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As the need to assess the level of road safety grows, there is a noticeable tendency of experts to use one overall composite index that
contains information on a number of safety performance indicators (SPIs). Indicators commonly used in road safety assessment
are numerical, and their natural uncertainty and vagueness are often overlooked. However, there are also SPIs that are rather
linguistic, such as data on driver behavior, which are most often collected through questionnaires and are considered qualitative,
imprecise, and fuzzy. Together with inappropriate selection of weighting and aggregation methods, such data can be a source of
uncertainty and can lead to unreliable results and erroneous conclusions. In this regard, the present study provides a systematic
and efficient hybrid method that integrates three different procedures to deal with unavoidable uncertainty in each step of index
construction..e application of fuzzy linguistic rating grasp insight into the ambiguity that is intrinsic in drivers’ self-assessment.
Entropy describes each observed behavior by quantifying the disorder of a system. Grey relational analysis aggregates behavioral
indicators into a composite index, doubting their sufficiency and completeness. A case study of Montenegro has been provided to
demonstrate the practical applicability of the proposed method in safety assessment under uncertainty. Results abstracted not
wearing the seatbelt as the most common negative behavior among drivers in Montenegro, followed by using the telephone while
driving, speeding, and driving under the influence of alcohol. In addition, municipalities are ranked according to the level of
road safety.

1. Introduction

.e aggregation of different variables into one safety per-
formance index is a popular concept in evaluating road
safety and in comparing the performance of territories.
Researchers have established a comprehensive set of safety
performance indicators (SPIs), namely composite indica-
tors, that takes into account both direct and indirect in-
fluences of road safety risk factors. Hereupon, a large
number of SPI combinations were developed to create an
overall composite index, for example [1–3].

Indicators commonly used in road safety assessment are
numerical and their natural uncertainty and vagueness are
often overlooked. .e data collected may sometimes be the
result of a measurement error or the use of proxy data,

whose reliability is, therefore, questionable [4]. Furthermore,
SPIs that describe drivers’ attitudes and behavior are usually
collected by measuring with physical devices and from
questionnaires [5–7]. .e indicator value, which is usually
the mean value of all the respondents’ answers, cannot be
considered completely accurate [8]. Not only by arbitrarily
and carelessly recording opinions and attitudes but also by
not understanding the questionnaire (or some part of it),
respondents can cause uncertainty and vagueness of the
collected data [9]. Respected that a road safety score is as
reliable as the data on which it is constructed and that its
quality should improve in parallel with the improvement of
the quality of the information [10], the question arises about
the composite index constructed from such type of data. In
addition, the selection of weighting and aggregation
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techniques in the index construction process can be a source
of the unreliability of the obtained results. .erefore, ig-
noring uncertainty as the inherent feature of the mentioned
kind of data will lead to unreliable results, and it is necessary
to consider uncertain parameters to preserve the robustness
of the safety performance index.

Some authors have suggested different methods for
handling imprecise data, and its models are singled out as
superior and common to capture uncertainty. .e existing
models for road safety evaluation commonly consider the
data uncertainty in one of the steps: data modeling [11],
weighting [12–14], or aggregation [15, 16], and they usually
do so only when the subjective opinion of road safety experts
is involved [17, 18]. .e main aim of this paper is to propose
a hybrid method for constructing a road safety performance
index that will consider the vagueness and uncertain nature
of SPIs related to driver behavior, suggesting the integration
of uncertainty-solving techniques in each step. Such a
method is needed because most of the countries still do not
have a reliable database on road safety, do not have enough
accurate data on traffic safety, and data on driver behavior
are most often collected using questionnaires. .e main
contribution of the proposed approach is reflected as fol-
lows: both qualitative and quantitative input data can be
considered and aggregated together into one composite
index. .e weighting of all indicators can be obtained
without the implementation of any subjective information
from the outside, reflecting at the same time the uncertainty
of selected indicators. .e proposed aggregation technique
allows handling uncertainty for system evaluation when the
decision makers are unsure about the sufficiency and
completeness of the data at hand by providing a set of robust
road safety performance indexes for each territory that allow
full ranking. Robust and logical results verify the possibility
of the application of the proposed method in many other
fields besides road safety.

.e rest of the paper is organized as follows: in the next
section, the feature of SPIs will be discussed and ways to
address their natural uncertainty will be outlined. In Section
3, the case study will be presented, followed by the results in
Section 4. In Sections 5 and 6, the research will be discussed
and concluded.

2. Uncertain Nature of Safety
Performance Indicators

It was confirmed that every safety analysis has some degree
of uncertainty [10]. Indicators that are usually used to de-
scribe the state of road safety rely on empirical data, such as
the number of fatalities and injured, the number of acci-
dents, the motorization level, [14, 19],etc. Although crisp,
because of real-life application, there are numerous reasons
for the uncertainty, imprecision, or greyness of these data
values. Measurement error and proxy data often cause
relevant data incurrence. For example, recorded SPIs, such
as the number of drivers on the roads speeding or driving
under the influence of alcohol, are not fully known because it
is impossible to get accurate information. SPIs based on
traffic violations that are used as indicators by some

researchers, [20, 21], are also a reason for the vagueness of
the final score since this type of data can represent the
approximate situation on roads but not the precise state of
safety and drivers’ behavior. Likewise, Lloyd and Forster [22]
stated that risk exposures (especially accident risk, which is
defined as the rate of accidents per vehicle kilometer trav-
eled) represent uncertain information. Hence, the reliability
of the performance index derived from this kind of data is
questionable. However, none of the mentioned studies took
into account the uncertainty of the data in the matter when
calculating the composite index, despite the proven un-
certain nature of these data.

