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+is study proposes a multiobjective mixed integer nonlinear programming model for a last-mile shuttle service to improve bus
commuters’ travel time reliability. +e approach aims to assign the routes that pick up the transit passengers located at the
different stops by shuttle service. A bilevel optimization model is established: the upper model of route design considers the
tradeoff between time cost and fare cost when some of the passengers take the shuttles, and the lower model assigns the demand of
transit passengers. +e proposed model effectively captures the reliability of travel time because related parameters are estimated
by a statistical fitting test with a large number of real-world bus geographic information system (GPS) data. Moreover, dynamic
demand diverting from conventional transit to shuttle service and travel time reliability, including passenger in-vehicle time (IVT)
and waiting time (WT), are fully considered in this model. Since the task is a nonlinear programming model, a two-stage
algorithm combined with linearization processing is presented to find an optimal solution. Finally, from the case study of
Zhongguancun Software Park zone in Beijing, it is indicated that when last-mile shuttle service is provided, bus passengers’ travel
time reliability of last-mile trips can be improved by 14%.+e study can be an important reference for improving the low reliability
widely existing in the current transit commuters’ last-mile problem.

1. Introduction

In China, traffic congestions and delays are becoming more
and more frequent and severe with the rapid increase of
automobile ownership. For metropolises like Beijing, the
development of public transportation systems is given
priority to relieve congestions. However, due to the limi-
tation of urban land resources and heavily congested traffic,
poor travel time reliability has become the main restriction
for improving the service quality of the public transportation
system. In downtown areas and residential communities, a
large amount of gathered commuting demand in peak hours
will cause heavy congestion and additional delay of in-ve-
hicle time (IVT) and waiting time (WT) [1, 2].

+e area for last-mile trip typically covers narrow roads and
suffers frequent traffic congestion. +erefore, by conventional

transit systems with fixed routes and stops, passengers cannot
avoid passing through those congested areas, which results in
great difficulty to get to a destination on time [3]. Providing
reliable and efficient service is essential in transit planning and
operation to improve passenger satisfaction.

+is work proposes a robust optimization model for
shuttle service considering travel time reliability by de-
signing shuttle routes and estimating the corresponding
number of users. It is organized as follows: in Section 2, a
literature review is conducted, including traditional quali-
fication methods of travel time reliability and how to im-
prove reliability by the flexible transit design. In Section 3, an
offline method for estimating travel time reliability is pro-
posed and a bilevel programming formulation is established.
In Section 4, a case study of Beijing is discussed. And lastly,
the conclusions are discussed in Section 5.
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2. Literature Review

+e review of existing researches mainly focuses on the
following two domains: how to estimate transit service re-
liability and its influences on operation and how to design
the shuttle route and operation schedule to improve
reliability.

2.1. Estimation of Transit Reliability. To improve the unre-
liable last-mile trip of the transit system, micromobility, in-
cluding flexible light shuttle, emerges [4]. For transit network
design and operation management, reliability is considered as
one of the key factors, which includes transit-oriented indi-
cators (e.g., the percentage of on-time buses, the percentage of
regular buses, the headway regularity) and passenger-oriented
indicators (e.g., the WT at stops, the cleanliness, the space
onboard, and the percentage of passengers receiving a
punctual service). +e studies show that service reliability is
twice as important as frequency and almost seven times more
important than information for passengers [5].

Estimation of transit service reliability includes the
regularity and irregularity analysis of passenger WT, IVT,
and walking time. Existing researchers have established
quantitative volatility indicators to model and analyze the
reliability of passenger travel time [6]. Yu et al. [7] used
different methods by support vector machine (SVM), arti-
ficial neural network (ANN), k nearest neighbours algorithm
(k-NN), and linear regression (LR). Salvo et al. [8] believed
that the scheduling reliability of the public transport service
was crucial to increase attractiveness against private car use
and proposed the estimation method of bus speed for
various traffic conditions. Li and Quadrifoglio [9] conducted
Lempel–Ziv algorithm to quantify passenger travel time
reliability. Elefteriadou and Cui [10] proposed a compre-
hensive framework under different scenarios to analyze
reliability and made application to the system performance
in Florida. Li et al. [11] examined reliability-based perfor-
mance indicators for bus routes using global position system
(GPS) bus trajectory data.

