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In recent years, with the increase of emerging pick-up requests during service, logistics companies have been driven to integrate
delivery and pick-up service in a dynamic environment. To provide a balanced and robust approach to cope with delivery requests
and emerging pick-up requests, this article aims at considering and modeling a practically useful service principle as preemptive
services. To our knowledge, most existing studies assume that the dynamically arriving requests are handled in a non-preemptive
processing sequence; that is, once the delivery person is allocated to a task, the process is noninterruptible till it gets completed. In
the preemptive service, a service suspension of the delivery process (with low service utility) is allowed to satisfy the pick-up
requests (with high service utility) first. To provide a systematic assessment on the value of preemptive service for evolving urban
logistics systems, a dynamic vehicle routing problem with preemptive pick-up service (VRPPS) is proposed to systematically
describe the problem with potentially complex dynamic priorities among different tasks. Based on a dynamically constructed
space-time network, this study formulates a multicommodity flow model that aims at optimizing the generalized service utility
and the operating cost simultaneously. To provide a fast value approximation, we present a solution framework deploying the
augmented Lagrangian relaxation approach with embedded dynamic programming algorithms.)is framework jointly integrates
the processes of updating request information and obtaining optimal routes. Finally, the validity and effectiveness of the proposed
methods are evaluated on an illustrative network and a real-world last-mile delivery network operated by a logistics company.

1. Introduction

Over the past few decades, delivery and pick-up services
have been developed and operated, respectively. Unlike
deliveries, which are usually required by customers before
service, the majority of pick-up requests appear during
service, with tight time windows and high priority. In order
to cope with emerging pick-up requests and enhance service
efficiency, it is necessary to explore an effective way to
combine delivery and pick-up service together. We consider
the process of handling delivery and pick-up requests in a

multitask scheduling environment. )at is, delivery and
pick-up service can be regarded as two different types of
tasks.)e principle of preemptive service is introduced from
the field of queueing models and further considered in this
study, assuming that delivery people could interrupt their
delivery service (with low service utility) to process the newly
generated pick-up orders (with high service utility). It is
worth studying because delivery people could cooperate
with each other to handle emerging pick-ups. In addition,
more overall profits could be earned. However, the case of
preemptive service has not been fully examined in the
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existing dynamic vehicle routing literature. Accordingly, the
introduction of preemptive service in this article aims at
providing a more flexible service principle to find the service
sequence with the maximum profits (the difference between
service utility and operating cost) in the last-mile delivery
process.

)e last-mile delivery process is typically formulated as a
vehicle routing problem with time window (VRPTW).
Researchers have contributed significantly on modeling
methods and solution algorithms for VRPTW. From a
modeling perspective, general considerations of VRPTW are
summarized as capacity constraints [1, 2] and routing time
constraints [3]. With regard to solution algorithms, typical
methods are divided into heuristics and exact algorithms.
Considering that VRPTW is a NP-hard problem, heuristics
are often used as a fast and effective method to achieve
optimized solutions. A vehicle routing problem with a soft
time window was proposed by Taillard et al. [2] and solved
by implementing the tabu search algorithm. Ombuki et al.
[4] presented a genetic algorithm to simultaneously mini-
mize the total number of vehicles and total cost. On the other
hand, though converging much slower than heuristics, exact
algorithms demonstrate advantages on quantifying the
optimality gap and evaluating solution equality. Based on the
column-generation technique, Desrochers, Desrosiers, and
Solomon [1] proposed a branch-and-bound algorithm to
generate lower bound and a dynamic programming algo-
rithm to obtain feasible columns. Moreover, the Lagrangian
relaxation (LR) technique has been widely implemented
[5, 6]. As an augmented form of LR, the alternating direction
method of multipliers (ADMM) framework was applied and
developed by Yao et al. [7] to decompose VRPTW under
space-time-state network. )e computational results dem-
onstrated a better quality of solution than the LR-based
method. As an extension of VRPTW, the vehicle routing
problem with pick-up and delivery (VRPPD) was proposed
to consider delivery person’s behavior. Mahmoudi and Zhou
[8] formulated VRPPD as a multicommodity flow problem
in a space-time-state network without adding complex
constraints. Tong et al. [9] presented a customized bus
service network design problem and utilized a Lagrangian-
based algorithm to acquire the optimal route. Zhao et al. [10]
studied a pick-up and delivery problem that considers ve-
hicle routing plan and ride-share matching strategy si-
multaneously, and developed a Lagrangian relaxation-based
approach to solve the problem.

When the information cannot be revealed in advance,
VRPTW turns into a dynamic scheduling problem
(DVRPTW). Chen and Xu [11] proposed a DVRP with hard
time windows to minimize total distance along the route and
acquire an optimized path at each decision epoch using
column generation.Montemanni et al. [12] conducted a tabu
search strategy under an ant colony system to solve a dy-
namic vehicle routing problem with deterministic time
windows. For stochastic DVRPTW, information is revealed
over time following given probability distributions. Yang,
Jaillet, and Mahmassani [13] formally introduced a real-time
multivehicle truckload pick-up and delivery problem and
proposed several reoptimization policies, with the

consideration of varying traffic intensities, request informa-
tion, and flexibility for request-rejection decisions. Given that
additional knowledge becomes available as time evolves, al-
gorithms like stochastic modeling [14–16] are widely utilized
to capture uncertainty.

It is important to highlight the principle of dynamic
scheduling in a multitasking environment. In preemptive
scheduling, processing of high-priority tasks is done first by
interrupting low-priority tasks. In non-preemptive sched-
uling, if subsequent high-priority task arrives, it will wait
until the execution of earlier task. It should be noted, there
are still different scheduling rules such as FCFS, EDT, to
handle the dynamic changes in the task priority.

To our knowledge, the paper by Ulmer, )omas, and
Mattfeld [17] first studied a dynamic vehicle routing problem
withpreemptivedepot returns causedbynewdelivery requests
received during service. In this article, we study preemptive
pick-up services and corresponding customer returns.

Table 1 compares the key elements of DVRPTW models
in detail. From the literature mentioned above, we can see
that researchers have contributed substantially to DVRP, but
few studies consider the service in a real-world multitasking
environment. )us, we aim at maximizing the benefits of
serving both the delivery and pick-up requests while min-
imizing total operating cost.

In this study, we focus on handling delivery and pick-up
requests efficiently in a multitask environment by incor-
porating preemptive pick-up service into the vehicle routing
problem. A solution framework, which contains the iterative
process between updating request information and
obtaining optimal routes at each decision epoch, is presented
to formulate and solve the proposed problem .

)e potential contribution of this article is listed as
follows:

(1) We formally introduce the concept of preemptive
pick-up service into vehicle routing problem
(VRPPS) to jointly capture the characteristics of both
delivery and pick-up requests. Specifically, according
to the detailed DVRP taxonomy proposed by
Psaraftis, Wen, and Kontovas [18], VRPPS under
consideration is an integration of dynamic and de-
terministic DVRP, which considers customer order
rejection and pick-up requests and, in particular,
allows preemptive service, as shown in Figure 1.

(2) We present a discretized space-time network-based
solution framework for VRPPS, which systematically
integrates request information updates and optimal
route acquisition.)e use of the space-time networks
can allow exact modeling of the return-to-current
customer behavior after a preemptive request. )e
linear integer programming optimization model is
solved over a time horizon due to the dynamic nature
of pick-up requests during service, under the aug-
mented Lagrangian relaxation decomposition ap-
proach. )e proposed method can be well applied to
handledelivery andpick-up requests at the same time.