Furthermore, data related to self-reported behavior,
which are often used as SPIs in index construction, represent
a qualitative measure of opinion about one’s own behavior.
When collecting data on behavior and perception (usually
through questionnaires), the main focus is on their final
presentation as, in many cases, the respondents are not able
to clearly express their judgments. Besides road users, de-
cision makers are sometimes involved in trying to express
their opinion and preference on particular road safety do-
mains. Since the precision of these subjective measures is
unlikely, it is assumed that all final values derived from self-
reported data and perception data are imprecise [23] and
fuzzy [24], and identifying and addressing uncertainties is
essential to manipulating this data. .e intention to handle
them can be found in the literature.

.e simplest way to cope with uncertain data is aver-
aging, which implies statistically abstracting the probability
distribution (by means and variance). Tsang et al. [25]
applied decision trees to handle data sets with uncertain
values and showed that the results are more accurate than
those using an average value. Xiong et al. [11] analyzed
roadway traffic accidents based on rough sets (for data) and
Bayesian networks (for aggregation). Chen et al. [12] per-
formed a road safety risk evaluation applying entropy
weighting. Entropy weighting is also used in [14] to assess
urban road safety and to rank the provinces accordingly.
Ayati et al. [26] applied the evidential reasoning (ER) ap-
proach to consider the subjective state of evaluation of the
roadside hazard severity and to assess the situation more
realistically. Rassafi et al. [10] collected the opinions of road
users and experts for the purpose of assigning weights in the
process of road safety assessment. .ey also used the ER
approach in addition to Dempster–Shafer theory to handle
the uncertainty of data. Of the other multicriteria decision-
making methods, fuzzy-oriented analytic hierarchy process
[18, 27] and data envelopment analysis [28, 29] were mainly
used. It is proven that despite the differences, all existing
models for addressing uncertainties are related to one an-
other [30].

.e widely used fuzzy theory [31] is an appropriate
method to process imprecise and inaccurate data, notably
when they are described in human language..e same could
be said for the grey theory [32]. Both fuzzy and grey theories
deal with the uncertainty of human perception in a manner
that creates a mechanism of similar reasoning. .e appli-
cation of these theories for addressing uncertainty will be
described in the next sections.
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2.1. Fuzzy Linguistic Rating. When applying questionnaires
to collect road safety behavioral data, the authors are usually
conflicted about whether to use parametric or nonpara-
metric scale procedures since it is not fully clear if the data
are interval or ordinal. Questionnaires that are usually
employed to collect perceptions, ratings, or judgments on
many subjects in various fields rely on the most famous and
widely used Likert scale [33, 34]. Likert scale traditionally
applies linguistic variables that are encoded by means of
ranking (in most cases, from 1 to 5–7, e.g., from the least
“strongly disagree” to the largest “strongly agree”). .is way
of measuring opinions is very popular since it is easily
conducted. Based on the answers, the final data represent the
average value of even-spaced ranks with a given possibility of
applying some statistical tools. However, this type of scale
has some drawbacks. For instance, some of the information
may be lost because of the imprecision of selecting one single
value of the given 5–7 options on the rating scale, while the
space between each rank cannot be equidistant. Further-
more, the transition between the ranks may be differently
perceived based on different respondents, and most im-
portantly, the interpretation of results is not very reliable
because applying statistical tools in most cases is limited
[33]. In that matter, some authors turned to the usage of the
fuzzy theory that refers to addressing the uncertainty and
imprecision of data and that relies on possibility and neglects
probability [35].

As a part of the fuzzy theory, fuzzy numbers have already
been recognized as a tool in psychometric studies when
imprecision and subjectivity need to be captured. .ere are
two ways of dealing with these issues. One way is to in-
troduce an alternate scale, question formats, etc., and the
other is to develop new methods to analyze this type of
collected data. Recently, applying the fuzzy set theory to
capture the subjectivity and imprecision of each collected
answer has become widespread. In addition, fuzzy numbers
are employed to grasp an insight into the ambiguity that is
intrinsic to human assessment and rating [9]. In the liter-
ature, this method is known as the fuzzy linguistic approach
and has been used by many authors in different fields.

.e fuzzy linguistic rating scale is most commonly used
for obtaining the criteria weights in multiattribute decision
problems. Bao et al. [36] used triangular fuzzy numbers to
calculate the criteria weights for composite index con-
struction. Mousavi et al. [37] used trapezoidal fuzzy num-
bers to rate the alternative and the criteria in the
manufacturing system. Tseng and Chiu [38] calculated the
weights of the green supply chain based on fuzzy linguistic

preferences. Awasthi and Kannan [39] applied the triangular
fuzzy numbers to derive criteria and alternative weights for
the purpose to develop suppliers’ environmental perfor-
mance. A triangular fuzzy rating scale was used by Stanković
et al. [40] and Rostamzadeh et al. [41] to evaluate solutions
for road sections and to calculate the significance of the
selected transport and logistic problems, respectively. Wersi
Qazvini et al. [42] applied the fuzzy TOPSIS approach for the
aggregation of alternatives in the process of identifying and
analyzing the black spots of suburban areas, while Memiş
et al. [17] evaluated the criteria using the fuzzy pivot pairwise
relative criteria importance assessment approach to deter-
mine and rank the road transportation risk factors.

