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'is study addresses uncertainty in a transportation network by proposing a trilevel optimization model, which improves
resiliency against uncertain disruptions. 'e goal is to minimize the total travel time by designing a resilient transportation
network under uncertain disruptions and deterministic origin-destination demands. 'e trilevel optimization model has three
levels.'e lower level determines the network flow, and the middle level assesses the network’s resiliency by identifying the worst-
case scenario disruptions that could lead to maximal travel time. 'e upper-level takes the system perspective to expand the
existing transportation network to enhance resiliency. We also propose a formulation for the network flow problem to sig-
nificantly reduce the number of variables and constraints. Two algorithms have been developed to solve the trilevel model. 'e
results of solving the highway network in Iowa show that the trilevel optimization model improves the total travel time by an
average of 41%.

1. Introduction

'e transportation sector is among the critical infrastructure
sectors in the United States because many other critical in-
frastructures such as emergency services, food and agricul-
ture, healthcare and public health, andmanufacturing depend
on transportation networks to function properly [1]. 'e
highway and motor carrier is a subsector of transportation
systems and supports the mobility of people, goods, and
services, which are essential for daily activities and emergency
responses. However, road networks entail risk from natural
and human-made events such as hurricanes, tsunamis,
earthquakes, bridge collapse, and terrorist attacks. 'ese
hazards could result in significant efficiency reductions, direct
damage to the physical infrastructure, or even negative im-
pacts nationally and globally on the economy and social
systems. 'erefore, there is a need to improve reliability on
components of interconnecting networks to guarantee safety
and complete delivery in the presence of any unpredictable

failures. Resilient network design ensures that the network
functionality is at an acceptable level of service in the presence
of all probabilistic failures.

'e general mathematical model of the network design
problem is a bilevel programming problem. 'e decisions
related to investment improvements are made at the upper-
level problem by traffic authorities in system’s interest as a
whole. On the other hand, the individual travelers decide
where and how to travel at the lower-level problem. Some
related pieces of research that proposed a bilevel program-
ming model for network design are in [2–7]. Also, Kar-
oonsoontawong and Waller [8] proposed a linear bilevel
programming model for the network design problem. 'ey
developed a genetic algorithm, a simulated annealing, and a
random search to solve the problem. Lin et al. [9] formulated
a bilevel linear program for the network design problem and
proposed a heuristic algorithm based on Dantzig–Wolf de-
composition to solve it; the solution of the algorithm could be
potentially local optimum. Hamid and Mehdi Sepehri [10]

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 5023518, 16 pages
https://doi.org/10.1155/2022/5023518

mailto:rahdar@sau.edu
https://orcid.org/0000-0003-4196-7552
https://orcid.org/0000-0002-5527-4047
https://orcid.org/0000-0002-7304-8430
https://orcid.org/0000-0001-8392-8442
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5023518


presented a single-level mixed-integer linear programming
formulation for the bilevel network design problem.'ey also
generated two valid inequalities to improve the efficiency of
computation time. Khooban et al. [11] proposed a bilevel
programming model for the network design problem. 'e
upper-level problem of their model decides to expand ca-
pacity and determines signal settings at intersections; the
lower-level was the user equilibrium assignment problem.

Network design problems can be classified based on the
origin-destination demand, the decision-making level, and
the design variables. 'ese problems are usually divided into
two modeling cases in terms of demand: deterministic and
uncertain demands. When the demand is deterministic, it is
assumed that the demand between each origin-destination
pair is given. However when it is uncertain, the origin-des-
tination trip matrices are taken as random variables. In ad-
dition, the network design problem involves making optimal
decisions at three levels: strategic, tactical, and operational
[12, 13]. 'e strategic level includes long-term decisions such
as building new links or expanding existing routes. Tactical
decisions can determine the orientation of a one-way road or
the allocation of lanes. Finally, the operational level decisions
are short-term, involving traffic flow control and scheduling
problems [12]. Furthermore, network design problems can be
classified into three different types based on the decision
variables. 'e first class is the discrete network design
problemwhich deals with adding a new lane or building a new
road [14–16]. 'e second class is the continuous network
design problem which makes decisions on capacity en-
hancement, signal setting at intersections, and road pricing
[6, 17–19]. 'e third class involves both discrete and con-
tinuous design variables [7, 20, 21]. 'is paper studies the
strategic decisions of link capacity expansions by adding new
lanes to critical links when demand is deterministic. We
propose a trilevel optimization model to identify the vul-
nerable links and decide on expansions.

Identifying critical links of a transportation network is a
primary issue in the vulnerability analysis because the failure
of these links significantly impacts the whole network. Some
researchers [22, 23] assumed that the failure is a link or a
group of links being fully disrupted and examined the effect
of iteratively removing road links to calculate the network
performance. As stated in [24], it ignores the potential
combined effects of multiple links. For example, having two
bridges on a river, one of them could be congested, and the
traffic would shift to the other one. 'us, neither bridge may
be considered a pivotal link individually, but the simulta-
neous disruption of both would make the system vulnerable.
In addition, this approach can be computationally intensive
[25]. Another approach to identify the critical links is
preselecting potentially vulnerable links by calculating the
stochastic traffic assignment. Knoop et al. [26] compared ten
different criteria for selecting potentially vulnerable links in
a network and concluded that none of these strategies ac-
curately predicted the list of vulnerable links. Also, they
stated that their combination did not accurately represent
the full consequences of blocking a link. 'erefore, these
strategies are not good enough to properly identify the
critical links in a road network.

'is paper aims to propose a model to expand a
transportation network given a limited budget, such that the
effect of a disruption on the entire network is minimized. To
build a resilient transportation network that faces uncertain
disruptions, we work on the uncertainty of link capacities
when origin-destination demands are constant and propose
a new approach to perform network design. For example,
crashes, stalled vehicles, or weather conditions can reduce
the capacity of the road while the number of travelers and
the distance for each link are fixed. Some of these travelers
may choose to wait in a congested link, while others may
select another route to reach the destination. Since reducing
the link capacities degrades the performance of a trans-
portation network and can delay or stop the movement,
quantifying such impacts is critical to network design
improvement.