(3) We demonstrate the impact of preemptive service
and delivery people cooperation through an
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illustrative example, and test the validity and effi-
ciency of the proposed model and algorithm on a
real-world network.

)e remainder of this article is organized as follows. )e
next section presents the vehicle routing problem consid-
ering preemptive pick-up service within a space-time net-
work. In Section 3, we propose a solution framework
integrating the augmented Lagrangian relaxation method
and dynamic programming algorithm. In Section 4, wemake
a comparison between the proposed augmented Lagrangian
relaxation method and other approaches. Section 5 performs
numerical experiments based on an illustrative network and
a real-world network. Section 6 provides conclusions and
discusses future research.

2. Vehicle Routing Problem with Preemptive
Pick-Up Service (VRPPS) and Service-
Dependent Utility Considerations

2.1. Problem Statement. We incorporate preemptive service
into a last-mile delivery problem in a multitask environ-
ment. In this problem, delivery service (with low utility and
loose time window) and pick-up service (with high utility

and tight time window) can be viewed as two different tasks.
Preemptive service means that delivery process can be
interrupted by a to-be-served pick-up requests, while non-
preemptive service means that delivery process is consec-
utive. )e problem is designed for logistics companies to
manage delivery and pick-up service simultaneously.

We depict the problem in an illustrative way, as shown in
Figure 2. Here, we compare two service modes as “non-
preemptive service” and “preemptive service.” In these two
modes, the vehicle can carry delivery packages (blue
packages, with low service utility and loose time window)
and pick-up packages (red packages, with high service utility
and tight time window) at the same time. )e delivery
service begins and ends at depot within a loose time window
[EDT, LAT], where EDT and LAT denote the earliest de-
parture time from depot and latest arrival time to depot
respectively. Travel cost is considered between customers.
)e delivery request for each customer is two packages. )e
vehicle follows an initial routing plan (depot-1-2-3-depot),
until a pick-up request occurs at customer 3 when the vehicle
is delivering goods at customer 2. Under “non-preemptive
service,” the delivery person reneges on the pick-up request
and gives up its utility because he/she cannot serve it within
time window; under “preemptive service,” considering the

Table 1: Comparison of key elements in DVRPTW.

Objective Service principles Decision variables Main
constraints Solution algorithm Publication

Minimizing the long-run
average cost per requested
job

Non-preemptive Time-dependent
truck loading state TW Reoptimization policy Yang et al. [13]

Minimizing total travel time Non-preemptive Vehicle route TW; CP Ant colony system Montemanni
et al. [12]

Minimizing the expected
total travel time plus lateness Non-preemptive Vehicle-customer

type assignment TW Parallel tabu search Ichoua, et al.
[15]

Minimizing total distance Non-preemptive Vehicle route TW Dynamic column
generation

Chen and xu
[11]

Minimizing total expected
cost Non-preemptive Customer state TW; CP; SD Adaptive variable

neighborhood search Pillac et al. [16]

Maximizing total expected
rewards

Preemptive (depot return
for delivery requests) Customer state TW Approximate dynamic

programming Ulmer et al. [17]

Maximizing the difference
between service utility and
operating cost

Preemptive (delivery
process interruption for
pick-up requests)

Space-time route
(with customer
return)

STW; SDC Augmented Lagrangian
relaxation method )is paper

Constraints. TW: time window constraint; CP: capacity constraint; SD: side constraint; STW: space-time window constraint; SDC: service duration constraint.

VRPPS

Problem
type

Objective
function

dynamic &
deterministic

Time
constraints

Ability to
reject

customers

Dynamic
element

Maximize
net profit Yes (Hard) Yes Pick-up

requests

Fleet size

Multiple
and limited

number

Vehicle
capacity

constraints

No

Characteristics

Preemptive
service 

Figure 1: DVRP taxonomy for the proposed VRPPS based on the framework by Psaraftis, Wen and Kontovas [18].
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principle of preemptive scheduling, the vehicle interrupts
the delivery process at customer 2 to pick up the emerging
request at customer 3 and then returns to customer 2 to
complete the remaining delivery requests. )is problem
aims at finding a service sequence with a maximum profit
(the difference between total utility and total operating cost)
once the to-be-served pick-up requests occur during service.
)e value of total profit should be compared very system-
atically. )e “preemptive service” can be better than “non-
preemptive service,” only if the utility of serving pick-up
request is much higher than the additional travel cost due to
service interruption and customer return. As a result, a well-
defined formulation and efficient solution algorithm are
critically needed to offer a solid assessment and optimization
of different service plans.

Inspired by the phenomenon that the daily delivery re-
quests are often interrupted by the urgent pick-up orders, we
makedistinguishedassumptions fordifferent typesof requests
to depict the real-world situation. In addition to practical
conditions, classical assumptions should be taken into ac-
count. )e characteristics of last-mile delivery are illustrated
by [19], containing customer service levels, security and de-
livery types, geographical area and market density/penetra-
tion, vehicle fleet, and the environmental factor. For
simplicity, we consider delivery types, vehicle fleet, and time
window in the problem. )e following assumptions are
adopted in the underlining mathematical model:

(1) Only delivery process can be interrupted
(2) Each customer is assumed to be a physical node
(3) Utility is defined as the service profit per time unit at

physical nodes
(4) Utility of serving pick-up requests is higher than that

of delivery requests
(5) Travel cost between customers is much lower than

the value of service utility

(6) Vehicles do not have capacity restrictions
(7) Service duration at physical nodes is considered in

both delivery and pick-up process
(8) Each physical node can be served more than once
(9) Delivery requests are required to be served within a

loose time window [EDT, LAT], while pick-up re-
quests have much tighter time window

We establish an optimization model under the space-
time network to describe VRPPS. We use a directed graph G
� (N, E) to represent a physical network, including a set of
physical nodes N and a set of arcs E. )e set N consists of a
depot node O and a set of physical nodes P. )e arcs in set E
represent road segments. Meanwhile, a space-time network
is extended from the physical network G by extending
physical nodes to request nodes, and adding a time di-
mension. )e space-time network contains a set of space-
time vertices V and a set of space-time arcs A, where vertex
(i, t) represent both time t and request node i, and arc
(i, j, t, t′) denotes a space-time arc starting from request
node i at time t and arriving at request node j at time t′.

Given a finite set of vehicles K, delivery requests, pick-up
requests, and corresponding time windows, the VRPPS aims
at maximizing the difference between total service utility and
operating cost, and obtain optimal space-time routes for each
vehicle kwhen a pick-up request occurs at time τ. Table 2 lists
the sets, indexes, and parameters used in the article.

2.2. Conceptual Illustration for SystematicValueCalculations.
In this section, we explain the process of preemptive service
in detail through a three-node illustrative example. We set
the utility as $10 per time unit for serving a delivery request
and $15 per time unit for a pick-up request. A physical
network is given with 1 depot, 3 physical nodes, and 6
directed transportation links (marked with the travel cost),
as shown in Figure 3. One vehicle is available to serve the

1 2 3

Non-preemptive service
(Optimal path: Depot-1-2-3-Depot)

1 2 3

Preemptive service
(Optimal path: Depot-1-2-3-2-Depot)

Return
to

customer 2

Preemptive
pick-up request

Renege on
pick-up request

Vehicle

Delivery arc

Executed route

3 Physical node

Service interruption
Preemptive pick-up request

Depot

Pick-up arc

Delivery request

Figure 2: Illustration of non-preemptive and preemptive services.
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requests. )e required service duration and preferred time
window for each physical node are shown in Table 3. Note
that only the delivery process could be suspended.