.e above-mentioned studies validate the fuzzy lin-
guistic rating scale as a tool for capturing the imprecision
and uncertain nature of the Likert scale. As can be seen, the
triangle and trapezoid are the most commonly used shapes
of a fuzzy number, representing the compromise between
narration and calculation. Unlike the previous practice of
using fuzzy numbers to describe decision makers’ opinions,
and based on them, to calculate weights of indicators, in this
paper, they are employed to describe the driver’s self-re-
ported behavior and accordingly calculate the values of
indicators.

.e result of the fuzzy approach counts heavily on the
degree that fuzzy numbers correctly represent qualitative
data, i.e., on assigning the appropriate membership func-
tions for fuzzy numbers. In this paper, the fuzzy rating of
each input indicator is described by linguistic expressions.
Calculations were done by transferring these variables into
trapezoidal fuzzy numbers (i.e., a1, a2, a3, and a4) with the
following membership function:

μa(x) �
x − a1

a2 − a1
; x ∈ a1, a2 ,

μa(x) � 1; x ∈ a2, a3 ,

μa(x) �
a4 − x

a4 − a3
; x ∈ a3, a4 ,

μa(x) � 0; otherwise

(1)

.e fuzzy rating scale of the frequency of a particular
driving behavior of each respondent is described with one of
the six linguistic expressions given in Table 1, Defuzzificated
value represents final (crisp) value that will serve as input
data in the behaviour index construction.

iij � Defuzz xij  �
(1/3) xij4 − xij3 

2
+(1/3) xij2 − xij1 

2
− xij1xij2 + xij3xij4

− xij1 − xij2 + xij3 + xij4
(2)

In that manner, a fuzzy rating scale was used here to
model a road user’s self-reported behavior, similar to

[38, 43]. Furthermore, on such data, two more methodol-
ogies will be applied for weighting and aggregating, with the
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main aim tomodel all existing uncertainties and to construct
one reliable and robust overall road safety behavior index
under an uncertain environment.

2.2. Weighting and Aggregating Methods. Combining SPIs
into a complex performance index includes assessing the
relative importance of each indicator (assigning weights)
and aggregating indicators.

As a weighting technique based on statistical parameters
that measure the amount of information in a variable,
Shannon’s entropy method can assess the importance of the
indicators by reflecting the unevenness of the dataset. Hence,
it is suitable for reflecting the uncertainty of behavioral
indicators. Hence, in the context of traffic safety, it has
recently been widely used to determine the criteria weights
in the form of a common set of weights [12, 14, 44].

In addition, the grey theory is a useful model for the
analysis of uncertain systems with partially known and
partially unknown information in many fields. Grey rela-
tional analysis (GRA), as a part of a grey theory, represents a
normalization-based technique, which implies the positive
values of the data sequence generated by translating the
performance of all alternatives into series, and unlike other
methods for addressing uncertainties, it works well on small
sample size. A combination of fuzzy theory and GRA was
used by Ma et al. [45] for the purpose of creating three
different sets of road safety indicators related to experts’
attitudes: one related to highways, one related to urban
roads, and one related to regional roads. Hu et al. [46] used
GRA in addition to fuzzy and data envelopment analysis to
develop public transport network evaluation, and both Liu
et al. [47] and Grdinić-Rakonjac et al. [48] used GRA to
calculate the weights of road safety indicators. In this paper,
GRA was applied to the aggregation of weighted indicators
and the index construction, as shown in Figure 1.

With this novel hybrid methodology (entropy-based
weighting +GRA aggregating), it is possible to create a re-
liable composite safety performance index of the territory
and additionally establish a more rational ranking among
the territories under evaluation. .e steps of entropy and
grey relational analysis are summarized in Table 2.

3. Case Study

.e proposed approach is tested for a set of 21 Montenegrin
municipalities. Since one of the goals of this research was to
identify the most influential road safety risk behavior, the
driver is chosen to represent the unit of the analysis rather

than any other users involved in the road traffic. .e fol-
lowing unwanted behaviors were investigated: driving above
the speed limit, driving under the influence of alcohol, using
the telephone while driving, and not wearing the seatbelt.
Data were collected by conducting face-to-face and online
questionnaire surveys among 1309 drivers with a priori
determined sample size for each municipality (3% error
bound and 95% confidence limits). Descriptive statistics are
given in Table 3.

.e questionnaire was compiled in accordance with the
ESRA and SARTRE methodology, which means that each
respondent describes the frequency of certain risk behaviors
while driving using one of the values of the language var-
iables: never, rarely, sometimes, often, very often, and al-
ways. All questions are divided into those related to main
roads, regional roads, and local/urban roads. Finally, drivers
answered up to 25 questions grouped into four main do-
mains (V1–V9, A1-A3, T1-T4, and S1–S9) and presented in
Table 4. .eir answers are given in Table 5 in percentage.