'e contributions of this paper are as follows: first, we
developed a trilevel optimization model for the resilient
network design problem. Second, we proposed a new for-
mulation for the network flow problem (the third level of the
trilevel model) to significantly reduce the number of vari-
ables and constraints. 'ird, we designed a heuristic algo-
rithm for solving the trilevel optimization model to
efficiently search for a worst-case scenario in the scenario
space. We also conducted an experiment using the proposed
model on a large transportation network for the state of
Iowa.

'e remainder of the paper is organized as follows: in
Section 2, the problem formulation is discussed. Section 3 is
devoted to algorithm development. Section 4 presents the
case study and experimental results. Finally, the conclusion
with a summary is reported in Section 5.

2. Model Formulation

2.1. Problem Statement. We address a traffic network design
problem with uncertainty over available link capacity. 'e
goal is to make optimal strategies to strengthen the network
against future disruptions under limited resources. 'e
model aims to identify critical links and increase their ca-
pacity under the given budget. 'e network design problem
is a two-stage decision-making problem, and its objective
function minimizes the travel time subject to the network
construction budget and travel demand satisfaction.'e link
capacity expansion decisions are made at the first stage
before the realization of disruption uncertainty. We focus on
expanding the capacity of vulnerable links, not addition of a
new link. At the second stage, flow variables are decided after
observing the disruption. In the remainder of the section, we
first give the deterministic version of the network design
problem in Section 2.2 and then introduce the trilevel op-
timization model in Section 2.3.

2.2..eNetworkFlowProblem. Consider a directed network
in which vehicles can travel on road segments. 'e travel
time on a link is t(f) when the flow rate of vehicles on the
link is f. A popular link performance function that rep-
resents the relationship between resistance and volume of
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traffic has been developed by the Bureau of Public Roads
(BPR). 'e BPR function has been used extensively to es-
timate the link travel time in a road network.We adopted the
BPR function (1) as the travel time of a link in our model.

t(f) � τ 1 + α
f

p
 

β
⎛⎝ ⎞⎠, (1)

where t(f) is the average travel time for a vehicle on the link,
τ denotes the free-flow travel time on the link, f is the link
traffic flow, and p is the link’s capacity.'e coefficients α and
β determine the shape of the function. Parameters α and β
are classically 0.15 and 4, respectively. 'e BPR function is
nonlinear, and it is almost flat for flows lower than the link
capacity. However, the travel time increases significantly for
higher flows.

'ere are generally two ways to formulate the traffic
assignment problem: system optimum (SO) and user
equilibrium (UE). 'e system optimum formulation mini-
mizes the total travel time of all travelers. However, in the
user equilibrium formulation, each driver intends to min-
imize its travel time independently. SO traffic assignment
has been used in disruption scenarios in the literature. For
example, Murray-Tuite [27] compared SO and UE on
network resiliency under disruptions and found comparable
performance between the two models. Angelelli et al. [28]
developed an SO model with user constraints for traffic
assignments. 'ey bounded the ratio of the normal length of
any path to the normal length of the shortest path for the
same origin-destination pair. However, these bounds on the
level of unfairness are in terms of normal lengths of paths
and independent of the flow. 'e experienced unfairness in
terms of the travel times on the restricted path set may be
much higher than the specified level of normal unfairness,
which is an a priori fixed quantity. He et al. [29] studied the
robustness of multimodal freight transport networks against
disruptions using both UE and SO models. Prashker and
Bekhor [30] discussed the relation between the UE and the
SO. 'ey reported that the UE and SO solutions are close to
each other in the low congested part of the graph. In this
paper, we formulate the objective function as in SO to find
the minimum total travel time to address important ques-
tions at the system level, such as identifying the most vul-
nerable links and enhancing network capacity to achieve an
optimum social equilibrium.

'e formulation of the network flow problem is rep-
resented in (2a)–(2f), and Table 1 includes the notation used
in formulating the network flow model (2a)–(2f). 'e
model’s objective is to minimize the total travel time. 'e
average individual travel time for a vehicle on link (i, j) is
ti,j(fi,j) and can be calculated through equation (1). Total
flow on link (i, j) is fi,j, and the capacity of each link is
2000pi,j. It is assumed that the maximal flow rate for each
lane is 2000 vehicles per hour under ideal conditions. 'e
unit of link capacity pi,j is the number of lanes for link (i, j),
so by multiplying 2000 by pi,j, the unit is converted to the
number of vehicles per hour. Constraint (2b) states that the
total input flows to node s when their origin is r and des-
tination is s equal to the travel demand from node r to node

s. Constraint (2c) expresses that the total output flows from
node r minus the total input flows to node r when their
destination is s is equal to the travel demand from origin r to
destination s. Constraint (2d) makes sure that the total input
flows to node i are equal to the total output flows from node i

when their origin is r and their destination is s. Constraint
(2e) calculates the flow of each link, and constraint (2f )
defines the domains of decision variables.

min 
(i,j)∈L

ti,j fi,j fi,j, (2a)

s.t. 
(j,s)∈L

gj,s,r,s � dr,s, ∀s ∈ S, r ∈R(s),
(2b)


(r,j)∈L

gr,j,r,s − 
(j,r)∈L

gj,r,r,s � dr,s, ∀s ∈ S, r ∈R(s),

(2c)


(i,j)∈L

gi,j,r,s − 
(j,i)∈L

gj,i,r,s � 0, ∀s ∈ S, r ∈R(s), i ∈N\ s,R(s){ },

(2d)

fi,j � 
(r,s)∈D

gi,j,r,s, ∀(i, j) ∈L, (2e)

gi,j,r,s ≥ 0, ∀(i, j) ∈L, (r, s) ∈ D. (2f)

One potential drawback of this formulation is that it
generates a model with a huge number of variables and
constraints. In this paper, we present an equivalent andmore
efficient model with fewer variables and constraints, which is
presented in (4a)–(4f). In the new formulation, the defi-
nition of variable gi,j,r,s is changed to gi,j,s, which is the total
flow of link (i, j) from all origins R(s) to destination s.

