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With the rapid development of computer control and vehicle intelligence technology, speed and safety of vehicles have been
greatly improved, and the requirements for vehicle control performance are getting higher and higher. For the direct braking force
control, in the process of deceleration, a fast braking response can be obtained, which improves the braking performance and
vehicle safety. *is paper concentrates on direct braking force estimation and control strategy using a tire inverse model based on
the antilock braking system, and to solve the problem of the existing ABS system is mainly antilock braking function, no direct
braking force control function. Taking magic formula model for reference inverse model, the critical parameters under different
road surfaces are obtained according to experience data. *en, the desired slip ratio corresponding to braking force can be
obtained via fast tire inverse model look-up table method. *e tyre friction self-adjustment decision making is obtained using the
tire inverse model method. A direct braking force antilock braking system (DBF-ABS) controller is built using the nonsingular fast
terminal sliding mode method. *e simulation results indicated that the control strategy has adaptability and stability to the
change of road conditions.

1. Introduction

On behalf of adapting to the complex working conditions
and enhancing the vehicle’s safety and comfort, various
types of automotive active electronic control systems are
presented. *e research on integrated vehicle dynamics
control already became an urgent problem to be solved and
has attracted extensive attention [1–3].

*ese research studies have improved vehicle perfor-
mance to a certain extent but still have some problem to be
solved. Some studies focus only on the design of the main
circuit [4–6].*e calculated stable side forces and total yaw
moments are applied without considering targeted pro-
duction and allocation manners. *e influence of tire
dynamics is essentially treated as nominal parameters,
such as the basic angular stiffness when the problem
formulates. But there is an interaction between the non-
linearity of tire characteristics and vehicle dynamics

[7–10]. However, these studies based on the main loop
design can provide the maximum performance margins
and theoretic insight, and the vehicle motion force gen-
eration process does not fully take the special interactions
between tires and the road into account. It can lead to
insufficient control accuracy or overly optimistic perfor-
mance results. When need more tire force, for example, if
the tires have been in big slip rate, applying large braking
force will only make things worse. More importantly, the
realization of tire forces is still a critical problem in relation
to handling property [11–14].

*is paper concentrates on direct braking force esti-
mation and control strategy using tire inverse model based
on the ABS. *e main content of the rest section of the
paper is as follows. Section 2 discusses the development
and new features of vehicle integrated control and direct
torque ABS control technology in recent years. Section 3
describes tyre friction self-adjustment decision-making
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method and direct braking force DBF-ABS controller
design. *e results of simulation analysis are presented in
Section 4. *e conclusions and future related work is
provided in Section 5.

2. Literature Review

ABS system has been developed since the early 20th
century [15, 16]. At the end of 1970s, the great progress of
digital electronic technology and large-scale integrated
circuit laid the technical foundation of ABS. After the mid-
1980s, the development of ABS paid more attention to its
own cost performance ratio [17, 18]. *e work during this
period has increased the popularity of ABS. *e ABS
system is considered as the most important safety technical
achievement since the adoption of safety belt in auto-
mobiles [19, 20].

With the improvement of vehicle speed and intelligent
technology level, the related vehicle control technology
based on ABS has also achieved new and rapid devel-
opment. *e EBD and ABS are integrated to form the
automobile auxiliary integrated system using CAN bus
[21]. Brake-by-wire control systems for intelligent vehi-
cles are studied [22]. In the past decades, quite a few
advanced intelligence, automatic control, and computer
technologies have been widely used in ABS for smart
vehicles, for example, distributed and self-adaptive ve-
hicle speed estimation and control [23]; optimal slip rate
is obtained and tracked based on the multiphase method
[24, 25]. Besides, a nonlinear predictive control strategy
was proposed [26, 27].

Especially with the improvement of vehicle integra-
tion, collaborative or optimal control has become a new
research hotspot, such as, combined emergency braking,
integrated vehicle chassis control [28–30], and self-
learning adaptive control [31, 32]. In addition, with the
development of modern computer and communication
technology, some new technologies are applied to reduce
traffic congestion and vehicle driving safety, such as
advanced driving assistance system and autonomous
driving [33–35]. In particular, the development of in-
telligent networked vehicle technology has further im-
proved vehicle safety [36, 37]. Based on these previous
studies, this paper concentrates on direct braking force
estimation and control strategy using the tire inverse
model based on the ABS to solve the direct braking force
control problem.

3. Method

In this section, the control structure of the direct braking
force self-adjustment decision making and control is
designed. *e desired direct braking force friction is esti-
mated and tracked. Based on the estimated values of tyre
friction, the desired slip ratio can be obtained, which is
corresponded with the specific desired tyre friction, using
the reverse look-up table method. *en, based on the tire
braking force model, the terminal sliding mode method

ensures that the antilock braking system can achieve the
desired slip rate to obtain direct braking.