4. Results

.e fuzzy theory refers to addressing the uncertainty and
imprecision of data. Hence, in this paper, all self-reported
behaviors were processed and converted into numerical
values using trapezoidal fuzzy numbers and their operations.
.e data are organized in such a way that higher values
represent positive behavior..e final fuzzy number (Table 6)
for the particular risk behavior (for example, speeding in the
municipality AN) was derived as the weighted sum of all
calculated fuzzy numbers for each question. Internal weights
(see Figure 2) were determined by experts relying on the
road safety figures (number of accidents and fatalities on
different types of roads). Defuzzification was conducted via
equation (2), and the final values were obtained (Table 7).
Not wearing the seatbelt received the lowest average score
(0.568), abstracting this negative behavior as the most
common among drivers in Montenegro, followed by using
the telephone while driving, speeding, and driving under the
influence of alcohol (0.593, 0.650, and 0.881, respectively).

Table 1: Transformation of linguistic variables to fuzzy numbers.

Linguistic variable Fuzzy number
Never (0.0, 0.0, 0.1, 0.2)
Rarely (0.1, 0.2, 0.3, 0.4)
Sometimes (0.3, 0.4, 0.4, 0.5)
Often (0.4, 0.5, 0.6, 0.7)
Very often (0.6, 0.7, 0.8, 0.9)
Always (0.8, 0.9, 1.0, 1.0)

START
Goal: Composite 

index construction 

Data collection:
Public survey

Self-reported behaviour 

Input data processing
1. Fuzzy numbers
2. Fuzzy rating scale
3. Defuzzification
4. Normalization

Evaluation (data) matrixCalculation of weights based 
on Entropy

END
Reliable behaviour 

composite index

Index construction
1. Grey relational coefficient
2. Weighted grey degree

ADRESSING UNCERTAINTY

Figure 1: Flow chart of the proposed methodology.
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Following the steps described in Section 2, the entropy-
based weighting technique was introduced, and it was found
that not wearing a seatbelt had the greatest influence on the
final score with an assigned value of 0.528. .e lowest
assigned weight of 0.046 was received by the behavior related
to driving under the influence of alcohol (first row in
Table 8).

Furthermore, these weights were integrated with grey
relational coefficients, and the weighted grey degree Γ0j(j)

was obtained, representing the final behavior FEGRA index.
Results are presented in Table 8. .e municipality of Tivat
(TV) received the largest behavior index (0.778), indicating
that the local drivers have relatively better behavior than
drivers in other territories. It is followed by municipality of
Kotor (KO), Bar (BR), Šavnik (ŠA), and Mojkovac (MK).
.ese scores are not a surprise given that those munici-
palities are all small ones, with mostly low motorization
levels and no main roads on their territories. In contrast, the
municipality of Budva (BD) was assigned a relatively low
score (0.371) and was identified as the worst-performing
municipality, along with the municipality of Žabljak (ŽB).
Both of these municipalities represent tourist centers.
Hence, an increased number of vehicles and population on
their territories may be the cause of low performance.

5. Discussion

Having in mind that the construction of a composite index
implies (more or less subjective) methodological choices in
several consecutive steps, the robustness analysis of the
proposed methodology, as a kind of tool for quality as-
surance [49], was performed..e influence of data modeling
methods, weighting, and aggregation schemes on final
outcomes (i.e., a shift in the rank of the entire set of

municipalities) was examined. In addition to this uncer-
tainty analysis, the Pearson product-moment correlation
ratio was chosen as a variance-based measure that accounts
for linear dependence between the input and output data,
and it is exactly correspondent to themain effect index or the
first-order sensitivity index [50, 51].

In the first step, the impact of the data modeling method
will be examined. As it was said earlier, the FEGRA index is
constructed with the data collected from the questionnaire.
A common practice in data modeling, when opinion and
attitudes are involved, is the usage of the Likert scale. It is
usually done by averaging the collected answers. Firstly, the
survey answers were observed as ordinal with “1,” presenting
unwanted behavior, and “6,” presenting positive behavior,
and the final crisp score for the selected behavior was cal-
culated as the mean of all collected answers by respecting the
previously defined internal weights. .ose values are then
normalized (see Table 9). However, the uncertainty of the
drivers’ subjective measure of their own behavior is not
addressed in that case. .e comparative influence of the
applied fuzzy numbers for resolving the uncertainty of input
data is presented in Figure 3. .e calculated rank-order
coefficient of 0.69 shows a relatively low correlation between
rankings, meaning that the usage of fuzzy numbers had a
significant effect on the final performance index. Figure 3
illuminates that the largest rank variation is recorded for two
top-ranked territories (rank shift is 13 and 8 places, re-
spectively). Besides this, the data modeling technique used
affects principally the bottom-ranked territories.

In the second step, the influence of the weightingmethod
is considered. .e weights attached to each indicator are
usually chosen to reflect the importance of that indicator
with respect to the concept being measured [50]. An or-
dinary initial approach is to take that each input variable

Table 2: Steps of entropy and grey relational analysis.