With the development of automotive facilities, multi-
source data of automatic vehicle location (AVL) data,
geographic information system (GIS) data, and GPS data
were widely used to investigate the reliability from the
passengers’ and companies’ perspectives. Leod [12] con-
tributed to the general theory of estimating headway vari-
ance using incomplete data, focusing on the missing buses or
discarding spurious bus headways. Chen et al. [13] analyzed
bus service reliability at the stop, route, and network level.
+e service reliability was defined as the possibility that a bus
would adhere to the headway between successive buses at
each stop within a given time period. Lin et al. [14] de-
veloped running time adherence and headway regularity to
reflect bus service reliability. Running time adherence
(measured in %) was defined as the average difference be-
tween the actual and the scheduled running times and
headways relative to the scheduled running time. Ömer et al.
[15] analyzed the selection problem of electric vehicles
charging stations and proposed the approach for a high

degree of uncertainty problems. Barabino et al. proposed an
offline framework for the diagnosis of time reliability by
analyzing AVL data. +e bus stops and the time periods in
which reliability was insufficient were accurately charac-
terized [16]. Regularity over all bus stops and time periods
was measured [17]. He also used the two conceptions of
“fraction of passengers waiting less than the scheduled
headway plus a possible irregularity threshold” and “the
fraction of passengers who will see a bus serving their stop
within an acceptably short interval after they arrive” to
reflect transit travel time reliability. Both bus and passenger
arrival and departure data were collected and processed [18].
In addition, to explore the more accurate qualification re-
sults, the effect of AVL anomalies on headways and schedule
deviations and the influence of anomalies on the transit
service reliability was analyzed [19].

2.2. Optimization of Shuttle Designwith Reliability. A shuttle
bus can be considered as a new type of public transportation
service system that is different from the traditional point-
fixed and line-fixed operation mode. Commuting shuttle has
several similar features with limited buses (e.g., customized
bus and feeder bus). It is regarded as the complementary part
of the normal conventional transit system, and it serves
specific routes during specific hours for specific types of
passengers [20]. Compared with conventional bus, the
shuttle bus has characteristics of flexible routes and stop
selections, diversified service modes, expensive fares, and
individual services. It can be used to solve the last-mile trip
as an effective measure to alleviate peak travel demand in
hotspots [21]. It has wide applicability in many areas, such as
hospital emergency vehicle path planning [22], disabled
public transportation service planning [23], and regional
community school bus planning [24].

In most previous transit design optimizations, mathe-
matical programming and simulation-based approaches were
used, in which the averages of travel time were considered
[25]. However, a big variance in the travel time could lead to
poor reliability in actual conditions. +erefore, for transit
design, including shuttles, reliability should be considered
accurately. +e uncertainty of transport networks was applied
for transportation network design [26]. Yao et al. [27] pre-
sented a robust optimization model considering travel time
uncertainty to satisfy the demand of passengers and provide
reliable transit service. Markovic et al. [28] analyzed multi-
modal public transport journeys including proper demand
transfer strategy, to improve the whole trip’s travel time
reliability. Bao et al. [29] analyzed the optimization model of
airport shuttle that bus routes were constructed by taking
operational reliability maximization as the main goal.

+e review of the literature reveals the following critical
issues, which deserves further investigation:

(1) Although serval studies have proposed various inte-
grations of shuttle design, few of them consider the
reliability of transit passengers. In recent years, with
increasing attention to reliability, providing reliable
transit service for the last-mile trip has become more
important.
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(2) Traditional shuttle bus design only considers the fixed
shuttle demand. When conventional transit system
becomes unreliable during peak hours, some pas-
sengers may prefer to choose the new shuttle service.
Quantitively, analysis of the dynamic demand should
not be neglected, and integration of conventional and
shuttle bus services should be analyzed.

(3) Previous studies analyze travel time reliability by
different online and offline methods, but most of
them are conducted by numerical experiment or case
study in small cities. In big cities like Beijing, during
peak hours, the traffic is heavily congested and the
amount of boarding and alighting passengers at “hot
stop” will rapidly increase, which will cause the
transit system to become extremely unreliable.
+erefore, field data in big cities should be presented
to help design more reliable shuttle services.

3. Methodology

3.1. Descriptions. +is paper proposes a framework to
characterize passenger travel time reliability and design
shuttle bus considering reliability quantitively. +e overall
flowchart is presented in Figure 1. Firstly, the formulation of
passengers’ travel time reliability is discussed and an offline
framework to estimate time reliability is proposed. +en, a
bilevel optimization formulation is constructed including
model establishment and algorithm design. Finally, a case
study in Beijing is conducted to validate the model.