gi,j,s � 
r∈R(s)

gi,j,r,s. (3)

'erefore, the reformulation of the network flow
problem is as follows in (4a)–(4f). Constraint (4b) states that
the total input flows with destination s to node s should be
equal to the total travel demand of node s. Similarly, con-
straint (4c) expresses that the total output flows of node r

with destination s minus the total input flows to node r with
destination s is equal to the travel demand from origin r to
destination s. Constraint (4d) states that the output flows of
node i with destination s equal to the input flows to node i

with destination s in which there is no demand from i to s.
Constraint (4e) calculates the flow of each link, and con-
straint (4f ) defines the domains of decision variables.

min 
(i,j)∈L

ti,j fi,j fi,j, (4a)

s.t. 
(j,s)∈L

gj,s,s � 
r∈R(s)

dr,s, ∀s ∈ S,
(4b)


(r,j)∈L

gr,j,s − 
(j,r)∈L

gj,r,s � dr,s, ∀s ∈ S, r ∈R(s),
(4c)
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(i,j)∈L

gi,j,s − 
(j,i)∈L

gj,i,s � 0, ∀s ∈ S, i ∈N\ s, R(s){ }, (4d)

fi,j � 
s∈S

gi,j,s, ∀(i, j) ∈L, (4e)

gi,j,s ≥ 0,∀(i, j) ∈L, s ∈ S. (4f)
Since the BPR function is nonlinear, we linearized it

through defining a new variable bi,j,k, which is the flow of
link (i, j) using block k. We define a few blocks for each
link. 'e variable bi,j,1 is the flow through link (i, j) using
block 1 capacity, that is, the flow within 100% capacity.
Variable bi,j,2 is the flow through link (i, j) using block 2
capacity, which is beyond 100% but within 200% capacity.
Travel time is higher in this block; as k gets higher, the flow
gets into a more costly capacity. 'e new objective
function is (i,j)∈Lkckτi,jbi,j,k, and new coefficients are
ckτi,j which are travel times through link (i, j) using block
k capacity. Parameter ck is a coefficient to adjust the cost
of traveling in higher blocks. To determine the values of
parameters ck, we defined breakpoints for the traffic flow
as 100%, 200%, . . .of the link capacity on BPR function
and estimated travel time of one vehicle going through the
link at these points. We determined ck parameters by
minimizing the difference between the travel times ob-
tained from the BPR function and our objective function
at breakpoints. Values for parameter ck for k � 1, 2, 3 are 1,
5, and 32.8, respectively. Figure 1 shows the concept of
block capacities for a 1-lane link when the free-flow travel
time is 1 hour. Breakpoints are at 2000, 4000, . . . vehicles
per hour. For traffic flow under 2000 veh/hr, the average
travel time for each vehicle is one hour, and it grows for
higher flow rates.

For this linearization, we also need to modify constraint
(4e) and add another constraint to the model. Constraint (5)
is the modification of (4e) and relates two variables bi,j,k and
gi,j,s. It states that the total flow on link (i, j) in all blocks
equals the total flow on this link to all destinations. New
constraint (6) ensures that the flow on each block cannot
exceed the link capacity.


k

bi,j,k � 
s∈S

gi,j,s, ∀(i, j) ∈L, (5)

bi,j,k ≤ 2000pi,j, ∀k, (i, j) ∈L. (6)

2.3. Trilevel Optimization Model. Network design problems
are usually formulated as a bilevel model. 'e decision var-
iables of the upper-level are the link capacity expansions, and
network flow is determined in the lower-level of the model.
'is type of model assumes that there is no disruption in the
network. Relaxing the simplifying assumption of no disrup-
tion results in a two-stage decision-making problem, in which
uncertain disruptions occur after making expansion decisions.
Disruptions are uncertain variables in the problem, but we can
estimate their lower and upper bounds. We propose a two-
stage trilevel optimization model to make decisions on ex-
pansion, identify the disruptions, and determine the network
flow. We assume that, after making decisions on the first stage
(expansion decisions), uncertain disruptions will be observ-
able, and thus, the second stage (network flow problem)
becomes a deterministic model. To make expansion decisions
in the first stage, we take a pessimistic view of uncertainty and
anticipate the worst-case scenario for the second stage. By this
formulation, we have three levels in the model, in which the
first stage decisions aremade in the upper-level, the worst-case
scenario is identified in the middle-level given the first stage
decision, and the second stage decisions aremade in the lower-
level under the worst-case scenario and given the first stage
decision. 'e upper-level foresees the network flow under the
worst-case scenario to determine the optimal network ex-
pansions. 'e trilevel optimization model is developed using
the notation defined in Table 2.

To abstract the formulation of the trilevel model, we
aggregate the decision variables of three levels into x, y, and
z, respectively, and aggregate objective function coefficients
into c. Using the notation of aggregated decision variables
and parameters, we formulate the trilevel optimization
model as follows.

Table 1: Notation used in the network flow model.

Sets
N Set of nodes
L Set of links
S Set of destination nodes
R(s) Set of origin nodes with destination s ∈ S
D Set of origin-destination pairs for travel demands

Decision variables
gi,j,r,s Flow of link (i, j) ∈L from origin r ∈R(s) to destination s ∈ S
fi,j Total flow on link (i, j) ∈L

Parameters
τi,j Free-flow travel time of link (i, j) ∈L
pi,j Number of lanes on link (i, j) ∈L
dr,s Travel demand from origin r ∈R(s) to destination s ∈ S
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min
x∈X

max
y∈Y(x)

min
z∈Z(x,y)

c
⊤

z  . (7)

Here, the lower level, minz∈Z(x,y)c
⊤z, solves a deter-

ministic problem to minimize the total travel cost given the
expansion decision, x, made at the upper level and the
worst-case scenario of disruptions, y, identified by the
middle level. Its objective function is (i,j)∈Lkckτi,jbi,j,k,

and the feasible set Z(x, y) is defined in (8). 'e compact
form of (8) is represented in (9), where A3, B3, and C3 are
the constraints’ coefficients in the feasible set of the lower-
level problem. Parameter A3 is the coefficient set for the
upper-level variables (πi,j); parameter B3 implies the set of
coefficients for the middle-level variables (qi,j); and pa-
rameter C3 indicates the coefficient set for the lower-level
variables (gi,j,s and bi,j,k).
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Figure 1: 'e Bureau of Public Roads (BPR) function and the linearized function, relating the travel time to the flow.

