selection on complex
networks. In future research, real-time traffic flow charac-
teristics can be included in the index set. Combined with the
accident risk quantification model proposed in this study,
the real-time risk status of the road can be calculated to
realize the real-time update of the travel path. At the same
time, the future research can be applied in the actual road

network and try to improve the path guidance algorithm to
improve the efficiency and universality of the model.
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