+e optimization model is designed not only to give the
route plan of the shuttle service but also can estimate how
many passengers should be diverted from the original con-
ventional lines to the new shuttles in order to relieve the “hot”
OD with poor reliability to an acceptable level. +e model is
passenger-oriented and passengers’ travel time, reliability, and
fare cost are considered. +e last-mile shuttle service is for-
mulated as a bilevel programming model. +e upper-level
model is a mathematical formulation for programming bus
routes and corresponding demand. +e lower-level model is
to conduct the transit assignment for the conventional net-
work. By the demand assignment result from the lower
model, passenger travel cost can be estimated.

On the basis of the previous studies [30], the following
assumptions are made in the paper:

(1) Passengers arrive at the bus stop randomly
(2) Passengers know the mean and variance of IVT and

make the selection that has the minimum travel cost
(3) +e values of IVT and WT are assumed to be in-

dependent and constant
(4) Only cross-platform transfer is considered in this

study

3.2. Offline Method for Estimating Passenger Travel Time
Reliability. With the continuous updating of data acquisi-
tion equipment in recent years, transit passenger travel
behavior can be described more accurately by mobile GPS
data, which can record the bus trajectory by the second level.

+e method framework includes error data preprocessing,
formulation of IVT and WT, and fitting analysis.

3.2.1. Data Processing Based on GPS Data. +e GPS data are
used to estimate the parameters of bus running conditions,
which are collected from on-vehicle GPS facilities. +e
original data sets mainly have two problems: data losses and
data errors. Considering existing data handling methods
[12, 19], the data quality controls are conducted by the
following three steps:

Step 1: data processing of original data. +e available
fields are collected from the database, including line
number, direction, vehicle number, vehicle trip, col-
lection time, longitude, latitude, and speed, which are
presented in Table 1.
Step 2: the fault data of speed, longitude, and latitude
are filled and corrected by linear interpolation, which is
described as follows:

xtj �
tj − ti xtk + tk − tj xti

tk − ti

, (1)

where xtj is the corrected data of time tj, (ti, tk) is the
neighbour time points of tj, xtk and xti are the original
values of ti and tk, respectively.
Step 3: the GPS data are matched with a GIS map to
analyze the spatial locations of passenger travel tra-
jectory, as Figure 2 shows. +e second-by-second GPS
data are aggregated to calculate IVT and WT for dif-
ferent bus trips and lines. In addition, the matching
process is verified based on the station number in-
formation from passenger IC card data.

3.2.2. Formulation of IVT Reliability. When bus passengers
plan a trip, they will add the “buffer time” based on the
expected travel time, considering the potential fluctuations.
Although they may arrive at the destination early, early
arrival is better since the negative impact of the late arrival is
large [31]. As a result, most passengers may choose to plan
the extra buffer time during peak hours. +e buffer time can
be the quantitative index to measure passenger travel time
reliability [32]. +e more buffer time passengers need to
plan, the worse travel time reliability of the network is.

As is depicted in Figure 3, IVTconsidering reliability can
be computed as follows:

tij � tj − ti,

t
in−vehicle
ij � E tij  + ρσ tij ,

E tij  �


N
n�1tij(n)

N
,

σ tij  �

���������������������

1
N − 1



N

n�1
tij(n) − E tij  

2




,

(2)
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where tj and ti are samples of bus arrival time at stop i and j,
which can be extracted from the GPS data. tij is sample time
from node i to node j. tin−vehicle

ij is IVT considering reliability

fromnode i to node j. E (tij) is the expectation of IVTfromnode
i to node j for all the samples. σ(tij) is the buffer time tomeasure
the reliability, i.e., the standard deviation(SD) of the link ij.

Table 1: Sample of GPS data.

Line number Direction Vehicle number Vehicle trip Collection time Longitude Latitude Speed
87 0 J3797 1 20190114060110 116.335 39.936 19.80
87 0 J3797 1 20190114060111 116.391 39.879 13.50
87 0 J3797 1 20190114060112 116.347 39.915 16.40
87 0 J3797 1 20190114060113 116.385 39.885 17.80
87 0 J3797 1 20190114060114 116.396 39.723 18.60
87 0 J3797 1 20190114060115 116.405 39.715 19.50
. . . . . . . . . . . . . . . . . . . . . . . .