Step Entropy Grey relational analysis
I pij � xij/

m
i�1 xij gj(k) � (xj(k) − minn

j�1xj(k))/(maxn
j�1xj(k) − minn

j�1xj(k))

II Ej � − (1/ln(m)) 
m
i�1 pijlnpij

ζ0i(j) � (minn
i�1minm

j�1|gi(j) − g0(j)| + ρmaxn
i�1maxm

j�1|gi(j) − g0(j)|)/(|gi(j) − g0(j)|

+ ρmaxn
i�1maxm

j�1|gi(j) − g0(j)|)

III dj � 1 − Ej Γ0i(j) � (1/n) 
m
j�1 ζ0i(j)

IV Wj � dj/
n
j�1 dj Γ0j(j) � (1/n) 

l
k�1 ζ0j(j)W(j)

Table 3: Descriptive statistics of the final sample.

Variable
Total

No. %

Gender Males 707 (54.01)
Females 602 (45.99)

Licensure
≤2 years 158 (12.06)
2–5 years 217 (16.61)
>5 years 934 (71.32)

Driving frequency

Daily 998 (76.24)
1–3 times per week 195 (14.90)
1–3 times per week 55 (4.20)

Less than 1 time per week 61 (4.66)
1309 (100)
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contributes equally. .is equal weighting is the most
common scheme appearing in composite index construction
[52]. Also, lately, the very popular method for weighting is
the data envelopment analysis (DEA) since, as a data-driven
technique, it does not relay on a subjective measure from
outside. Here, a comparison of these two methods with
ranking according to the proposed entropy weighting is
performed. .e DEA model from [43] is used, and separate
weights for each territory are obtained. Figure 4 (left graph)
compares these rankings, and it can be seen that addressing
data uncertainty using the entropy weighting scheme has a
positive impact on the ranking of eight and twelve territories
compared to equal and DEAweighting, respectively, whilst a
negative effect on the rank order is recorded in twelve and six
territories, respectively. .e higher correlation coefficient
(0.72 and 0.70 for equal weighting and DEA, respectively)
indicates that the weighting method has less (but not
negligible) impact than data modeling.

In terms of aggregation techniques, the additive
(simple linear) approach and the multicriteria decision-
making (MCDM) approach were chosen for comparison.
Additive aggregation, as the most commonly used in
composite indicators, allows the assessment of the mar-
ginal contribution of each variable separately and entails
full compensability. However, when assigned weights are
considered to be “importance coefficients” (weights
representing a measure of importance), non-
compensatory aggregation should be used for composite
index construction [52]. In that sense, the MCDM-
TOPSIS method was taken, considering the preferential
order of indicators by similarity with the ideal solution.
Figure 4 (right graph) compares the ranking obtained by
both additive and MCDM aggregation with the ranking
obtained by FEGRA when the grey relational analysis is
employed. .e relatively high correlation coefficients
between rankings under the study show a somewhat

Table 4: .e survey questionnaire.

Survey questions Mark
Driving above the speed limit
How often do you drive over the speed limit?
[On main roads] V1
[On regional roads] V2
[On local/urban roads] V3

Do you exceed the prescribed speed on roads with higher permitted speeds (60–80 km/h)?
[By more than 30 km/h] V4
[By less than 30 km/h] V5

Do you exceed the prescribed speed on roads with lower permitted speeds (50–60 km/h)?
[By more than 20 km/h] V6
[By less than 20 km/h] V7

Do you exceed the prescribed speed on local/urban roads?
[By more than 10 km/h] V8
[By less than 10 km/h] V9

Driving under the influence of alcohol
Do you drive under the influence of alcohol?
[On main roads] A1
[On regional roads] A2
[On local/urban roads] A3

Wearing the seatbelt
How often do you wear your seatbelt while driving?
[On main roads] P1
[On regional roads] P2
[On local/urban roads] P3

How often your front passenger is wearing a seatbelt while driving?
[On main roads] P4
[On regional roads] P5
[On local/urban roads] P6

Do you use the child resistant system for children under the age of 5?
[On main roads] P7
[On regional roads] P8
[On local/urban roads] P9

Using mobile phone while driving
Do you use a hands-free device to talk to a mobile phone while driving?
[On main or regional roads] T1
[On local/urban roads] T2

Do you use a mobile phone while driving to write messages and visit social networks?
[On main or regional roads] T3
[On local/urban roads] T4
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Table 5: Collected answers (in %).

Speeding Never Rarely Sometimes Often Very often Always
V1 20.55 28.27 29.34 12.22 5.19 4.43
V2 31.26 30.20 23.24 9.01 3.10 3.18
V3 44.00 29.33 16.95 5.40 1.82 2.51
V4 44.24 27.73 16.29 7.12 2.73 1.89
V5 24.28 28.07 20.94 13.81 5.92 6.98
V6 36.66 28.12 21.69 8.92 2.57 2.04
V7 23.54 25.06 25.74 13.25 6.06 6.36
V8 41.39 26.07 20.88 6.78 2.67 2.21
V9 30.57 26.51 19.31 12.11 4.83 6.67
Alcohol
A1 75.28 20.67 4.04 0.00 0.00 0.00
A2 82.76 11.09 4.27 0.97 0.52 0.37
A3 76.39 12.89 6.52 2.70 0.90 0.60
Telephone
T1 67.30 10.57 8.69 4.76 2.42 6.27
T2 70.64 10.34 7.70 4.08 2.42 4.83
T3 60.35 18.58 11.03 5.97 2.11 1.96
T4 58.46 15.86 10.95 6.95 4.15 3.63
Seatbelt
S1 6.44 6.44 10.71 9.74 7.27 59.40
S2 9.51 7.86 13.47 9.58 7.04 52.54
S3 15.45 8.25 12.00 9.53 7.80 46.96
S4 8.86 7.96 13.66 9.68 12.69 47.15
S5 9.48 9.93 15.82 11.19 13.28 40.30
S6 13.89 10.81 17.72 9.91 12.31 35.36
S7 15.75 4.94 11.28 7.52 7.87 52.64
S8 16.37 6.01 10.84 7.30 9.42 50.06
S9 15.58 7.08 12.16 8.38 9.45 47.34