To emphasize the advantage of preemptive service, we
compare the optimal solution results under non-preemptive
(Scenario 1) and preemptive service (Scenario 2) in Table 4.
As shown in the table, we use decision tree to explain the

process of obtaining optimal path. In Scenario 1, following
the optimal path, the vehicle arrives at physical node 3 at τ
� 8, so the pick-up request cannot be served. In Scenario 2,
the delivery service at physical node 2 can be interrupted, so
the decision tree extends a new branch compared with
Scenario 1. In the optimal path, the vehicle firstly serves
physical node 2 for one time unit, then heads to physical

Table 2: Sets, indexes, and parameters for model establishment.

Symbol Definition
O Index of depot
P Set of physical nodes in physical network
N Set of nodes in physical network, N � P∪ O{ }

E Set of directed links in physical network
T Set of time stamps
K Set of vehicles
V Set of space-time vertexes
A Set of space-time arcs
Ak Set of space-time arcs for vehicle k ∈ K

AT Set of space-time traveling arcs
AS Set of space-time serving arcs
τ Index of decision epoch
k Index of vehicles
p Index of physical nodes
Pτ Set of physical nodes that still have to-be-served requests until time τ
Rτ Set of to-be-served request nodes until time τ
Rp,τ Set of to-be-served request nodes generated from physical node p until time τ
Ψr,k Set of arriving arcs that end at request node r in vehicle k’s network
ok,τ Origin of vehicle k at time τ
dk Destination of vehicle k

qp,τ,num )e numth request node generated at physical node p until time τ
EDT )e earliest departure time from depot
LAT )e latest arrival time back to depot
SLr Required service duration for request node r

SLp Required service duration for physical node p

Tp,τ Remaining service duration for physical node p until time τ
i, j, r Indices of request nodes
t, t′ Indices of time stamps
(i, t), (j, t′) Indices of space-time vertexes
(i, j, t, t′) Index of space-time arc
ci,j,t,t′ Transportation cost on arc (i, j, t, t′)
ui,j,t,t′ Utility on arc (i, j, t, t′)

1
1 1 1

SD=3

3 Physical node

SD Service duration

1

3
SD=2 SD=2

2 3

3

Depot

One-way link with travel cost1

Figure 3: Physical network for a 3-node example.

Table 3: Basic information of requests in the 3-node example.

Request type Corresponding physical node Required service duration Preferred time window
Delivery 1 3 [0,15]
Delivery 2 2 [0,15]
Delivery 3 2 [0,15]
Pick-up 3 1 [6, 7]
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node 3 for satisfying the pick-up request at τ � 7, and finally
returns to physical node 2 at τ � 11. It turns out that the
solution result in Scenario 2 incurs a higher travel cost but
earns more utility than Scenario 1.

2.3. Space-Time Network Construction for Preemptive Service
with Possible Interruptions and Return-to-Customer
Requirements. In this section, the process of handling de-
livery and pick-up tasks is described using a space-time
network representation. )e reason why we use space-time
network is that it can model preemptive service spatially and
temporally. Under preemptive service, multiple visits of a
customer can be described by generating requests nodes
from a physical node.

2.3.1. Generating Request Nodes in Space-Time Network to
Model Service Interruptions. To distinguish different re-
quests generating at the same physical node and model
service interruptions, we introduce request nodes into
space-time network. )e number of request nodes depends
on howmany time units the physical node has remained. For
example, physical node 1 has one delivery request (with a
service duration of three time units) and one pick-up request
(with a service duration of one time unit). )erefore,
physical node 1 has four corresponding request nodes (1a,
1b, 1c, 1d), each of which has a service duration of one time
unit, as shown in Figure 4. It ensures that the delivery
process can be interrupted.

2.3.2. Dynamic Construction of Space-Time Network with
Preemptive Pick-Up Requests. Since the pick-up request can
occur at any time during service, we generate the space-time
network dynamically to capture the time-dependent request
information.Assume that a pick-up request,with timewindow
[st, et] and service duration l, occurs at time τ ∈ (EDT, LAT],
requestedby aphysical nodep ∈ Pτ .)ecorresponding space-
time network is updated following the steps:

Step 1: Update existing space-time vertices and arcs
until time τ

∗ ∗ ∗ For each space-time vertex (i, t) ∈ V

Ifi ∈ Rτandt≥ τ
then reserve (i, t) in set V and reserve its corresponding
space-time arcs from set A

else delete (i, t) from set V and delete its corresponding
space-time arcs from set A

Step 2: Generate request nodes corresponding to the
pick-up request
If there are already m(wherem � ‖Rp,τ‖) request nodes
generated at physical node p before time τ
then add the request node qp,τ,m+1, which corresponds
to the preemptive request, to set Rτ and Rp,τ

Step 3: Add space-time vertices and arcs of the pre-
emptive pick-up request
Step 3.1: Add space-time vertices to existing space-time
network
For each time t ∈ [st, et + l]

Add (qp,τ,m+1, t) to set V

End for
Step 3.2: Add space-time arcs to existing space-time
network
# Add serving arcs atqp,τ,m+1

For each time t ∈ [st, et]

Add (qp,τ,m+1, qp,τ,m+1, t, t + l) to set A

End for
# Add inflow and outflow arcs from/toqp,τ,m+1

## Add outflow arcs fromqp,τ,m+1

For each time t ∈ [st, et]

Add (qp,τ,m+1, j, t, t′) to set A

End for
## Add inflow arcs toqp,τ,m+1

For each time t′ ∈ [st, et]

Add (i, qp,τ,m+1, t, t′) to set A

End for

Table 4: Comparison between non-preemptive and preemptive service.

Scenario 1: Non-preemptive service Scenario 2: Preemptive service
Similarities (i) Bellman equation-based dynamic programming procedure is used

Differences

(i) Delivery service is
uninterruptible (i) delivery service is interruptible

(ii) Classical Bellman equation is
used

(ii) Bellman equation is modified due to the division of service
duration

Optimal path Depot-1-2-3-depot Depot-1-2-3-2-depot
Interrupt service at physical node
2? No Yes

Travel cost 6 7
Delivery utility 10∗7� 70 10∗7� 70
Pick-up utility 0 15
Objective function value 70 + 0–6� 64 70 + 15–7� 78> 64
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1

Request nodesPhysical node

SD=3

Service duration

SD=1

SD=1

SD=1

SD=1

1a

1b

1c

1d

Delivery request node (s)

SD=1

Service duration

Delivery request (s)

Pick-up request (s)

Different type of requests at physical node 1

Pick-up request node (s)

Figure 4: )e process of generating request nodes.

Time

Space

EDT 1 2 3 4 5 6 7 8 9 10 11 12 13

Served space-time
vertex and arc set

To-be-served space-time
vertex and arc set

3c

Candidate serving arc
(Pick-up request)

Executed serving arc

3a Request node (Delivery)

1a

1b

1c

2a

2b

3b

3a

Planned serving arc

Executed traveling arc

Depot

3c Request node (Pick-up)

Physical node 3
(Service duration = 2+1)

Physical node 2
(Service duration = 2)

Physical node 1
(Service duration = 3)

LAT14

Renege on
pick-up request

To-be-served pick-up request

Current location

Current time τ

Candidate serving arc
(Delivery request)

Planned traveling arc

Space-time vertexes

Time window of
pick-up request

(a)

Figure 5: Continued.
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2.3.3. An Illustrative Example for Handling Preemptive Pick-
Up Requests in Space-Time Network. Here, we use the 3-
node example mentioned in Section 2.2 to demonstrate
how the space-time network is constructed for describing
preemptive service. In this case, a pick-up request appears
at physical node 3 (denoted as request node 3c) when τ � 6,
with a very tight time window [6, 7], while delivery requests
have loose time window [EDT, LAT]. )e corresponding
serving arcs of pick-up request can be selected as (3c,3c,6,7)
or (3c,3c,7,8). )e service duration is set to be one time
unit.