Table 2: Notation used in the trilevel model.

Sets
N Set of nodes
L Set of links
S Set of destination nodes
R(s) Set of origin nodes with destination s ∈ S

Decision variables
Upper level: x

πi,j Capacity expansion of link (i, j) ∈L
Middle level: y

qi,j Capacity reduction of link (i, j) ∈L because of disruption
Lower level: z

gi,j,s Flow of link (i, j) ∈L to destination s ∈ S
bi,j,k Flow of link (i, j) ∈L using block k capacity

Parameters
ck Coefficients of travel time for each block k

τi,j Free-flow travel time of link (i, j) ∈L
ai,j Capacity expansion cost of link (i, j) ∈L
lxi,j Lower bound of capacity expansion for link (i, j) ∈L
ux

i,j Upper bound of capacity expansion for link (i, j) ∈L
B Network expansion budget
Q Network disruption upper bound
l
y
i,j Lower bound of disruption for link (i, j) ∈L

u
y
i,j Upper bound of disruption for link (i, j) ∈L

dr,s Travel demand from origin r ∈R(s) to destination s ∈ S
pi,j Initial number of lanes on link (i, j) ∈L
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Z(x, y) �

z: 
(j,s)∈L

gj,s,s � 
r∈R(s)

dr,s ∀s ∈ S


(r,j)∈L

gr,j,s − 
(j,r)∈L

gj,r,s � dr,s ∀s ∈ S, r ∈R(s)


(i,j)∈L

gi,j,s − 
(j,i)∈L

gj,i,s � 0 ∀s ∈ S, i ∈N\ s,R(s){ }


k

bi,j,k � 
s∈S

gi,j,s ∀(i, j) ∈L

bi,j,k ≤ 2000 pi,j + πi,j − qi,j ∀k, (i, j) ∈L

gi,j,s ≥ 0 ∀(i, j) ∈L, s ∈ S

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (8)

A3x + B3y + C3z≤ b3. (9)

'e middle level observes the expansion decision, x,
made at the upper level and solves a bilevel optimization
model, maxy∈Y(x) minz∈Z(x,y)c

⊤z , to identify the worst-
case scenario of disruptions, anticipating the response of the
lower level. 'e feasible set Y(x) is defined in (10), and its
compact form is represented in (11), where B2 is the coef-
ficients of the middle-level variables, (qi,j). 'e first con-
straint is bound on the total disruption in the network, and
the second and third constraints set the lower and upper
bounds for the disruption of each link (i, j) in the network.

Y(x) �

y: 
(i,j)∈L

qi,j ≤Q

qi,j ≤ u
y
i,j ∀(i, j) ∈L

qi,j ≥ l
y
i,j ∀(i, j) ∈L

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (10)

B2y≤ b2. (11)
'e upper level solves the trilevel optimization model

(7), which minimizes the travel time, anticipating the re-
sponse from the middle and lower levels. 'e feasible set X
is defined in (12). Its compact form is represented in (13),
where A1 is the set coefficient for the upper-level variables
(πi,j). 'e first constraint is the budget limit on the total
expansion in the network, and the second and third con-
straints set the lower and upper bounds for the expansion of
each link (i, j) in the network.

X �

x: 
(i,j)∈L

ai,jπi,j ≤B

πi,j ≤ u
x
i,j ∀(i, j) ∈L

πi,j ≥ l
x
i,j ∀(i, j) ∈L

πi,j ∈ Z ∀(i, j) ∈L

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (12)

A1x≤ b1. (13)

3. Algorithm Design

'e proposed trilevel model has three levels. 'e upper level
of the trilevel model determines the capacity expansion. 'e
middle level identifies the worst-case scenario for disruptions

given the expansion decisions. 'e lower level determines
traffic flow given the expansions and disruptions.'is kind of
problem is challenging to solve considering the three-level
structure. However, several approaches are available in the
literature to solve it, including heuristic and metaheuristic
algorithms and decomposition methods. In this paper, we
decompose the trilevel model into a master problem and a
subproblem. To develop the master problem, first, we for-
mulate the dual of the lower level problem.'e compact form
of the lower level problem is shown in (14a)–(14c) when
expansions (x) and disruptions (y) are given.

min c
⊤

z, (14a)

s.t. C3z≤ b3 − A3x − B3y, (14b)

z≥ 0. (14c)

'e dual of the lower-level problem is shown in
(15a)–(15c), where λ is the dual variable of constraint (14b).

max − b3 − A3x − B3y( 
⊤λ, (15a)

s.t. − C
⊤
3 λ≤ c, (15b)

λ≥ 0. (15c)

'e master problem M(y, λ) is formulated in
(16a)–(16c). It consists of the upper level problem con-
straints (16b) and a series of optimality cuts (16c) which are
added to the master problem in each iteration. λw is the dual
variable of constraint (14b) in iteration w. It has two decision
variables: variable x which is the expansion decision and
variable tM which is the total travel time. Parameters λw and
yw are, respectively, the dual variable value of the lower level
problem and the disruption amount, which are both esti-
mated by solving the subproblem in iteration w.

mintM ,x tM, (16a)

s.t. A1x≤ b1, (16b)

tM ≥ − b3 − A3x − B3yw( 
⊤λw∀w. (16c)

'e subproblem S(x) is represented in (17), and it is a
bilevel optimization problem (the middle and lower levels) to
assess the resiliency of the network and determine the flow. It
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has two variables: variable y, which is the disruption in the
network, and z, which is the network flow.'e parameter x is
the expansion decision made in the master problem.

max
y∈Y(x)

min
z∈Z(x,y)

c
⊤

z
⎧⎨

⎩

⎫⎬

⎭. (17)

'e idea is to iteratively solve the master problem
M(y, λ) and the subproblem S(x) to determine capacity
expansions under the worst case of disruption. In the first
iteration, we assume that there is no expansion for links and
solve the subproblem (17) to assess the resiliency of the
network and determine the network flow. 'en, with the
given network flow, we solve the master problem (16a)–(16c)
to expand critical links. By having newly added link ca-
pacities, we solve the subproblem again to find the network
flow under the worst-case disruption. 'e resulting bilevel
model (17) either confirms the solution of the upper-level
decision, so the algorithm terminates or yields a worst-case
scenario that will be added as a new cut to the master
problem in the next iteration.