Figure 2: GPS data matching with GIS.

Time
Bus Stop i Bus Stop j 

arrive leave arrive leave

t
ij

t
j

t
i

Figure 3: Illustration of IVT.
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ρ is reliability preference parameter. When ρ� 1, it
means that the passenger will plan the equivalent buffer time
as expected travel time. Passenger is “risk-neutral for on-
time arrival”. When ρ� 0, the passenger does not consider
the influence of travel time reliability. When ρ> 1, the
passenger is regarded as conservative, in which the passenger
does not trust bus service reliability and will plan more extra
buffer time compared with the risk-neutral passenger. When
ρ< 1, the passenger is understood as “risky for on-time
arrival” [30].

N is the number of samples on link (i, j).

3.2.3. Formulation of WT Reliability. As is presented in
Figure 4, assuming that passenger arrives at the bus stop on
time t, and the following bus arrives on time h, WT can be
calculated as follows:

w � h − t,

t
waiting

� E[w] + ρσw,

E(w) � E(h − t)

� E(h) − E(t),

σw �
�����
D(w)



�
�����������
D(h) + D(t)


,

(3)

where w is sample WT, t is passenger arrival time at the bus
stop, and h is the following bus arrival interval. twaiting is WT
considering reliability. E (w) is the expectation of WT for all
the samples. σw is the buffer time to measure the reliability,
such as SD, and D(w) is the deviation of sample WT.

Both arrivals of passengers and bus at the stop are
random, which can influence WT. Usually, each bus trip
does not have a strict arrival timetable on stop level in
Beijing. Passenger arrival time and bus arrival time can be
considered as an independent event.

Studies usually focus on passenger arrival behavior
within one fixed bus arrival interval. However, with the
increasing influences of traffic congestion and other un-
certain factors, the variance of bus arrival time becomes
larger, which should not be neglected. Bus interval h can be
regarded following a certain probability distribution
h ∼ h′(x). Based on field GPS data, statical characteristics of
E(h) are estimated. +e passenger arrival rate is regraded
following a Poisson distribution on [0, H] [33], which is
written as follows:

P(T � t) �
zwH( 

t
e

− zwH

t!
,

E(t) � 
H

0
tP(T)dT � zwH,

σ(t) �
���
zw

√
,

(4)

where zw is the ratio of the expected passenger arrival time/
bus arrival interval.

+e model works for high-frequency service. Consid-
ering the condition that passengers arrive randomly and the

individual WT are different, the statical fitting analysis by a
large amount of field data is presented in the case study. Root
mean square error (RMSE) and R-square are used to validate
the fitting result, which are presented in section case study.

3.3. Bilevel Programming Formulation

3.3.1. Formulation of General Cost. +e general costs are
combined with IVT cost, WT cost, extra waiting delay cost,
transfer cost, and a fare cost. For each arc that passenger
passes, the formulation of general cost can be calculated as
follows:

(1) IVT cost

C � ut
in−vehicle
s , ∀s ∈ Sin−vehicle, (5)

where C is general cost, u is unit travel time cost
(yuan/h), s is travel arc, and Sin−vehicle is set of in-
vehicle travel arc.

(2) WT cost

C � ut
waiting
s , ∀s ∈ Swaiting, (6)

where Swaiting is set of waiting arc.
(3) Extra waiting delay time cost

During peak hours, it is a common phenomenon that
there is a large number of passengers boarding and
alighting at bus stops, which will cause the speed of
boarding and alighting to slow down [34]. As a result,
there will be an extra delay which is increased with the
rising number of passengers.+e extra delay is related
to the number of existing passengers at the stop. In
this paper, the extra delay is determined as follows:

Ds � βs

Ys

K
 

n

, ∀s ∈ Swaiting,

C � uDs, ∀s ∈ Swaiting,

(7)

Ds is extra delay for waiting arc s. Ys is volume of
waiting passengers. K is rated carrying capacity. βs

and n are estimated parameters.
(4) Transfer time cost

Under the assumption that most passengers will
choose to transfer at the same stop, the passenger
transfer time is regarded as one additional WT.
+erefore, the transfer time cost is expressed as
follows:

C � ut
waiting
s , ∀s ∈ Stransfer, (8)

where Stransfer is set of transfer arc.
(5) Fare cost

C � u′ls, ∀s ∈ Sin−vehicle, (9)

u′ is unit ticket cost (yuan/km). ls is travel distances
(km).
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3.3.2. Upper-Level Programming Model of Shuttle Route
Design. Last-mile shuttle bus is designed as a measure to
relieve congested demand and provide more reliable transit
service for passengers. +erefore, the maximum improve-
ment benefit is regarded as the objective function. For the

diverted passengers, they can take the more flexible and
reliable shuttle bus, but they should burden the additional
fare cost. +e model is formulated by the following opti-
mization model.

maxC � 
o


d

CTodyod − 
o


d


i


j

ut
in−vehicle
ij yodx

od
ij

⎛⎝ ⎞⎠ − 
o


d

csodyod − 
o


d


i


j

u′lijyodx
od
ij

⎛⎝ ⎞⎠. (10)

s.t. 
i�o

x
od
ij � 1, ∀o, d ∈ V, ∀(i, j) ∈ S, (11)


j�d

x
od
ij � 1, ∀o, d ∈ V, ∀(i, j) ∈ S, (12)


j

x
od
ij � 

j

x
od
ji , ∀o, d ∈ V, ∀(i, j) ∈ S, (13)

qod � dod + yod, ∀(o, d) ∈ V, (14)

kod ≥ k1, ∀o, d ∈ V, (15)

yod ≤Kf
l
, ∀o, d ∈ V, (16)

x
od
ij ∈ 0, 1{ }, ∀o, d ∈ V, ∀(i, j) ∈ S, (17)

dod ≥ 0, ∀o, d ∈ V, (18)

yod ≥ 0, ∀o, d ∈ V, (19)

where CTod is the average time cost (yuan) and csod is the
average ticket cost of conventional bus (yuan/km). +e
decision variables are xod

ij and yod, in which xod
ij means that

whether the shuttle from node O to node D passes through
road arc (i, j) and yod reflects passengers that take the
shuttles.

odCTodyod and odcsod yod reflect total time cost
and ticket cost when passengers take conventional transit.
odijutin−vehicle

ij yodxod
ij and odiju′lijyodxod

ij are
total time cost and ticket cost for shuttle passengers. +e
objective is to maximize passenger benefit when diverted
passengers choose the new shuttle service.

Equations (11)–(13) are the flow conservation con-
straints for each node, in which V is set of a bus stop.

Equation (14) means that for each OD pair, the total OD
demand should equal the sum of shuttle demand and the
conventional bus demand, in which qod reflects overall demand
and dod is the remaining demand for conventional transit.

Equation (15) reflects the reliability threshold, which
means that only when kod is larger than the certain level k1, the
shuttles will begin to run. Kod quantifies the impact of time
reliability, which is the key threshold for judging whether it is
necessary to provide shuttle service. +e larger the kod is, the
worse the reliability condition is. kod is calculated as follows:

h0 t

w

Time

Bus stop 

Figure 4: Illustration of WT.
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kod �
CRod

CTod

, ∀o, d ∈ V,

CRod � 
s

uρ σs + Ds( y
od
s , ∀o, d ∈ V,

∀s ∈ Sin−vehicle⋃


Swaiting,

CTod � 
s∈Sin−vehicle

ut
in−vehicle
s y

od
s

+ 
s∈Swaiting

u t
waiting
s + Ds y

od
s , ∀o, d ∈ V,

(20)

where CRod reflects the delay time cost which is produced by
the unreliability of travel time and CTod represents the total
time cost from O to D. yod

s is demand volume on arc s.
Equation (16) reflects the vehicle carrying capacity

constraint, in which fl is shuttle service frequency of line l.
Equations (17)–(19) give the value range for the

variables.

3.3.3. Lower-Level Programming Model of Demand
Assignment. Lower-level model aims to assign the existing
bus demand, estimate travel time and cost on the network
arc, and quantify the reliability condition. In the lower
model, bus passenger IVT cost, WT cost, extra delay cost,
transfer time cost, and fare cost are considered.