Table 6: Assigned fuzzy numbers of self-reported behavior.

Speeding Alcohol Telephone Seatbelt
AN (0.558, 0.611, 0.736, 0.793) (0.712, 0.811, 0.909, 0.939) (0.495, 0.566, 0.660, 0.711) (0.420, 0.494, 0.571, 0.634)
BA (0.575, 0.629, 0.756, 0.811) (0.708, 0.806, 0.904, 0.935) (0.499, 0.572, 0.667, 0.720) (0.398, 0.470, 0.539, 0.594)
BD (0.418, 0.472, 0.577, 0.649) (0.695, 0.795, 0.891, 0.918) (0.399, 0.464, 0.558, 0.621) (0.373, 0.437, 0.509, 0.555)
BP (0.552, 0.606, 0.734, 0.796) (0.764, 0.864, 0.964, 0.976) (0.505, 0.584, 0.678, 0.732) (0.488, 0.572, 0.648, 0.697)
BR (0.580, 0.632, 0.762, 0.818) (0.765, 0.865, 0.965, 0.978) (0.512, 0.590, 0.685, 0.737) (0.533, 0.617, 0.694, 0.735)
CT (0.557, 0.613, 0.745, 0.801) (0.669, 0.767, 0.864, 0.896) (0.450, 0.527, 0.620, 0.683) (0.392, 0.464, 0.546, 0.605)
DG (0.603, 0.658, 0.788, 0.842) (0.779, 0.879, 0.979, 0.990) (0.473, 0.547, 0.638, 0.693) (0.417, 0.490, 0.558, 0.606)
HN (0.404, 0.454, 0.563, 0.636) (0.680, 0.780, 0.870, 0.904) (0.458, 0.534, 0.627, 0.690) (0.492, 0.568, 0.645, 0.682)
KL (0.581, 0.635, 0.765, 0.826) (0.737, 0.837, 0.934, 0.956) (0.452, 0.530, 0.620, 0.686) (0.495, 0.574, 0.651, 0.689)
KO (0.445, 0.496, 0.611, 0.680) (0.672, 0.771, 0.866, 0.901) (0.494, 0.569, 0.664, 0.717) (0.620, 0.706, 0.789, 0.805)
MK (0.548, 0.599, 0.719, 0.776) (0.774, 0.874, 0.974, 0.987) (0.550, 0.636, 0.732, 0.781) (0.427, 0.506, 0.583, 0.643)
NK (0.545, 0.602, 0.730, 0.797) (0.735, 0.834, 0.933, 0.955) (0.459, 0.534, 0.630, 0.691) (0.528, 0.615, 0.696, 0.740)
PG (0.551, 0.607, 0.737, 0.804) (0.754, 0.853, 0.952, 0.967) (0.505, 0.585, 0.677, 0.733) (0.474, 0.555, 0.635, 0.685)
PL (0.478, 0.538, 0.649, 0.724) (0.770, 0.870, 0.968, 0.979) (0.331, 0.397, 0.486, 0.568) (0.413, 0.487, 0.554, 0.601)
PV (0.519, 0.575, 0.697, 0.764) (0.747, 0.847, 0.943, 0.958) (0.522, 0.597, 0.695, 0.739) (0.375, 0.444, 0.506, 0.558)
PŽ (0.593, 0.645, 0.777, 0.825) (0.769, 0.869, 0.969, 0.980) (0.431, 0.505, 0.594, 0.657) (0.379, 0.451, 0.513, 0.562)
RO (0.527, 0.573, 0.696, 0.753) (0.762, 0.862, 0.958, 0.968) (0.399, 0.474, 0.556, 0.625) (0.334, 0.396, 0.466, 0.525)
ŠA (0.607, 0.660, 0.796, 0.847) (0.766, 0.866, 0.966, 0.975) (0.519, 0.600, 0.695, 0.744) (0.452, 0.528, 0.607, 0.652)
TV (0.532, 0.584, 0.715, 0.776) (0.654, 0.750, 0.843, 0.870) (0.446, 0.522, 0.613, 0.676) (0.639, 0.728, 0.818, 0.839)
UL (0.491, 0.551, 0.664, 0.740) (0.772, 0.872, 0.970, 0.979) (0.412, 0.485, 0.574, 0.640) (0.425, 0.498, 0.568, 0.612)
ŽB (0.405, 0.453, 0.561, 0.641) (0.747, 0.847, 0.943, 0.954) (0.447, 0.516, 0.612, 0.670) (0.369, 0.421, 0.487, 0.521)
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negligible influence on the final score, with the total
absolute average shift in the rank of 1.05 places when
GRA is replaced with additive aggregation and 1.5 places
when aggregation is conducted with the MCDM tech-
nique (Table 10). In Table 10, rank shifts are given (in-
dividually by municipalities and total) along with the
measures of linear dependence–Pearson product-mo-
ment correlations for all considered alternatives.