Under non-preemptive service, the delivery process is
consecutive, as shown in Figure 5(a). From the planned path
(red dotted line), we can see that the delivery person reneges
on the pick-up request because he/she cannot arrive at
physical node 3 within time window [6, 7], after fully
complete the delivery task at physical node 2.

Under preemptive service, the delivery process can be
interrupted by pick-up request, as depicted in Figure 5(b).
From the newly generated planned path (red dotted line), we
can see that the delivery person will interrupt the delivery
service at physical node 2 and head to request node 3c at
τ � 7. )e service process of this pick-up request lasts for
one time unit, represented with a space-time arc (3c,3c,7,8).
To accomplish the remaining work at physical node 2, the

delivery person will revisit physical node 2 at τ � 11, denoted
as a space-time traveling arc (10,11,3a,2a).

2.4. Dynamic Space-Time Network-Based Optimization
Model. )e vehicle routing problem with preemptive ser-
vice can be formulated as a multicommodity flow model
with time window constraints based on the constructed
space-time network. )e travel cost on a space-time arc is
defined as ci,j,t,t′ , the utility is denoted as ui,j,t,t′ , and both of
them are set to be constant in the model. It is worth noting
that our model is used for optimizing the vehicles’ route,
which is determined by decision variable xk

i,j,t,t′(τ) whenever
pick-up requests occur at time τ, as shown in Table 5. )e
objective function is expressed as formula (1) and is subject
to constraints (2), (4), and (5).)e pick-up and delivery time
windows are represented in the constructed space-time
network, without adding extra constraints.

Objective Function.)e objective function is tomaximize the
difference between total service utility and total travel cost.
We transform this into a minimization problem in expres-
sion (1).)e penalty for early/late arrival is not considered as
we demand that each customer to be served within their time
windows. )e first item in the expression indicates the total

Time

Space

EDT 1 2 3 4 5 6 7 8 9 10 11 12 13

Served space-time
vertex and arc set

To-be-served space-time
vertex and arc set

3cTo-be-served pick-up request

Current time τ

1a

1b

1c

2a

2b

3b

3a

LAT14

Interruption
at physical node 22

return to physical node 2

Candidate serving arc
(Pick-up request)

Executed serving arc

3a Request node (Delivery)

Planned serving arc

Executed traveling arc

Depot

3c Request node (Pick-up) Candidate serving arc
(Delivery request)

Planned traveling arc

Space-time vertexes

Time window of
pick-up request

Physical node 3
(Service duration = 2+1)

Physical node 2
(Service duration = 2)

Physical node 1
(Service duration = 3)

Current location

(b)

Figure 5: Space-time network in a 3-node example. (a) Space-time network for 3-node example (non-preemptive service) and (b) space-
time network for 3-node example (preemptive service).
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travel cost, and the second item shows the total service
utility.

In the model, ui,j,t,t′ is the utility of selecting space-time
serving arc (i, j, t, t′). If (i, j, t, t′)ϵAS, then ui,j,t,t′ is set to be
a positive value; otherwise, set ui,j,t,t′ � 0. )e utility of pick-
up requests is considered to be higher than the utility of
delivery requests, but we do not have to particularly identify
them in formula (1). ci,j,t,t′ represents the travel cost of arc
(i, j, t, t′). Note that if arc (i, j, t, t′) is not in set
AT,ci,j,t,t′ � 0.

L � min 􏽘
k∈K

􏽘

i,j,t,t′( )∈Ak

ci,j,t,t′x
k
i,j,t,t′(τ)

− 􏽘
k∈K

􏽘

i,j,t,t′( )∈Ak

ui,j,t,t′x
k
i,j,t,t′(τ).

(1)

Flow Balance Constraint. Constraint (2) ensures the balance
of inflow and outflow for each space-time vertex (i, t). ok,τ
and dk represent the origin and destination of vehicle k until
time τ:

􏽘

i,j,t,t′( )∈Ak

x
k
i,j,t,t′(τ) − 􏽘

j,i,t′,t( )∈Ak

x
k
j,i,t′,t(τ)

�

1, i � ok,τ , t � τ,

−1, i � dk, t � LAT,

0, otherwise.

∀k ∈ K.

⎧⎪⎪⎨

⎪⎪⎩

(2)

Request Satisfaction Constraint. To describe the interruption
of delivery tasks, each physical node p ∈ Pτ can be visited
more than once to satisfy the delivery requests. To achieve
this, the remaining service duration at p should be fully
satisfied, as shown in the following expression:

􏽘
k∈K

􏽘
r∈Rp,τ

􏽘

i,j,t,t′( )∈Ψr,k

SLr · x
k
i,j,t,t′(τ) � Tp,τ , ∀p ∈ Pτ . (3)

However, it is hard to cope with expression (3) math-
ematically. We have to formulate an equivalent constraint
that is easy to be solved. Since the requests for each physical
node are represented by request nodes in space-time net-
work, we only need to ensure that each space-time vertex is
served only once. We use the following constraint to replace
expression (3):

􏽘
k∈K

􏽘

i,j,t,t′( )∈Ψr,k

x
k
i,j,t,t′(τ) � 1, ∀r ∈ Rp,τ . (4)

Decision Variable. As shown in expression (5), decision
variable xk

i,j,t,t′(τ) is equal to 1 if space-time arc (i, j, t, t′) is
selected by vehicle k at time τ; otherwise, it is equal to 0:

x
k
i,j,t,t′(τ) �

0, otherwise,

1, arc i,j,t,t′( 􏼁isselectedbyvehiclekattimeτ.
􏼨

(5)

3. Augmented Lagrangian Relaxation-Based
Solution Framework

3.1. Overall Solution Framework. We propose a solution
framework, which integrates the optimization of the routing
plan and updates of pick-up request information to handle
the VRPPS problem systematically, as shown in Figure 6.

3.2. Reformulation of the VRPPS Model. In the proposed
VRPPS model, we have to handle the coupling constraint
(4). Using the Lagrangian relaxation method, we can add
constraint (4) to the original objective function L with
Lagrangian multipliers πr for each request node and
transform it into equation L1−a.

3.2.1. Lagrangian Relaxation Problem (Model 1-a).
Objective function:

L1−a �min􏽘
k∈K

􏽘

i,j,t,t′( )∈Ak

ci,j,t,t′x
k
i,j,t,t′(τ)− 􏽘

k∈K
􏽘

i,j,t,t′( )∈Ak

ui,j,t,t′x
k
i,j,t,t′(τ)

+ 􏽘
r∈Rp,τ

πr 􏽘
k∈K

􏽘
(i,j,t,t′)∈Ψr,k

x
k
i,j,t,t′(τ)−1⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠,

(6)

s.t. constraints (2) and (5).
Lagrangian relaxation problem for each vehicle (Model

1-b).
In order to optimize each individual vehicle’s route in

sequence, the Lagrangian problem (denoted asModel 1-a) is
further decomposed for each vehicle (denoted asModel 1-b):

L1−b � min 􏽘

i,j,t,t′( )∈Ak

ci,j,t,t′
− ui,j,t,t′􏼒 􏼓x

k
i,j,t,t′(τ)

+ 􏽘
r∈Rp,τ

πr 􏽘
(i,j,t,t′)∈Ψr,k

x
k
i,j,t,t′(τ) − 1⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠,

(7)

s.t. constraints (2) and (5).
To avoid solution symmetry in the fundamental La-

grangian-based approach as mentioned by [20],Model 1-b is
converted into augmented Lagrangian form by imple-
menting the augmented Lagrangian relaxation technique by
Yao et al. [7]. )erefore, we can obtain Model 2-a.