Based on the mentioned analyses, a lower-level flow
assignment model based on user equilibrium is formulated
as follows:

minC � 
o


d


p


Ys

0
Cs Ys( dYs. (21)

s.t. 
p∈P

y
p

od � qod, ∀o ∈ V, ∀d ∈ V, (22)

y
p

od ≥ 0, ∀o ∈ V, ∀d ∈ V, ∀p ∈ P, (23)

where Cs(Ys) is the general cost function of arc s. Ys is the
total volume of passengers on arc s, which is derived that
Ys � ijpy

p

odδ
ps

od. y
p

od is the volume of passengers from i
to j on available path p. δps

od is the correlation parameter that
if travel arc s is on path p from o to d, δps

od � 1, otherwise, δps

od

� 0. P is a set of available paths.
+e objective function is the sum of the results of in-

tegrating the general cost functions. +e model has two
constraints. For (22), it means that the sum of passengers on
all paths is equal to the volume of the demand for each OD
pair. Constraint (23) means that the decision variable is
nonnegative. +e optimal solution of the objective function
is equivalent to user equilibrium.

3.4. Solution Algorithm. Each of the upper-level solutions
represents a scheme of shuttle route planning. For each
scheme, demand should be assigned by the lower-level
model to estimate whether overall reliability is improved to
the acceptable threshold (k1). +en, the result of lower-level
will be substituted into the upper level to calculate the
objective function. In addition, considering the upper model
is a nonlinear programming formulation, the computational
complexity will be higher, which can be solved by a line-
arization algorithm.

Based on the above analysis, a two-stage algorithm is
proposed, which is depicted in Figure 5. +e first step is for
demand assignment, which estimates kod of existing con-
ventional network and selects unreliable OD, which can be
diverted to shuttle service. +e second step is the shuttle
route optimization model including a linearization algo-
rithm to solve the 0-1 nonlinearization programmingmodel.
+e optimal shuttle service plan will be calculated finally.
+e algorithm is described in detail as follows:

Stage 1: conduct the lower-level demand assignment
model based on the existing local bus network and
demand. Estimate kod among all OD in the local bus
network. Select the congested OD by reliability
threshold k1: if kod >k1, goes for stage 2. Otherwise, the
selection process ends.
Stage 2: conduct the upper-level model. Linearization
transforming is introduced for the model. +e shuttle
route and diverted demand are output finally by the
model. +e linearization algorithm is described in
detail.

For upper model, the two decision variables are non-
negative integer variables and 0-1 variables. As equation
(10) shows, yodxod

ij is the nonlinear structure. Auxiliary
decision variable Mod

ij (Mod
ij ≥ 0) and real number M

(M≥ 0) are introduced to construct auxiliary inequations.
Auxiliary constraints are introduced as the following
equations show:

yod − M 1 − x
od
ij ≤M

od
ij ≤yod, ∀o, d ∈ V, ∀(i, j) ∈ S, (24)

M
od
ij ≤Mx

od
ij , ∀o, d ∈ V, ∀(i, j) ∈ S. (25)

When xod
ij � 1， yod ≤Mod

ij ≤yod. +erefore,
Mod

ij � yodxod
ij . When xod

ij � 0, according to inequality (25),
Mod

ij ≤ 0.+erefore Mod
ij � 0.+ere are following inequalities

that Mod
ij ≥ 0 and yod ≥ 0. Within the range of yod and xod

ij ,
Mod

ij always equals yodxod
ij . As a result, the nonlinear ex-

pression yodxod
ij is transformed into linear expressions with a

series of inequalities.
+e solving difficulty is significantly reduced. In the

paper, the commercial linear programming software Gurobi
is used to solve the model. After the linearization, the model
can be expressed as follows:
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l
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yod − M 1 − x
od
ij ≤M

od
ij ≤yod, ∀o, d ∈ V, ∀(i, j) ∈ S,

M
od
ij ≤Mx

od
ij , ∀o, d ∈ V, ∀(i, j) ∈ S,

x
od
ij ∈ 0, 1{ }, ∀o, d ∈ V, ∀(i, j) ∈ S,

dod ≥ 0, ∀o, d ∈ V,

yod ≥ 0, ∀o, d ∈ V.

(26)

4. Case Study

4.1. Characteristics of Local Bus Network. +e last-mile
shuttle optimization model is further validated in the local
bus network of the Zhongguancun Software Park zone.
Zhongguancun Software Park is located in the Haidian
district in Beijing, in which many Internet enterprises such
as Baidu, Tencent, and Lenovo are located. Most commuters
will choose to take the metro to station Xierqi, then transfer
to bus system for their last-mile trips. As a high-density

workplace zone, the travel time reliability is always insuf-
ficient for the last-mile trip during peak hours.