3.1. Control Structure. *e direct braking force estimation,
self-adjusting decision, and control structure are shown in
Figure 1. *e details are as follows:

Step 1: the driver commands are received from the
brake pedal system. *e control inputs, namely, wheel
control moments, are obtained by a servo loop to
distribute force and torque to the four tire-road contact
blocks.
Step 2: the direct braking force is estimated using direct
braking force quick look-up table based on tire inverse
model. *e ideal tyre-road friction is obtained by direct
braking force decision-making system.
Step 3: the control target error is calculated and direct
braking target control force is obtained and assigned by
direct braking force control system.

At last, simulations and results are analyzed based on the
vehicle dynamic model, including tyre-road dynamic model,
vehicle dynamic model, and braking force sensor model.

3.2. VehicleModel. Tire-road friction has obvious nonlinear
characteristics, which should be estimated. An attempt has
been made to measure braking torque using force sensors
mounted on caliper mounts. Assuming that braking torque
can be obtained from sensors, then, tyre-road friction can be
calculated [24].

In Figure 2, vehicle dynamics and brake model are built
as follows:

_u � −
􏽐i�FL,FR,RL,RRFfb,i

M
,

_ωi �
Rb,iFxb,i − Tb,i

Jb,i

,

Fxb,i � μi · FZ,i,

FZ,i �
1
4
Mg,

(1)

whereM is the mass of vehicle, Fxb,i is the friction force, ωi is
the angular speed, Jb,i is the wheel inertia, Rb,i is the radius of
the vehicle wheel, Ffb,i is the brake force measured by force
transducer, Tb,i is the brake torque, g is the acceleration of
gravity, FZ,i is the vertical load of the wheel, and i is the front,
rear, left, and right positions wheel.

3.3. Tyre Model. *e tire model is derived from Magic
formula. Magic formula is the universal semiempirical tire
model [38]. *e general form is as follows:

μl � Alsin Blarctan Clλ − Dl Clλ − arctan Clλ( 􏼁( 􏼁􏼈 􏼉􏼂 􏼃, (2)

where μl is the longitudinal friction coefficient, Cl is the
stiffness factor of the tire, λ is the longitudinal slip of the
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vehicle, Al is the peak value, Bl is the shape factor, Dl is the
curvature factor.

3.4. Direct Braking Force System Controller Design. In this
section, a direct braking force controller based on ABS with
terminal sliding mode control method is proposed, as shown
in Figure 3.

After introducing the controller, the parameter uncer-
tainty and the influence of external interference can be
eliminated.

*e following equation is the sliding surface designed in
this paper:

SDBE−ABS �
d FDir_Brak − FRef_Brak􏼐 􏼑

dt + ξ FDir_Brak − FRef_Brak􏼐 􏼑 + ζ FDir_Brak − FRef_Brak􏼐 􏼑
(a/b)

, (3)

where e ∈ R; ξ, ζ are constants, and ξ > 0, ζ > 0; a, b are
positive odd integers. At the same time, a< b< 2a.

*e dynamic adjustment process of sliding mode
control consists of arrival stage and sliding control two
stages. To make the switch manifold reachable, smooth,
and fast convergence in a finite time, a “terminal attractor”
is proposed to improve chatter less control while taking

full advantage of nonsingular fast terminal sliding mode
control. *is controller sliding surface design as follows:
_SDBE−ABS � −ςs − ϑs

(g/f)
􏼐 􏼑 FDir_Brak − FRef_Brak􏼐 􏼑

(p− q/q)
, (4)

where ς ∈ R+; ϑ ∈ R+; m> 0 are odd integers. n> 0 is odd
integers. At the same time, 0<g/f< 1. And the direct
braking force antilock braking control law is shown below:
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Figure 1: Schematic diagram of direct braking force estimation and control configuration.
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Figure 2: Vehicle braking dynamics model.
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FCon Brak �
u · J
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2
b

q

ζ · p
− €FErr Brak · F

(q−p/q)

Err Brak − ξ · _FErr Brak · F
(q−p/q)

Err Brak + ςs + ϑs
(g/f)

􏼐 􏼑􏼐 􏼑

−
u

r
2
b · J

r
2
bFDir Brak + J(1 − λ)(du/dt)

u
− _FInv Ref Brak􏼠 􏼡.

(5)

In the above equation,FErr_Brak � FDir_Brak − FRef_Brak, since
0< q − p/q, the system eliminates the singularity problem and
can converge to system equilibrium by tracking the sliding
surface.

4. Simulations and Analysis

On behalf of proving the effectiveness of the direct
braking friction self-adjusting decision and controller,
simulation is carried out in this section. Firstly, the
characteristics of tyre friction are presented by using
three sets of different test points, analyzing the impact of
these test points on vehicle speed control and vehicle
braking distance. *en, the superiority of the nonsingular
fast terminal sliding mode method-based DBF-ABS
controller is compared with fast sliding mode control and
Bang-Bang-based ones. Finally, the overall performance
of friction self-tuning control in μ-split condition is
achieved.

4.1. Parameter Set. Parameters required to build the sim-
ulation and analysis system are listed in Table 1.

*e different road surface Magic formula empirical
parameters can be obtained in Table 2. Based on the above
information, AL, BL, CL, and DL can be constrained in the
range of corresponding different roads [24].