Finally, the ranking according to the complete FEGRA
method was compared with the one performed by the
selected combination of steps in the development of the
composite index: the Likert scale (data modeling)–equal
weight (weighting)–additive approach (aggregation). .is
comparison is illustrated in Figure 5 with error bars
representing the deviation of FEGRA rank by ±3 places.
From the scatter plot, it can be seen that larger deviations
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Figure 2: Internal weights of risk behavior.

Table 7: Defuzzificated and normalized self-reported behavior values.

Defuzzificated Normalized
Speeding Alcohol Telephone Seatbelt Speeding Alcohol Telephone Seatbelt

AN 0.680 0.860 0.618 0.542 0.753 0.493 0.700 0.306
BA 0.698 0.855 0.625 0.512 0.839 0.455 0.729 0.218
BD 0.535 0.843 0.520 0.478 0.072 0.361 0.278 0.116
BP 0.677 0.911 0.637 0.616 0.741 0.882 0.780 0.531
BR 0.703 0.912 0.643 0.660 0.860 0.891 0.805 0.663
CT 0.685 0.816 0.582 0.513 0.775 0.153 0.543 0.220
DG 0.728 0.926 0.599 0.530 0.980 1.000 0.617 0.273
HN 0.520 0.827 0.588 0.609 0.000 0.236 0.572 0.511
KL 0.707 0.885 0.584 0.616 0.881 0.682 0.554 0.531
KO 0.563 0.820 0.622 0.746 0.204 0.182 0.716 0.922
MK 0.666 0.921 0.688 0.553 0.687 0.961 1.000 0.342
NK 0.674 0.882 0.590 0.661 0.727 0.663 0.577 0.665
PG 0.681 0.900 0.637 0.601 0.758 0.799 0.782 0.486
PL 0.605 0.915 0.455 0.527 0.399 0.920 0.000 0.262
PV 0.645 0.893 0.649 0.483 0.588 0.745 0.831 0.130
PŽ 0.715 0.915 0.558 0.490 0.917 0.918 0.441 0.150
RO 0.642 0.907 0.525 0.440 0.573 0.852 0.302 0.000
ŠA 0.732 0.912 0.652 0.573 1.000 0.892 0.844 0.399
TV 0.657 0.797 0.576 0.772 0.644 0.000 0.519 1.000
UL 0.619 0.917 0.539 0.538 0.466 0.934 0.360 0.297
ŽB 0.520 0.892 0.571 0.457 0.001 0.738 0.497 0.052

8 Journal of Advanced Transportation



occur in the first half of the scale (among the better-
ranked municipalities) and that the maximum shift is +7/
− 5 positions.

.e demonstrated robustness of the novel hybrid
methodology FEGRA (Fuzzy number–Entropy–GRA)
confirms that it is able to create a reliable composite safety

Table 8: Final behavior index and rank.

Grey degree
FEGRA-behaviour index and (rank)Speeding Alcohol Telephone Seatbelt

Entropy weights 0.237 0.046 0.189 0.528
AN 0.669 0.496 0.625 0.419 0.521 (13)
BA 0.756 0.479 0.648 0.390 0.530 (11)
BD 0.350 0.439 0.409 0.361 0.371 (21)
BP 0.658 0.809 0.694 0.516 0.597 (7)
BR 0.782 0.821 0.719 0.598 0.674 (3)
CT 0.690 0.371 0.522 0.391 0.485 (15)
DG 0.962 1.000 0.566 0.407 0.596 (8)
HN 0.333 0.395 0.539 0.505 0.466 (16)
KL 0.808 0.611 0.529 0.516 0.592 (9)
KO 0.386 0.379 0.638 0.865 0.686 (19)
MK 0.615 0.928 1.000 0.432 0.605 (5)
NK 0.647 0.597 0.542 0.598 0.599 (6)
PG 0.673 0.713 0.696 0.493 0.584 (10)
PL 0.454 0.862 0.333 0.404 0.423 (18)
PV 0.548 0.662 0.747 0.365 0.494 (14)
PŽ 0.858 0.860 0.472 0.370 0.527 (12)
RO 0.539 0.772 0.417 0.333 0.418 (19)
ŠA 1.000 0.822 0.762 0.454 0.659 (4)
TV 0.584 0.333 0.510 1.000 0.778 (1)
UL 0.484 0.884 0.439 0.415 0.457 (17)
ŽB 0.334 0.656 0.499 0.345 0.386 (20)

Table 9: Final crisp behavior score.