Subproblem (17) is a bilevel programming problem that
also needs an algorithm to be solved. 'erefore, we also
designed an iterative heuristic algorithm to solve the sub-
problem. It identifies the most critical links in the network
and quantifies the negative impacts of capacity reductions of
individual links. Uncertain disruptive road events such as
traffic accidents, obstacles on the road, or adverse weather
conditions reduce the capacity of a given link and increase
the total travel time in the network. 'e algorithm of solving
subproblem (17) reduces the capacity of links in the network
up to the total disruption limit (Q) to find a worst-case
scenario. It has two steps in each iteration: first, we find a
worst-case scenario for disruption; second, we solve the
lower-level problem to find the network flow under this
scenario. With the network flow from step 2, we try to find a
scenario in step 1 to disrupt the network more severely. It
continues until there is no improvement in the objective
function of the bilevel problem.

To start the bilevel problem algorithm with a good so-
lution, we seek a considerable traffic disruption as an initial
solution; then, the algorithm improves the initial solution.
'erefore, in the first iteration of the algorithm of solving the
subproblem, we try to disconnect (r, s) pairs with high de-
mands as many as network disruption upper bound Q allows
to obtain an initial disruption. To remove the minimum
number of edges to disconnect two vertices in a graph, we can
solve the max-flow min-cut problem. 'e max-flow min-cut
theorem states that the maximum flow from an origin to a
destination equals the sum of the edge weights that if they are
removed, it will disconnect destination s from origin r. By
using the Ford–Fulkerson algorithm [31] and given the link
capacities, we can find the maximum flow between origin r

and destination s and hence the residual network. Every edge
of a residual graph has a residual capacity, which is basically
the current capacity. 'ey are equal to the original capacity of
the edge minus current flow.When residual capacity is 0 for a
link, it means there is no edge between two vertices. To
disconnect (r, s), we need a cut that requires the origin r and

the destination s to be in different subsets of the network.'is
cut includes edges going from the origin’s side to the desti-
nation’s side. To find all edges of theminimum cut, we need to
obtain the residual graph by running the Ford–Fulkerson
algorithm. 'en, the set of nodes that are reachable from
origin r in the residual network need to be found. All edges
from a reachable node to a nonreachable node are minimum
cut edges. By disrupting the minimum cut edges, origin r and
destination s are disconnected. 'e algorithm to find the
initial traffic disruption starts with disconnecting the (r, s)

pairs with the highest demands and continues to separate
them until it reaches the network disruption upper bound Q.
After having this initial disruption, the lower-level problem is
solved to find the network flow.

In the subsequent iterations with the new flow, we
improve the initial solution by cuttingmore critical links and
undoing the cuts of unimportant links. For this purpose, we
employ two strategies to cut new lanes and undo the cut of
the already disrupted links.

(i) Heuristic strategy 1: cut and undo the cuts based on
flow of each link. It means that we cut five new lanes
of the links with the largest flow and undo the cut for
five already disrupted links with the smallest flow.
'e new disruption is y1.

(ii) Heuristic strategy 2: cut and undo the cuts based on
the dual variables for capacity constraints in the
lower-level problem. Similar to strategy 1, cut five
new lanes with the largest dual variable and undo the
cut for five already disrupted links with the smallest
dual variable. Return y2 as the new disruption under
this scenario.

'en, we solve the lower level problem with the given y1
and y2 and select the one with the largest total travel time as
the disruption scenario of the current iteration. 'is pro-
cedure continues until there is no improvement in the
objective function of problem (17). 'e steps of the algo-
rithm are described in Algorithm 1. We solved the bilevel
problem for different disruption limits and various values
for the number of cuts and observed that five-lane cutting
and undoing cuts outperform other parameter settings. If
this number is too small, it could get stuck in a local op-
timum, and if it is too large, it forces the algorithm to undo
the cuts of some critical links and cut some unimportant
links.

We also introduce a greedy algorithm to expand the
congested links greedily. In this method, we solve the bilevel
programming problem (17) for different disruption limits to
assess network resiliency.'en, the most congested links are
expanded by one lane until the expansion budget allows.
After expansion, the resiliency of the network is assessed
again by solving the bilevel programming problem.'e steps
of the greedy method are represented in Algorithm 2.

4. Case Study: Transportation Network in Iowa

To demonstrate the model, we used the highway network in
Iowa and simplified the network to contain 85 nodes and 332
links, as represented in Figure 2. 'e distance between two
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locations is defined as the Euclidian distance inmiles, and we
used the gravity model to estimate the demand of each
origin-destination pair. To apply the gravity model, we need
friction and socioeconomic factors and the production/at-
traction matrix. 'e friction factor is calculated from
Gamma function, Fij � atb

ije
ctij , where tij is the travel time

between origin i and destination j, and it is estimated be-
tween all (r, s) pairs by using the shortest path algorithm. In
our model, the trips between (r, s) pairs are home-based
work (HBW); thus, the parameters of the Gamma function
from [32] are a � 28507, b � −0.02, and c � −0.123. We also
assumed that socioeconomic factor Kij � 1 for all links. To
estimate the production/attraction of each node, we used the
annual average daily traffic (AADT) of the Iowa trans-
portation network [33]. We applied a peak hour factor of
12% and assumed a 50%-50% split of two-directional flow.
'erefore, we used 6% as the inflow and 6% as the outflow of
the node. 'e production or the attraction of this node is 6%
of AADT. If multiple links connect to one node, we calculate

the total production/attraction by summing over all links.
'e formula of the gravity model for computing the number
of trips between node i and node j is as follows:

dij � Pi

AjFijKij

kAkFikKik

 , (18)

where dij is the number of trips (demands) from node i to
node j, Pi is the number of trip productions in node i, Aj is
the number of trip attractions in node k, Fij is the friction
factor relating the spatial separation between node i and node
j, and Kij is the socioeconomic factor between nodes i and j.