4.2. Simulations of Quasilinear Braking Area Characteristics.
*e braking force between the tire and the ground has a
characteristic that are transitioned from linear to nonlinear,
including two areas quasilinear braking area and emergency
braking nonlinear area, as shown in equation (2). In order to
better estimate and control the direct braking force, it is
necessary to analyze the interaction characteristics of these
two regions. In the tyre friction self-adjustment decision

making, control sets in quasilinear braking area points
λ ∈ [0.01 ∼ 0.10] have been are selected 3 points, that is A, B,
and C. And based on these points, the simulations are
conducted. *e results can be obtained in Figures 4 and 5.
*e control points of (􏽢λxb, 􏽢Fxb) are within the area that
λ ∈ [0.01 ∼ 0.10]. And as is shown in Figure 5, little change
is present in control slip rate, so there is a little effect on
braking distance.
4.3. Simulations of Emergency Braking Area Characteristics.
*e control set points in emergency braking area, in
λ ∈ [0.10 ∼ 0.20], have already selected 3 points, that is A, B,
and C. Based on these points, the simulations are conducted.
*e results can be obtained in Figures 6 7.

*e control points of (􏽢λxb, 􏽢Fxb) are within the area that
λ ∈ [0.10 ∼ 0.20]. From Figures 6 and 7, although the step of
the slip rate is the same as that of case 4.2, it has a greater
impact on the braking distance. *e result is significantly
improved compared with Case 4.3, because the identification
point information is more applicable to the nonlinear
variation of tire-road friction. In conclusion, the sampling
point λ contributes to more impact on the braking distance.

4.4. Simulations under μ-Split Condition of Different Road
Surface. *e braking force varies with different road envi-
ronment. *e scenarios of the vehicle running under μ-split
condition of different road surfaces are chosen to verify the
self-tuning and adaptive performances of proposed esti-
mator and controller, as shown in Figure 8.

Set the constant reference friction force sss in this μ-split
simulation.*e road conditions change between the asphalt,
dry road and the asphalt, wet road at 1.5s, as shown in
Figures 9 and 10. In figures, the friction and vehicle ac-
celeration have not changed drastically. As shown in Fig-
ure 9, although the friction force is same, the figure displays
that the reference value at 1.0 seconds decreases from about
0.054 to 0.036 as the road conditions change. As shown in
Figure 10, although the friction force is same, the vehicle
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Figure 3: Schematic of direct braking force antilock braking system controller.
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Table 1: Parameters used in simulations.

Notation g acceleration of gravity Jb wheel inertia Rb wheel radius M vehicle mass

Unit m/s2 kg ·m2 m kg
Value 9.8 12 0.25 1530

Table 2: Magic formula parameters of di�erent roads.

Road Snow Cobblestone (wet) Asphalt-wet Cobblestone (dry) Concrete (dry) Asphalt (dry)
AL 0.20 0.40 0.80 0.85 0.37 1.10
BL 1.45 1.45 1.60 1.40 1.64 1.55
CL 17.43 14.02 15.63 10.09 13.42 13.42
DL 0.65 0.60 0.45 0.64 0.53 0.53

Journal of Advanced Transportation 5



maintains the same acceleration on di�erent road surfaces.
However, the �gure displays that the acceleration value at 1.5
seconds decreases as the road conditions change. �e results
shows that the proposed self-tuning controller can estimate

and keep the tracking value consistent with the reference
value under di�erent road surfaces.

Furthermore, the proposed direct braking force con-
troller (controller A) is compared with fast terminal sliding
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mode controller (controller B) and Bang-Bang controller
(controller C). From Figure 9, the controller A converges
between reference and real value of friction faster than
controllers B and C. In Figure 10, the results are similar for
vehicle acceleration control. From the results, although the
performance of the Bang-Bang controller is not as good as
the other two, it is often used in engineering due to its simple
structure and low requirements for the control processing
unit. *e figure shows that the proposed DBF-ABS con-
troller can keep the tracking value consistent with better
performance.

5. Conclusions and Future Work

Based on the existing ABS, a kind of direct braking force
estimation and control strategy based on DBF-ABS control
system was proposed to solve the problem of the existing
ABS system which is mainly antilock braking function, no
direct braking force control function. For the direct braking
force control, in the process of deceleration, a fast braking
response can be obtained, which improves the braking
performance and vehicle safety. Firstly, taking magic for-
mula model for reference inverse model, the critical pa-
rameters under different road surface are obtained
according to experience data. *en, the desired slip ratio
corresponding to braking force can be obtained via tire
inverse model look-up table method. *e tyre friction self-
adjustment decision making is obtained using the tire
inverse model method. A direct braking force antilock
braking system (DBF-ABS) controller is built using the
nonsingular fast terminal sliding mode algorithm. Finally,
the simulations and analysis results show that the control
method has adaptability and stability under different
driving conditions.

Due to limited sensing equipment for direct braking
force control data acquisition, future work will be focused on
advanced sensing and data estimation. In addition, a wider
range of dynamic adaptive direct braking torque control and
matching with AEBS is also an interesting topic.
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