Table 5: Decision variable for model establishment.

Symbol Definition
xk

i,j,t,t′(τ) Vehicle routing variable (�1, if space-time arc (i, j, t, t′) is selected by vehicle k at time τ;� 0, otherwise)
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Start

Step1:Generate
Initial routing

plan

Step2:Update
request

information

τ = 0

Stop

τ = τ + 1

New
request occurred?

Yes

Execute current
routing plan

No

Step3:Update
space-time

network

Step4:
Generate new
routing plan

Update delivery
person location

and request
information

τ = LAT?

No

Yes

Delivery person
back to Depot?

No

Yes

Execute new
routing plan

Input:
(1) Network information

(i) Physical node location
(ii) Travel time

(2) Request information
(i) Physical node location

(ii)
(iii)
(iv)

Time window
Service duration
Utility

(1) Delivery person information
(i) Physical node location

(2) Request information
(ii) Remaining service duration

New request information
(i) Physical node location

(ii) Time window
(iii) Service duration
(iv) Utility

Output:
(1) Time sequence
(2) Service sequence

(Algorithm 1)

(Algorithm 2)

Figure 6: Flowchart of the overall solution framework.
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3.2.2. Augmented Lagrangian Problem (Model 2-A).
Objective function:

L2−a � min 􏽘
k∈K

􏽘

i,j,t,t′( )∈Ak

ci,j,t,t′x
k
i,j,t,t′(τ)

− 􏽘
k∈K

􏽘

i,j,t,t′( )∈Ak

ui,j,t,t′x
k
i,j,t,t′(τ)

+ 􏽘
r∈Rp,τ

πr 􏽘
k∈K

􏽘
(i,j,t,t′)∈Ψr,k

x
k
i,j,t,t′(τ) − 1⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

+
ρ
2

􏽘
r∈Rp,τ

􏽘
k ∈ K

􏽘
(i,j,t,t′) ∈ Ψr,k

x
k
i,j,t,t′(τ) − 1⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

2

,

(8)

s.t. constraints (2) and (5).
Assuming that

αk
r � 􏽘

k′∈K| k{ }

􏽘
(i,j,t,t′)∈Ψr,k

′

x
k′
i,j,t,t′(τ) ∀r ∈ Rp,τ , (9)

then L2−a can be reformulated as

L2−a � min 􏽘
k∈K

􏽘

i,j,t,t′( )∈Ak

ci,j,t,t′x
k
i,j,t,t′(τ)

− 􏽘
k∈K

􏽘

i,j,t,t′( )∈Ak

ui,j,t,t′x
k
i,j,t,t′(τ)

+ 􏽘
r∈Rp,τ

πr 􏽘
k∈K

􏽘
(i,j,t,t′)∈Ψr,k

x
k
i,j,t,t′(τ) − 1⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

+
ρ
2

􏽘
r∈Rp,τ

􏽘

i,j,t,t′( ) ∈ Ψr,k

x
k
i,j,t,t′(τ) + αk

r − 1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

.

(10)

To eliminate quadratic terms in the objective function
L2−a, we conduct the following calculation:

􏽘

i,j,t,t′( ) ∈Ψr,k

x
k
i,j,t,t′(τ) +αk

r −1⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

� 􏽘

i,j,t,t′( ) ∈Ψr,k

x
k
i,j,t,t′(τ)⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

2

+2 􏽘

i,j,t,t′( )∈Ψr,k

x
k
i,j,t,t′(τ) αk

r −1􏼐 􏼑 + αk
r −1􏼐 􏼑

2

� 􏽘

i,j,t,t′( )∈Ψr,k

x
k
i,j,t,t′(τ) +2 􏽘

i,j,t,t′( )∈Ψr,k

x
k
i,j,t,t′(τ) αk

r −1􏼐 􏼑 + αk
r −1􏼐 􏼑

2
.

(11)

Subproblems are constructed for each vehicle as Model
2-b.

Augmented Lagrangian problem for each vehicle (Model
2-b):

L2−b � min 􏽘

i,j,t,t′( )∈Ak

ci,j,t,t′
− ui,j,t,t′􏼒 􏼓x

k
i,j,t,t′(τ)

+ 􏽘
r∈Rp,τ

πr 􏽘
(i,j,t,t′)∈Ψr,k

x
k
i,j,t,t′(τ) − 1⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

+
ρ
2

􏽘
r∈Rp,τ

􏽘

i,j,t,t′( )∈Ψr,k

x
k
i,j,t,t′(τ) + 2 􏽘

i,j,t,t′( )∈Ψr,k

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
k
i,j,t,t′(τ) αk

r − 1􏼐 􏼑 + αk
r − 1􏼐 􏼑

2
⎤⎦

� min 􏽘

i,j,t,t′( )∈Ak

ai,j,t,t′
x

k
i,j,t,t′(τ)

+ 􏽘
r∈Rp,τ

􏽘
(i,j,t,t′)∈Ψr,k

brx
k
i,j,t,t′(τ) + C,

(12)

s.t. constraints (2) and (5).
Here, parameters ai,j,t,t′

, br, and C are calculated as
follows:

ai,j,t,t′
� ci,j,t,t′

− ui,j,t,t′ ,

br � πr +
ρ
2

2αk
r − 1􏼐 􏼑,

C � 􏽘
r∈Rp,τ

ρ
2
αk

r − 1􏼐 􏼑
2

− πr􏼔 􏼕.

(13)

3.3. Solution Algorithms Using the Augmented Lagrangian
Decomposition Method. Firstly, we propose a method to
generate an initial routing plan by using a dynamic pro-
gramming algorithm for solving each subproblem (namely
Algorithm 1). Later, we present an algorithm to update the
space-time network whenever pick-up requests appear
(namely Algorithm 2). )e details of the algorithms are
demonstrated as follows:

4. Discussion

In the proposed model, constraint (4) makes the problem
difficult to solve and therefore leads to computational
challenges. To address this problem, we deploy the aug-
mented Lagrangian relaxation method for problem de-
composition. Compared to the Lagrangian relaxation
method, the augmented Lagrangian relaxation introduces
an extra quadratic penalty term into the objective function
and can break solution symmetry. Meanwhile, compared
to other exact solution methods (e.g., big-M method,
branch and bound, and column generation), the solution
method based on augmented Lagrangian relaxation has the
advantage of solving large-scale problems and maintaining
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Step 1: Initialization
Initialize time τ � 0
Initialize iteration number n � 0
Initialize Lagrangian multipliers π0r � 0 for iteration 0
Initialize penalty factor ρ0 � 1
Set the best lower bound estimate LB∗ � −∞
Set the best upper bound estimate UB∗ � +∞
Set the origin node ok,τ for each vehicle k, ok,τ �depot
Set the destination node dk for each vehicle k, dk �depot

Step 2: Solve problem 2-b
Use dynamic programming algorithm to solve problem 2-b for each vehicle k sequentially. During this process, update the cost for

each space-time arc before optimizing each vehicle’s route.
Step 3: Generate upper bound estimate

Step 3.1: Obtain a feasible solution Xn
UB for problem 2-b

Adopt the optimal routing solution in Step 2
For each request node
If the request node is not served by any vehicle
then designate a virtual vehicle to this request node and add penalty.