'ere are 85 nodes, 332 links, and 1215 origin-desti-
nation (r, s) pairs. We assume that the maximal flow rate for
each lane is 2000 vehicles per hour under ideal conditions.
Some links have one lane, and others have two lanes. 'e
number of lanes for each link is based on the Iowa road
network, and we considered real link capacities in the nu-
merical example. 'e average speed is assumed to be 60

(1) Inputs: X,Y(x), and Z(x, y), ∀x ∈ X, y ∈ Y
(2) Initialize x � 0, ζL

� −∞, ζU
� +∞

(3) while ζL < ζU do
Solve the subproblem (17) with the given x.

(4) Initialize ζ � −∞.
(5) Disconnect (r, s) pairs with high demands to estimate y.
(6) Solve the lower-level problem (14a)–(14c) with the given y to get (z, λ).
(7) while there is an improvement do
(8) Update ζ←max ζ, c⊤z \}.
(9) Use strategy 1 to get y1.
(10) Solve the lower level problem (14a)–(14c) with the given y1 to get (z1,

λ1).
(11) Use strategy 2 to get y2.
(12) Solve the lower level problem (14a)–(14c) with the given y2 to get (z2,

λ2).
(13) if c⊤z1 ≥ c⊤z2 then
(14) y←y1, z←z1, and λ←λ1
(15) else
(16) y←y2, z←z2, and λ←λ2
(17) end if
(18) end while
(19) Return y, z, and λ as the solution to the subproblem (17).
(20) Update ζU←min ζU

, ζ .
Solve the master problem (16a)–(16c) with the given y and λ.

(21) Add cut (16c) to the master problem (16a)–(16c) and solve it.
(22) Let x and tM denote an optimal solution to the master problem (16a)–(16c).
(23) Update ζL←tM.
(24) end while
(25) Solve the subproblem (17) with the given x to find y and z.
(26) Return x∗ � x, y∗ � y, z∗ � z, and ζ∗ � c⊤z

ALGORITHM 1: 'e trilevel model algorithm.

(1) Inputs: Y(x) and Z(x, y),∀x ∈ X, y ∈ Y
(2) Solve the subproblem (17) with x � 0 as explained in Algorithm 1.
(3) Determine x by expanding the most congested links by one lane until the expansion budget allows.
(4) Solve the subproblem (17) with the given x as explained in Algorithm 1, to get y and z.
(5) Return x∗ � x, y∗ � y, z∗ � z, and ζ∗ � c⊤z

ALGORITHM 2: 'e greedy method.
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miles per hour, so the travel time is one minute per mile for
the first capacity block. 'e travel times for the next blocks
are multiplied by the coefficients ck. In many studies, the
capacity reduction is 100% of the link capacity, i.e., the link
can be removed entirely from the network. However,
complete closure does not accurately reflect the actual link
capacity as a consequence of minor events. Also, the 85-node
road network is an abstract representation of the statewide
road network. A link in the abstract network represents not
only the major road connecting the two nodes but also other
local roads. 'erefore, in this paper, we assume that each
link keeps a capacity of 0.4 lanes after the maximal dis-
ruption. For example, the maximal disruption to 1-lane and
2-line links are, respectively, 0.6 and 1.6 lanes. We also
assume that the capacity can be reduced by 0.1 lanes. For
example, for a 1-lane link, disruption can be 0, 0.1, . . . , 0.6{ };
if the disruption for a 1-lane link is 0.3 lanes, it means that
the link capacity is reduced from 1 to 0.7 lanes, which is a
reduction from 2000 to 1400 vehicles per hour. 'e ex-
pansion upper bound is one lane for all links. 'e expansion
cost is estimated to be 1.5 million dollars per lane per mile,
and the expansion budget is assumed to be 400 million
dollars. 'e upper bound of total disruption in the network
is different from 5 to 60 lanes. 'e demand of (r, s) pairs is
obtained by applying the gravity model.

We conducted an experiment to test and compare the
performances of the trilevel optimization model and an
intuitive expansion strategy. First, we assumed there was no
expansion and disruption in the system and estimated the
total travel time in the network by solving the lower-level
problem (14a)–(14c). Second, we solved the bilevel pro-
gramming problem (middle and lower levels), assuming
there was no expansion, but probabilistic disruptions could

happen through the network to assess the network resiliency.
'ird, we improved the result of the bilevel model by ap-
plying intuitive expansions through Algorithm 2. Fourth, we
ran the trilevel optimization model (Algorithm 1) to con-
front the worst-case scenario disruptions in the most re-
silient manner.

When there is no expansion and disruption, the total
travel time is 7.38 × 104 hours, and the network flow is
shown in Figure 3. We use different color codes and line
styles to indicate the volume per capacity ratio on each link.
'e orange and red lines indicate highly congested links.