Crisp Normalized
Speeding Alcohol Telephone Seatbelt Speeding Alcohol Telephone Seatbelt

AN 4.94 5.54 4.16 3.82 0.938 0.939 0.949 0.703
BA 5.05 5.51 4.21 3.90 0.959 0.934 0.960 0.716
BD 4.15 5.44 3.52 4.05 0.788 0.922 0.802 0.746
BP 4.94 5.82 4.12 4.57 0.939 0.987 0.939 0.841
BR 5.14 5.82 4.21 4.71 0.977 0.987 0.960 0.866
CT 4.96 5.32 3.80 3.72 0.942 0.902 0.866 0.685
DG 5.24 5.90 4.17 4.11 0.994 1.000 0.950 0.756
HN 3.94 5.34 3.79 4.80 0.748 0.905 0.864 0.884
KL 5.10 5.67 3.86 4.85 0.969 0.962 0.879 0.892
KO 4.22 5.31 4.08 5.44 0.801 0.900 0.931 1.000
MK 4.85 5.87 4.30 4.10 0.921 0.995 0.981 0.754
NK 4.83 5.66 3.98 4.69 0.918 0.960 0.907 0.862
PG 4.82 5.75 4.12 4.33 0.916 0.976 0.940 0.796
PL 4.52 5.84 3.26 4.47 0.858 0.990 0.743 0.822
PV 4.73 5.71 4.39 4.08 0.898 0.969 1.000 0.750
PŽ 5.21 5.84 3.77 3.80 0.990 0.991 0.859 0.700
RO 4.72 5.79 3.60 3.41 0.897 0.982 0.821 0.627
ŠA 5.26 5.83 4.27 4.22 1.000 0.988 0.974 0.777
TV 4.69 5.29 3.82 5.33 0.890 0.896 0.871 0.980
UL 4.57 5.85 3.59 4.60 0.869 0.992 0.819 0.845
ŽB 4.10 5.70 3.80 4.28 0.778 0.967 0.866 0.786
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Figure 3: FEGRA ranking: comparison of alternative data modelling method.
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Figure 4: FEGRA ranking: comparison with equal and DEA weighting, (a) and comparison with additive and noncompensatory MCDM
aggregation (b).

Table 10: Ranking shift.

FEGRA Data Weighting Aggregation
Likert EW DEA Additive MCDM

TV 1 13 8 1 0 1
KO 2 8 11 2 1 1
BR 3 0 1 5 − 1 − 2
ŠA 4 − 2 − 3 1 1 3
MK 5 − 1 − 3 − 2 4 4
NK 6 6 4 6 − 2 − 2
BP 7 − 2 − 2 3 − 1 − 2
DG 8 − 7 − 5 − 7 2 2
KL 9 − 1 − 1 0 − 2 − 1
PG 10 − 1 − 4 3 − 2 − 4
BA 11 0 1 4 1 1
PŽ 12 − 6 − 5 − 1 1 3
AN 13 2 2 4 − 2 − 2
PV 14 − 7 − 3 2 1 0
CT 15 4 3 3 − 1 1
HN 16 4 4 3 0 − 3
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performance index of the territory and additionally establish
a more rational ranking among the territories under
evaluation.

6. Conclusions

Evaluating the state of road safety is a complicated task,
especially complex in an uncertain environment. .e source
of uncertainty can be varied: from the selected indicators and
the collection of their data, through the weighting process, to
the chosen aggregation approach. .is paper has just fo-
cused on assessing road safety using a composite perfor-
mance index as a complex decision-making problem in
uncertain circumstances. To overcome the drawbacks of data
uncertainty, a systematic hybrid method—FEGRA—has
been proposed. .e method integrates different techniques
for dealing with uncertainty at each step, namely trapezoidal
fuzzy numbers for modeling indicator data, entropy-based
weighting to determine the nominal importance of indi-
cators, and grey relational analysis as a technique for ag-
gregating weighted indicators. Data on the self-reported
behavior of Montenegrin drivers collected through a
questionnaire were used as indicators of safety performance
(SPIs). .e presented method made it possible to reliably
assess traffic safety and rank municipalities in Montenegro
on the basis of these behavioral SPIs.

.e results show that not wearing a seatbelt is the most
common negative behavior of drivers in Montenegro with
the largest impact on final efficiency and ranking (i.e., it is
the most important issue that policymakers should address
in the future). Ranking positions are understandably very

sensitive to the “quality of presentation” of input data, es-
pecially if that data is qualitative (opinion, judgment), as
here. .e performed robustness analysis of FEGRA (com-
parative analysis) confirms that the final ranking of the
territory is mostly influenced by data modeling and
weighting techniques (with a total absolute average rank
shift of 3.5 places), while the choice of aggregation method
is, as expected, less influential (with an average rank shift of 1
rank place).

One of the advantages of the proposed FEGRAmethod is
its efficiency and practical usefulness since it does not re-
quire complicated software, as well as the fact that it can be
treated as a unique methodology for the periodical moni-
toring of road user behavior and the achievements of
implemented measures, strategies, and policies. However,
since the analysis of the proposed method showed that
indicator values have a large influence on the final ranking
and from the fact that the result of the fuzzy approach counts
heavily on the degree that fuzzy numbers correctly represent
qualitative data, the calculated results might vary based on
the assigned membership function, which is the largest
shortcoming of this method. Another disadvantage stems
from the fact that GRA is a normalization-based technique,
and the calculated results might vary based on the type of
normalization. .erefore, future work should conduct a
deeper sensitivity analysis of both, i.e., assigning a different
membership function and applying alternative data nor-
malization, and also explore methods that best fit data
representing road safety behavior.

Data Availability
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