If the request node is served more than once
then designate one specific vehicle to this request node.

End for
After the above adjustment, the optimal solution in Step 2 now becomes a feasible solution Xn

UB and then local upper bound
estimate UBn can be computed at iteration n.

Step 3.2: Generate best upper bound estimate UB∗
UB∗ � minUB∗,UBn

Step 4: Generate lower bound estimate
Step 4.1: Solve problem 1-b

Use dynamic programming algorithm to solve problem 1-b for each vehicle k in sequence and obtain the optimal
solution Xn

LB.
Step 4.2: Generate best lower bound estimate LB∗

Calculate local lower bound estimate at iteration n as LBn

Generate best lower bound estimate LB∗ � max LB∗, LBn

Compute the relative gap between UB∗ and LB∗, gap � UB∗ − LB∗/UB∗ × 100%
Step 5: Update Lagrangian multipliers and penalty factors

Step 5.1: Update Lagrangian multipliers
πn+1

r � πn
r + ρn( 􏽐

k∈K
􏽐

(i,j,t,t′)∈Ψr,k

xk
i,j,t,t′(τ) − 1) ∀r ∈ Rp,τ

Step 5.2: Update penalty factor

ρn+1 �

ρn
+ 2, if some request nodes are servedmore than once,

1, if all request nodes are served only once,
ρn

, otherwise.

⎧⎪⎨

⎪⎩

Step 6: Terminal Condition
If the iteration number n >maximum iteration number nmaxor the value of the relative gap gap < a boundary toleration value ε,
then terminate the algorithm procedure
else

n � n + 1 and go back to Step 2.

ALGORITHM 1: Generate initial routing plan

Assume that a pick-up request occurs at time τ, requested by a physical node p ∈ Pτ . )e steps for handling pick-up requests and
regenerating the routing plan are demonstrated below.
Step 1: Update vehicle and request information

Step 1.1: Update origin node for each vehicle k
For each vehicle k ∈ K

Update origin node for each vehicle k at time τ as ok,τ
End for

Step 1.2: Modify space-time network using the idea from Section 2.3.2
Step 2: Implement Algorithm 1 on modified space-time network

ALGORITHM 2: Network updating for handling pick-up requests and rearranging vehicle routes
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an acceptable convergence speed. Moreover, although
most of the solution algorithms for solving DVRP are
heuristic, we still deploy augmented Lagrangian relaxa-
tion-based solution method because we have already
converted the dynamic problem into the equivalent for-
mulation for static VRP, via the problem reformulation in
Section 3.2. Consequently, the augmented Lagrangian
relaxation with dynamic programming algorithm has the
advantage in improving solution equality as compared to
most heuristics.

5. Numerical Experiments

In this section, we perform two numerical experiments to
verify the effectiveness of the proposed model and algo-
rithms. )e algorithms are coded in Python, run in PyPy,
and evaluated on a personal computer with 2.4GHz CPU
and 8GB RAM.

First, an illustrative example is displayed based on a 14-
node physical network with five vehicles.)en, we conduct a
medium-scale numerical experiment on a real-world last-
mile delivery network to demonstrate the validity of the
augmented Lagrangian relaxation decomposition frame-
work and the efficiency of the proposed algorithms.

5.1. An Illustrative Example. We chose to examine an il-
lustrative network with 1 depot, 14 physical nodes, and 22
two-way transportation links as our numerical example, as
shown in Figure 7. Five vehicles are available. )e numbers
on each link represent the corresponding travel time, and the
figures beside the physical nodes denote the required service

duration. Basic information for this illustrative example is
shown in Table 6. )e preferred time window [0,28] denotes
the earliest departure time (EDT � 0) and latest arrival time
(LAT � 28) to the depot for each vehicle. We set the fixed
cost of using a vehicle as $300 per day, travel cost as $1 per
time unit, utility for serving a delivery request as $100 per
time unit, and utility for serving a pick-up request as $300
per time unit. )e initial value of the Lagrangian relaxation
multiplier π0

p and penalty factor ρ0 are set as 0 and 1, re-
spectively. )e number of iterations is 300.

5.1.1. Generating Initial Routing Plan. In this illustrative
example, the vehicles are originally located at depot. We first
initialize the vehicle routes to ensure that each vehicle is
assigned to several physical nodes. )e optimal solution is
obtained by implementing the algorithm and is intuitively
displayed in Figure 8, where the optimal route for each
vehicle is marked with dotted lines.

)e visiting sequence and time sequence for each vehicle
are presented in Table 7. )e computational results dem-
onstrate that 14 physical nodes can be fully served by exactly
four vehicles within the time window, with one vehicle left
unused. Each vehicle is assigned to several physical nodes
and will follow the visiting sequence until a new request
occurs.

)e convergence process is shown in Figure 9. We can
see that the optimal solution is obtained at the 43th iteration
and the value of the objective function is −2940. Total
running time is 1.40s.

5.1.2. Optimal Solution for Handling Pick-Up Requests.
We assume that when τ � 9, a pick-up request with a time
window [11, 12] and total service duration of one time unit
appears at physical node 2, as shown in Table 8. )e delivery
and pick-up request node are generated at physical node 2, as
shown in Figure 10. Before the optimization process, vehicle
positions and the remaining service duration for each physical
node should be updated. For example, when τ � 9, vehicle 1 is
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Figure 7: Physical network for the illustrative example.

Table 6: Basic information of delivery requests in the illustrative
example.

Corresponding physical node ID Required service
duration

Preferred
time

window
1 3 [0,28]
2 3 [0,28]
3 3 [0,28]
4 3 [0,28]
5 3 [0,28]
6 3 [0,28]
7 3 [0,28]
8 3 [0,28]
9 3 [0,28]
10 3 [0,28]
11 3 [0,28]
12 3 [0,28]
13 3 [0,28]
14 3 [0,28]
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serving physical node 5 and therefore will originate from
physical node 5 in the following optimization process. Until
now, physical node 6 has been fully served, physical node 7 is
yet to be served at all, and physical node 5 has been served for
one time unit. By conducting a similar analysis, information of
other vehicles is updated, respectively, and each vehicle has a
new origin.

)e optimized results are depicted in Figure 11. )e
result displays that vehicle 1 interrupts its service at physical
node 5 in order to pick up the request at physical node 2
(which should be served by vehicle 3 if following initial
routing plan) within the time window and then returns to
physical node 5 to accomplish the remaining orders. Al-
though vehicle 1 spends a higher travel cost ($4) on the road,
additional utility ($300) is obtained simultaneously during
the detour process, which means that a net profit ($296) has
been obtained.
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Figure 8: Optimal solution for each vehicle when initializing
original routing plan (τ � 0).

Table 7: Optimal solution demonstration for initial routing plan.

Vehicle
ID Visiting sequence Time sequence

1 [Depot-6-5-7-depot] [0,0]-[1,4]-[8,11]-[16,19]-
[23,28]

2 [Depot-9-8-10-
depot]

[0,0]-[1,4]-[7,10]-[15,18]-
[23,28]

3 [Depot-4-3-1-2-
depot]

[0,0]-[1,4]-[7,10]-[14,17]-
[20,23]-[28,28]

4 [Depot-11-12-14-13-
depot]

[0,0]-[1,4]-[7,10]-[14,17]-
[20,23]-[28,28]

Note. )e first and second elements in [ _, _ ] denote the arrival and
departure time at customer/depot, respectively.
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Figure 9: Evolution process of LB and UB estimate.