To show how our model can identify vulnerable links
better than common criteria in the literature review, we
assess resiliency using the bilevel programming model and
two other criteria when there is no expansion. Congestion
indicators can help find critical links for the performance of
the road. 'ere are several indicators in the literature to
assess congestion based on the balance between supply and
demand and trip time evaluation [34]. Among these con-
gestion indicators, we adopt volume to capacity ratio (V/C)
[35] as the first criterion because it is the most widely used
measure to assess congestion of a link based on the im-
pairment of the traffic flow capacity. 'e indicator V/C is a
primary performance measure to estimate the level of
congestion on a roadway by comparing roadway demand
(volume) with roadway supply (capacity). Also, we consider
the congestion index (CI) as the second criterion to find
critical links to the network performance. 'e CI is the ratio
between a trip time under congested conditions and free-
flow conditions. A higher value for each criterion means that
the predicted impact of blocking that link is more significant.
After identifying critical links with either of the criteria, we
disrupt the links with a higher value of each measure. 'us,
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Figure 2: Simplified Iowa transportation network (the background map is a work of the U.S. federal government in the public domain:
https://commons.wikimedia.org/wiki/File:Iowa_highways.svg).
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the most congested links are blocked until the total network
disruption limit allows. 'e total travel time can be obtained
after blocking the critical links identified with different
methods (criteria 1 and 2 and bilevel model).

'ere are 464 lanes in the network, and we set the total
disruption limit to different values from 5 to 60 lanes.
Figure 4 shows the total network travel time with various
disruption limits when there is no expansion. 'e network
travel time increases gradually as the number of disrupted
lanes grows. A larger total travel time indicates the capability
of an approach to identify more vulnerable links in the
network. 'e results show that the bilevel programming
model identifies the vulnerable links more accurately than
the other two indicators.

Figure 5 presents the Iowa transportation network with
disruption limits 15, 30, 45, and 60 lanes. 'e red rhombus
shape on a link indicates that it has been disrupted. 'e
disruption can be a coefficient of 0.1 up to 0.6 or 1.6 for a 1-
lane or a 2-lane link, respectively.

In the next stage, we enhance the network resiliency in
two ways: first, by solving the trilevel optimization model to
determine what links need to be expanded (Algorithm 1);
second, by adding lanes to the most congested links greedily
(Algorithm 2); here, the most congested links are deter-
mined by solving the bilevel programming model. Since the
proposed method to solve the subproblem (17) is a heuristic

one, the solution to the trilevel optimization model is not
optimal. However, the algorithm returns an optimal solution
in case of finding the optimal solution for the subproblem.

Figure 6 compares the total travel time in the network
from the greedy expansion and the trilevel optimization
model against the results when there is no expansion. 'e
trilevel model and the greedy method improve the total
travel time in the network by an average of 41% and 21% for
all disruption limits, respectively.

However, this improvement achieves with fewer miles
expanded by the trilevel model. Table 3 gives the total ex-
pansion in miles for the greedy method and the trilevel model
when network disruption upper bound is 5 to 60 lanes. 'e
trilevel model can find critical links more effectively, so the
total number of miles expanded in the trilevel model is by
average 7% less than the greedy method over all cases.

Figure 7 shows the results of the greedy method and the
trilevel model on the Iowa transportation network when the
disruption limit is 30 and 60 lanes. 'e red rhombus shape
on a link indicates that it has been disrupted. 'e green
triangle on a link implies that the link has been expanded,
but no disruption occurred. 'e yellow circle shows that the
link has been both expanded and disrupted.

To test the results with a more realistic scenario, we also
considered the flooding problem in Iowa and designed a lane
closure scenario based on a previous road closure. In May

No expansion
No disruption
Total travel time = 7.38e+04 hrs

(V/C = Volume/Capacity ratio)
0% ≤ V/C < 20%
20% ≤ V/C < 40%
40% ≤ V/C < 60%
60% ≤ V/C < 80%
80% ≤ V/C < 100%
100% ≤ V/C

Expansion
Disruption
Both

Figure 3: Iowa transportation network without expansion and without disruption.
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Figure 4: Total travel time after blocking critical links identified with different methods from 5 to 60 lanes without expansion.

Total travel time: 1.13 × 105 hours.
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Total travel time: 1.44 × 105 hours.
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Figure 5: Continued.
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2019, the Iowa Department of Transportation closed I-29
from Highway 34 near Glenwood to the Missouri state line
[36]. Other roads were also closed across the state due to
flooding, including Highway 169 near Adel, Highway 65

near Lucas, Highway 92 near Oskaloosa, Highway 21 near
Belle Plaine, Highway 130 near Plainview, and Highway 67
in Davenport. Accordingly, we reduced the capacity of links
(i, j) by qi,j lanes as reported in Table 4. As previously

Total travel time: 1.62 × 105 hours.

(V/C = Volume/Capacity ratio)
0% ≤ V/C < 20%
20% ≤ V/C < 40%
40% ≤ V/C < 60%
60% ≤ V/C < 80%
80% ≤ V/C < 100%
100% ≤ V/C

Expansion
Disruption
Both

(c)

Total travel time: 1.81 × 105 hours.

(V/C = Volume/Capacity ratio)
0% ≤ V/C < 20%
20% ≤ V/C < 40%
40% ≤ V/C < 60%
60% ≤ V/C < 80%
80% ≤ V/C < 100%
100% ≤ V/C

Expansion
Disruption
Both

(d)

Figure 5: Iowa transportation network without expansion when disruption limit is 15, 30, 45, and 60 lanes. (a) Disruption: 15 lanes. Total
travel time: 1.13×105 hours. (b) Disruption: 30 lanes. Total travel time: 1.44×105 hours. (c) Disruption: 45 lanes. Total travel time: 1.62×105

hours. (d) Disruption: 60 lanes. Total travel time: 1.81× 105 hours.
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Figure 6: 'e comparison of total travel times obtained from greedy expansion and the trilevel optimization model against travel times
when there is no expansion for different values of disruption limit from 5 to 60 lanes.

Table 3:'e comparison of total expansion inmiles between the greedymethod and the trilevel optimizationmodel when expansion budget
is 400 million dollars.

Disruption limit Q (lane) 5 10 15 20 25 30 35 40 45 50 55 60
Greedy method (mile) 266 266 266 261 260 265 266 263 265 262 262 263
Trilevel model (mile) 102 222 249 263 261 263 260 262 264 263 266 266
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mentioned, we consider capacity reduction instead of
complete closure because the 85-node road network is an
abstract representation of the real road network.'erefore, a

link in the network represents the major road connecting the
two nodes and also other local roads. For example, by closing
Highway I-29, travelers might still be able to travel between

Expansion: 13 lanes (265 miles).
Disruption: 30 lanes.
Total travel time is 9.52 × 104 hours.