Figure 6(a) shows the geographic layout of Zhong-
guancun Software Park and Figure 6(b) shows the structure
of the local bus network.+ere are 12 existing bus lines in the
local area. +e distance between bus stops and passenger
demand is shown in Tables 2 and 3.

+e average ticket costs of conventional transit lines and
shuttle lines are 0.3 yuan/km and 0.6 yuan/km, which is
estimated by the existing ticket rate in Beijing. Unit values of

Lower level model:
demand assignment

Calculation of k
od

 

Select the unreliable OD

Yes

No

Conventional transit 
network

Upper level model:
shuttle route design

Linearization Processing

Output: (1) Shuttle route
(2) Shuttle demand

Judge:
k

od
⩾k1 

Figure 5: Overall solution framework.
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Table 2: Distance between bus stops.

Bus stop Distance (km) Bus stop Distance (km) Bus stop Distance (km)
1⟶4 1.5 2⟶3 0.5 10⟶11 0.3
4⟶8 1.9 1⟶9 1 11⟶12 0.4
1⟶3 1 9⟶12 0.5 2⟶9 0.6
3⟶4 0.5 12⟶13 0.3 9⟶25 1.5
4⟶6 1 13⟶14 1.8 1⟶27 1.3
6⟶8 0.9 14⟶15 0.7 27⟶28 0.7
4⟶5 0.7 15⟶16 0.6 1⟶22 1.3
5⟶7 0.8 16⟶17 0.7 22⟶23 0.6
1⟶2 0.3 1⟶10 1.1 23⟶24 0.8
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Figure 6: (a) Road network of the study area. (b) Conventional bus network.
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travel time and travel time reliability are 11.34 yuan/h and
19.27 yuan/h [31]. Reliability preference is 2 in the case
study. Other parameters for the optimization model are
described in Table 4.

4.2. Estimation of Travel Time Reliability. +e reliability of
the existing transit system is estimated. Field data are col-
lected and processed for the fitting analysis. In addition, GPS
data extracted from existing microcirculation lines are
chosen to reflect the operation conditions of the proposed
shuttle service. In Beijing, microcirculation transit has been
developed in recent years, which provides the service in
community or business districts. Although it has a fixed
route and stops, compared with the other conventional bus,
microcirculation bus has the unique operation character-
istics that the route length and stop spacing are short, the
operating time is during peak hour, and the light-duty
vehicles are used, which are similar to the designed shuttle
service. Data of 11 conventional lines and 7 microcirculation
lines are chosen in the case study. +e GPS data cover the
period of 6:00–11:00 AM on Monday, with more than five
hundred thousand pieces of basic data.

4.2.1. Reliability of IVT. First, overall IVT spatial and
temporal distribution are described in Figure 7 as an il-
lustration, where the X-axis represents time, the Y-axis
represents the section between neighbouring two stops, and
the Z axis stands for IVT. It is indicated that for micro-
circulation lines, IVT variability is significantly large. In
addition, it is evidently greater after 7:00 than that before 7:
00. However, there is a significant reduction after 9:00. It
means that after peak hours, traffic condition becomes better
in the running area of microcirculation lines.

On the basis of the IVT samples data, the distributions
are fitted to explore its statistical characteristics. Four typical
fits are applied to test which kind of statistical distribution
can best explain the distribution characters of IVT: Gaussian
fit, Weibull fit, Laplace fit, and Lognormal fit. Root mean
square error (RMSE) and R-square are used to validate the
fitting results. +e fitting distribution results are shown in
Table 5. It is concluded that Lognormal distribution can best
explain the distribution characteristics of IVT.

4.2.2. Reliability ofWT. Bus departure headway at the origin
stop can directly affect the fluctuation of bus arrival intervals
at each midway stop. For ideal scenarios, the arrival interval

at the midway stop equals the departure headway. However,
due to various uncertain influencing factors, the arrival
interval becomes fluctuated. In actual conditions, the de-
parture headway for different bus trips, lines, and running
periods is also different. +erefore, based on the stop-level
arrival intervals extracted fromGPS data, bus arrival interval
distribution is fitted under different departure headways.
Fitting results are presented in Table 6, where H0 represents
bus departure headway. 10 scenarios are designed, in which
H0 equals from 1 minute to 10 minutes, respectively.
Gaussian fit, Weibull fit, Laplace fit, and Lognormal fit are
applied to test the best fit of bus arrival intervals. +e result
indicates that the Laplace fit shows the optimal fitting result.