Table 8: Basic information on the pick-up request.

Corresponding physical
node ID

Required service
duration

Preferred time
window

2 1 [11,12]
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Figure 10: Updated physical network when τ � 9.
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)e corresponding visiting and time sequence are dis-
played in Table 9.)e value of the objective function is −953.
We can see that although each vehicle has a different origin,
they arrive at depot in time without missing any requests,
which can be attributed to the cooperation between vehicles
1 and 3.

To further demonstrate the advantage of preemptive
service, we run the experiment under non-preemptive
service and compare the solution results under two service
modes, as shown in Table 10. Under preemptive service, the
value of objective function is 45.1% lower than non-pre-
emptive service. As the value of objection function is cal-
culated by subtracting total utility from total operating cost,
we can see that preemptive service achieves a better trade-off
between utility and cost in this case.

5.2. Medium-Scale Experiments. To test the proposed model
and algorithms, we further perform a medium-scale ex-
periment on a real-world last-mile delivery network. To
generate more customers, we download a digital map
covering the service area in the OpenStreetMap format and
then generate POIs using a light-weight tool called
OSM2GMNS. Readers can refer to the link https://github.
com/asu-trans-ai-lab/OSM2GMNS for further details. We
regarded those POIs as physical nodes, and the distance

between them was measured using their latitude and lon-
gitude information. Given the travel speed (15 km/h), we can
compute the travel time on each link.

In order to test the effectiveness of the proposed algo-
rithm for handling medium-scale cases, we present three
cases where 45, 70, and 100 physical nodes are considered.
Basic assumptions are listed as follows:

(1) Each delivery person starts their work at 8 : 00 and
returns to the depot before 12 : 00

(2) Vehicle usage cost is $100/(veh · day) and trans-
portation cost is $1/(veh · min)

(3) Delivery requests should be satisfied before 12 : 00.
Besides, all pick-up requests have a specific and tight
time window

(4) Service duration for each delivery request and pick-
up request is 40min and 2min, respectively

(5) Utility for serving a pick-up request is $10/(veh ·

min) and utility for serving a delivery request is $2.5/
(veh · min)

5.2.1. Generating Initial Routing Plan. We set the initial
value of parameter π as 0, parameter ρ as 1 and the iterative
number as 100 iterations. )e optimized results for gen-
erating the initial routing plan in each case are displayed in
Table 11, and the convergence curves are shown in
Figure 12.

As shown in Table 11, computational challenges for
obtaining an initial routing plan are mainly attributed to the
number of physical nodes. Meanwhile, solution equality,
which is measured by relative gap, does not change dra-
matically with the expansion of case scale, meaning that the

1 To-be-served physical node

4 Served physical node

3 Serving physical node

Request node (pick-up)2b

Request node (delivery)2a

Depot

Link

SD=3 Service duration

Executed route

Planned route

6

5

3

1

10

9

13 14

11 128

74

SD=3

SD=1

SD=1

SD=2

SD=3 SD=3 SD=3

SD=3

SD=1

Suspension of
service at

physical node 5

Vehicle 4

Vehicle 3

Vehicle 2

Vehicle 1

physical node 2

2a
SD=3

2b
SD=1

Figure 11: Optimal solution for each vehicle when handling pick-
up request at τ � 9.

Table 9: Optimal solution demonstration when τ � 9.

Vehicle ID Visiting
sequence Time sequence

1 [5-2-5-7-Depot] [9,10]-[12,13]-[15,16]-[21,24]-
[28,28]

2 [8-10-Depot] [9,10]-[15,18]-[23,28]
3 [3-1-2-Depot] [9,10]-[14,17]-[20,23]-[28,28]

4 [12-14-13-
Depot] [9,10]-[14,17]-[20,23]-[28,28]

Note. )e first and second elements in [ _, _ ] denote the arrival and
departure time at physical node/depot, respectively.

Table 10: Comparison of the solution results under two service
modes.

Non-preemptive
service Preemptive service

)e value of
objective function
(unit: $)

−657 −953 (−45.1%)

How to handle the
pick-up request

Renege on the pick-up
request at physical

node 2

Serve the pick-up
request at physical

node 2
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proposed algorithm performs well in terms of addressing
medium-scale cases within reasonable iteration times or
solution time.

To demonstrate the illustrative results more directly, we
take Case 1 as an example to demonstrate graphical results
(as shown in Figure 13) and detailed solution information
(as shown in Table 12).

5.2.2. Testing Preemptive Service under Case 1. In this sec-
tion, we introduce pick-up requests into Case 1 in order to
demonstrate the flexibility of preemptive service. )e time
unit is assumed to be 5min. For example, if a physical node
should be served for 40min, then it can be extended to 8
request nodes. Assume that when τ � 80, there are five pick-
up requests that occur at physical nodes 3, 5, 34, 35, and 45.
Basic information of the pick-up requests is shown in
Table 13.

)e optimal solution is derived in 110s using 9 vehicles,
and the space-time route is presented in Figure 14. We
obtain the best upper bound estimate as −1861, the best
lower bound estimate as −2054, and the relative gap as
10.37%. Five pick-up requests are all satisfied within their
time windows.

We compare the solution results for handling pick-up
requests under two service modes, as shown in Table 14. )e
results indicate that the value of objective function is 18.1%
lower than non-preemptive service and more pick-up re-
quests are satisfied under preemptive service.

From the illustrative results in Figure 15, we can see
that the pick-up requests that occur at physical nodes 34
and 35 cause interruptions to other physical nodes. )e

first interruption happens at physical node 30 because
vehicle 1 has to satisfy the pick-up request at
physical node 34 before completing all of the
delivery requests at physical node 30. )e second inter-
ruption happens at physical node 27 because vehicle 4 has
to satisfy the pick-up requests at physical node 35
before completing all of the delivery requests at physical
node 27.

5.3. Sensitivity Analysis. In real-world scenarios, the route
plan can be significantly affected by the values of service
utilities and the time window of pick-up service. Based on
the illustrative example in Section 5.1, we conduct the

Table 11: Optimized results for generating initial routing plan in different case scales.

Case
number

Number of physical
nodes

Number of used
vehicles

Running time
(s)

Best lower bound
estimate

Best upper bound
estimate

Relative gap
(%)

1 45 9 106 −3517 −3478 1.12
2 70 14 511 −5159 −5021 2.75
3 100 20 1603 −7805 −7479 4.36
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Figure 12: Iterative curve for cases with different case scales. (a) Iterative process for Case 1(45 physical nodes). (b) Iterative process for Case
2(70 physical nodes). (c) Iterative process for Case 3 (100 physical nodes).

Figure 13: Initial routing plan for Case 1 (45 physical nodes).
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following sensitivity analysis to examine the impact of the
ratio of pick-up and delivery utility and the time window of
pick-up service on the solution results. We use the reduction
percentage of objective function between preemptive service

and non-preemptive service to decide which service mode to
take. If the reduction percentage is a negative value, pre-
emptive service performs better than non-preemptive ser-
vice; otherwise, non-preemptive service is more profitable.

Table 12: Initial routing plan demonstration for Case 1 (45 physical nodes).