(V/C = Volume/Capacity ratio)
0% ≤ V/C < 20%
20% ≤ V/C < 40%
40% ≤ V/C < 60%
60% ≤ V/C < 80%
80% ≤ V/C < 100%
100% ≤ V/C

Expansion
Disruption
Both

(a)

Expansion: 12 lanes (263 miles).
Disruption: 60 lanes.
Total travel time is 1.13 × 105 hours.

(V/C = Volume/Capacity ratio)
0% ≤ V/C < 20%
20% ≤ V/C < 40%
40% ≤ V/C < 60%
60% ≤ V/C < 80%
80% ≤ V/C < 100%
100% ≤ V/C

Expansion
Disruption
Both

(b)

Expansion: 15 lanes (263 miles).
Disruption: 30 lanes.
Total travel time is 7.64 × 104 hours.

(V/C = Volume/Capacity ratio)
0% ≤ V/C < 20%
20% ≤ V/C < 40%
40% ≤ V/C < 60%
60% ≤ V/C < 80%
80% ≤ V/C < 100%
100% ≤ V/C

Expansion
Disruption
Both

(c)

Expansion: 16 lanes (266 miles).
Disruption: 60 lanes.
Total travel time is 8.14 × 104 hours.

(V/C = Volume/Capacity ratio)
0% ≤ V/C < 20%
20% ≤ V/C < 40%
40% ≤ V/C < 60%
60% ≤ V/C < 80%
80% ≤ V/C < 100%
100% ≤ V/C

Expansion
Disruption
Both

(d)

Figure 7: Iowa transportation network with expansions obtained from the greedy method and the trilevel model when disruption limit is 30
and 60 lanes. (a) Greedy method expansion: 13 lanes (265 miles). Disruption: 30 lanes. Total travel time is 9.52 × 104 hours. (b) Greedy
method expansion: 12 lanes (263 miles). Disruption: 60 lanes. Total travel time is 1.13 × 105 hours. (c) Trilevel model expansion: 15 lanes
(263 miles). Disruption: 30 lanes. Total travel time is 7.64 × 104 hours. (d) Trilevel model expansion: 16 lanes (266 miles). Disruption: 60
lanes. Total travel time is 8.14 × 104 hours.
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the two nodes using other local roads. 'erefore, the total
capacity of the link is reduced, but the link is not removed.

Assuming there is no expansion, after reducing the ca-
pacity of the links affected by the Iowa flood in 2019 and
solving the lower-level problem, the total travel time is 7.69 ×

104 hours. However, the total travel time is 7.38 × 104 hours
when there is no expansion and no disruption in the network.
'erefore, the Iowa flood incident increased the travel time by
3116 hours. We calculated the total travel times again with
and without the flood incident when roads were expanded
using the trilevel model. 'e travel time after expansion with
and without flooding event reduced to 7.29 × 104 and 7.12 ×

104 hours, respectively. 'e travel time increase by flooding
event is 1691 hours, which is almost 45% less than 3116 hours.
Table 5 summarizes the results of testing the trilevel model
with and without the Iowa flood scenario.

5. Conclusions

In this study, we propose a new approach to address un-
certainty in a transportation network. 'e link capacities
are uncertain parameters, and the origin-destination de-
mands are constant. 'e objective is to design a resilient
transportation network in the presence of disruption to
minimize the total travel time. 'is study makes three

contributions to the literature. First, we developed a trilevel
optimization model for the resilient network design
problem. 'e lower-level determines the network flow to
minimize the total travel time; the middle-level assesses the
resiliency of the network by identifying the worst-case
scenario disruptions that could lead to a maximal cost to
the transportation system, and the upper-level designs the
optimal strategy to expand the existing transportation
network so that it enhances the resiliency of the network.
Second, we reformulated the network flow problem to
reduce the number of variables and constraints signifi-
cantly. 'ird, we designed a heuristic algorithm for solving
the trilevel optimization model to efficiently enhance the
resiliency of the network.

'e results of solving the bilevel programming problem,
assuming there is no expansion, show that reducing the link
capacities due to probabilistic disruptions affects trans-
portation network’s performance and can delay or stop the
movement. We improved the result of the bilevel model by
applying two methods. 'e results show that the trilevel
optimization model and the greedy expansion method
improve the total travel time by an average of 41% and 21%,
respectively.

'is study is subject to several limitations that suggest
future research directions. For example, the proposed
model assumes the origin-destination demands are de-
terministic. Relaxing this assumption would require a
more complicated model that reflects the uncertainty or
time dependency over travel demands. Also, we formu-
lated the problem as system optimum because our focus in
this paper is on the higher system level and long-term
planning to increase the network’s capacity. Using a user
equilibrium for the network flow model can be a possible
direction for future work, although it would require new
algorithms for bilevel and trilevel analysis to identify most
vulnerable links and most effective capacity expansion
strategies. Furthermore, the designed algorithm is heu-
ristic; future research can be designing a more efficient
algorithm or even developing an exact algorithm to find
the optimal solution.
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Table 5: Comparison of total travel times with/without expansion
and with/without flooding event in hours.

Without
flooding With flooding Difference

Without
expansion 7.38 × 104 7.69 × 104 3116 hrs

With expansion 7.12 × 104 7.29 × 104 1691 hrs

Table 4: Link disruptions based on the flooding incident in Iowa in
May 2019.

Highway Node i Node j qi,j

I-29 60 71 1.6
I-29 71 60 1.6
I-29 71 79 1.6
I-29 79 71 1.6
169 49 54 0.6
169 54 49 0.6
65 64 74 0.6
65 74 64 0.6
65 74 82 0.6
65 82 74 0.6
92 66 67 0.6
92 67 66 0.6
21 44 57 0.4
21 57 44 0.4
130 58 59 0.8
130 59 58 0.8
67 59 70 0.8
67 70 59 0.8
67 69 70 0.6
67 70 69 0.6
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