Vehicle ID Visiting sequence Time sequence
1 [Depot-34-30-37-24-8-depot] [0,0]- [8,48]-[51,91]-[96,136]-[138,178]-[183,223]-[229,240]
2 [Depot-41-13-3-1-19-depot] [0,0]-[2,42]-[44,84]-[85,125]-[126,166]- [168,208]-[210,240]
3 [Depot-44-12-45-38-15-depot] [0,0]-[2,42]-[44,84]-[85,125]-[126,166]- [168,208]-[211,240]
4 [Depot-35-27-36-31-25-depot] [0,0]-[7,47]-[48,88]-[89,129]-[131,171]- [173,213]-[220,240]
5 [Depot-33-21-23-39-22-depot] [0,0]-[1,41]-[42,82]-[83,123]-[124,164]- [165,205]-[207,240]
6 [Depot-40-2-6-26-14-depot] [0,0]-[5,45]-[47,87]-[89,129]-[130,170]- [171,211]-[214,240]
7 [Depot-42-10-28-11-9-depot] [0,0]-[1,41]-[42,82]-[83,123]-[125,165]- [166,206]-[208,240]
8 [Depot-18-4-43-5-17-depot] [0,0]-[1,41]-[42,82]-[83,123]-[126,166]- [169,209]-[212,240]
9 [Depot-32-29-20-7-16-depot] [0,0]-[2,42]-[43,83]-[85,125]-[128,168]- [169,209]-[211,240]
Note. )e first and second elements in [ _, _ ] denote the arrival and departure time at physical node/depot, respectively.

Table 13: Basic information of pick-up requests when τ � 80.

Corresponding physical node ID Required service duration Preferred time window
3 2 [101,102]
5 2 [103,104]
34 2 [85,86]
35 2 [85,86]
45 2 [105,106]

240
220
200
180
160
140
120

tim
e

100
80

116.500

39.7950 39.7975 39.8000

vehicle 1
vehicle 2

vehicle 3
vehicle 4

vehicle 5
vehicle 6

vehicle 7
vehicle 8

vehicle 9
Destination

39.8025 39.8050 39.8075 39.8100latitude

116.505
116.510

116.515
116.520

116.525
116.530

longitude

Figure 14: Optimal space-time route when τ � 80.

Table 14: Comparison of the solution results under two service modes.

Non-preemptive service Preemptive service
)e value of objective function
(unit: $) −1576 −1861 (−18.1%)

How to handle the pick-up request
Renege on the pick-up request at physical nodes

34,35; Serve the pick-up request at physical nodes
3,5,34,35,45Serve the pick-up request at physical nodes 3,5,45
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5.3.1. Sensitivity Analysis on the Ratio of Pick-Up and De-
livery Utility. To conduct sensitivity analysis on the ratio of
pick-up and delivery utility, the time window is set as fixed
values and the ratio of pick-up and delivery utility is
variable. )e reduction percentage of objective function
between preemptive service and non-preemptive service
under different ratios of pick-up and delivery utility are
shown in Table 15. )e computational result demonstrates
that the reduction percentage decreases with the increasing
ratio of pick-up and delivery utility, indicating that the
advantage of preemptive service over non-preemptive
service expands.

5.3.2. Sensitivity Analysis on the Time Window of Pick-Up
Service. To conduct sensitivity analysis on the time win-
dow of pick-up service, the delivery and pick-up utility is
set as fixed values and the length of time window is
variable. We keep the starting time of the time window
fixed and set up different values of ending times. )e
reduction percentage of objective function between pre-
emptive service and non-preemptive service is shown in
Table 16.

As the length of pick-up time window increases, the
reduction percentage of objective function between pre-
emptive service and non-preemptive service remains

vehicle 1
vehicle 4
Destination

39.79639.794
39.79839.80039.802

39.80639.804
39.80839.810

80
100

tim
e

120
140
160
180
200
220
240

0.010
0.015

0.020
0.025

0.030

+1.165e2

latitude
longitude

2nd visit: 10 min

1st visit: 1 min

Node 30

pick-up

2nd visit: 5 min

Node 27pick-up

1st visit: 3 min

Figure 15: Service interruption in optimal space-time route.

Table 15: )e solution results under different ratios of pick-up & delivery utility.

)e ratio of pick-up and
delivery utility

)e value of objective function under
preemptive service

)e value of objective function under non-
preemptive service

)e reduction
percentage

1 −4753 −4457 −6.64%
1.2 −3803 −3507 −8.44%
1.5 −2853 −2557 −11.58%
2 −1903 −1607 −18.42%
2.25 −878 −657 −33.64%
3 −953 −657 −45.05%
3.75 −1028 −657 −56.47%
4.5 −1103 −657 −67.88%

Table 16: )e solution results under different lengths of pick-up time window.

)e length of pick-up
time window

)e value of objective function under
preemptive service

)e value of objective function under non-
preemptive service

)e reduction
percentage

1 −953 −657 -45.10%
5 −953 −657 -45.10%
9 −843 −957 11.90%
13 −843 −957 11.90%
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unchanged until the length reaches 9 time units. Afterwards,
the time window is so wide that there is no need to interrupt
the service process. )erefore, the reduction percentage will
reach a positive value, meaning that non-preemptive service
achieves better results than preemptive service.

6. Conclusions

In this article, we study a dynamic vehicle routing problem
with preemptive pick-up service (VRPPS) in a multitasking
environment and thoroughly examine the value of this new
service mode. Delivery and pick-up service can be regarded
as two different types of tasks. Under a preemptive service
principle, service suspension of the delivery process is
allowed to satisfy the pick-up requests. Focusing on maxi-
mizing the difference between the service utility of delivering/
picking up packages and the total operating cost, we have
constructed a multicommodity flow model with constraints
on time windows and service duration, embedded in a space-
time network. Overall, the proposed research demonstrates a
systematic view on offering rapid responses to pick-up re-
quests, as follows. (1) From the perspective of modeling the
dynamic decision process and service interruption, we extend
the physical nodes to requests nodes for different types of
requests.)is ensures thatdelivery service canbe suspendedat
anytimeduring theserviceduration.Additionally,wedescribe
a method for updating the space-time network for each de-
cision epoch to capture variations in requests over time. In
each decision epoch, our model aims at achieving a trade-off
between total service utility and total operating cost. (2) From
the perspective of providing an effective optimization ap-
proach, the proposed model is reformulated by applying the
augmentedLagrangianrelaxation technique todecompose the
primal problem into several simplified subproblems for each
vehicle. A dynamic programming algorithm is then called to
decide the optimal vehicle routes in each decision epoch.

To evaluate the effectiveness of our model and algorithm,
we firstly conducted an illustrative example to compare the
values of preemptive and non-preemptive service on solution
equality. It indicates better solutions (with improved values)
are obtained under preemptive service. )e solution frame-
work was also systematically tested through a real-world
experiment based on a delivery network, taking into con-
sideration different number of physical nodes. )e compu-
tational results show that our approach can handle medium-

scale cases effectivelyandobtainanacceptablegapbetween the
best lower bound estimate and the best upper bound estimate.

In future research, we will take more practical factors
into consideration. Firstly, further workmay aim at handling
stochastic pick-up requests, service time, and travel time.
Secondly, we will discuss how sensitive optimized results are
to the value of service utility and operating cost. )irdly, we
may consider the possibility for delivery people to hand over
delivery packages during service. Eventually, it will also be
interesting to study the joint optimization of goods stacking
and dynamic vehicle routing in future studies, because, in
practice, it is quite time-consuming for delivery people to
rummage through their pre-organized goods.

Appendix

Definition of some key modeling elements.
)e authors list definitions of some basic concepts that

may be used in the article, as shown in Table 17.
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)e data will be available upon request to the corresponding
author.
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