Following the above fitting analysis, the expectation and
standard deviation of passenger IVT and WT in Zhong-
guancun Software Park is estimated and analyzing result is
shown in Table 7.

4.3. Results and Discussion. CRnetwork is introduced to esti-
mate the overall reliability and quantify the improving effect.
CRnetwork represents the sum of extra time cost due to the
unreliability of the travel time for all passengers in the
network, which can be calculated as follows:

CRnetwork � 
o


d


s

uρ σs + Ds( Ys, ∀o, d ∈ V,

∀s ∈ Sin−vehicle⋃

Swaiting.

(27)

Based on the optimization result, in local bus network of
Zhongguancun software, stop Metro Xierqi to stop Dong-
beiwang is the hot OD pair with insufficient reliability
during peak hours. +e congested travel demand can be
diverted by shuttle service. +e detailed plan is described in
Table 8.+e number of passengers by shuttle is 240 person/h,
which takes account of 12.2% of total transit demand. +e
running route of the shuttle is: stop Metro Xierqi-Road
Ruanjianyuan-stop Dongbeiwang. For the original local bus
network, CRnetwork is 15650.8 yuan. After the operating of
shuttle, CRnetwork is 13524.9 yuan, which has a significant
decrease by 14%.

In the area of Zhongguancun Software Park, the spatial
and temporal aggregation of transit demand is significant.
Most demand occurrence points (point O) are located at the
stop Metro Xierqi station, and the destination points are
concentrated in several key stops near the office area.
Meanwhile, commuting demand is concentrated in peak

Table 3: OD matrices.

OD (person) 2 3 5 8 9 10 12 13 14 15 16 17 18 22 23 24 26
1 2 6 96 209 371 2 270 2 29 149 2 327 139 91 3
3 3 10
9 59 23 46
11 19 4
13 13 23
15 6 6
22 15 23
23 14
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Table 4: Parameter values.
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Figure 7: Spatial and temporal distribution of sample bus lines. (a) Microcirculation lines. (b) Conventional lines.

Table 5: Fitting results of IVT.

Line Gaussian Weibull Laplace Lognormal Parameters of best fit

320 upwards R-square 0.958 0.952 0.934 0.996 a� 1.315
RMSE 0.019 0.019 0.022 0.006 b� 0.476

320 downwards R-square 0.965 0.979 0.914 0.987 a� 1.339
RMSE 0.015 0.011 0.057 0.009 b� 0.406

333 upwards R-square 0.965 0.958 0.952 0.992 a� 1.328
RMSE 0.015 0.016 0.018 0.007 b� 0.421

333 downwards R-square 0.921 0.879 0.935 0.956 a� 1.275
RMSE 0.021 0.026 0.019 0.015 b� 0.483

362 upwards R-square 0.952 0.952 0.935 0.995 a� 1.12
RMSE 0.020 0.020 0.023 0.006 b� 0.445

362 downwards R-square 0.951 0.954 0.935 0.990 a� 1.113
RMSE 0.019 0.018 0.021 0.008 b� 0.521

509 upwards R-square 0.943 0.934 0.934 0.986 a� 1.211
RMSE 0.021 0.023 0.023 0.011 b� 0.449

509 downwards R-square 0.927 0.918 0.948 0.972 a� 1.430
RMSE 0.018 0.019 0.016 0.011 b� 0.495

521 upwards R-square 0.949 0.967 0.953 0.980 a� 1.143
RMSE 0.017 0.015 0.017 0.011 b� 0.644
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Table 6: Fitting results of bus arrival intervals.

Departure headway Gaussian Weibull Laplace Lognormal Parameters for the best fit

H0 �1min R-square 0.904 0.915 0.942 0.828 a� 0.972
RMSE 0.045 0.042 0.034 0.060 b� 0.734

H0 � 2mins R-square 0.936 0.934 0.973 0.886 a� 1.606
RMSE 0.022 0.022 0.014 0.029 b� 2.171

H0 � 3mins R-square 0.902 0.904 0.962 0.867 a� 2.669
RMSE 0.016 0.016 0.010 0.019 b� 2.740

H0 � 4mins R-square 0.879 0.877 0.969 0.757 a� 3.018
RMSE 0.016 0.016 0.008 0.022 b� 3.861

H0 � 5mins R-square 0.888 0.870 0.968 0.836 a� 2.908
RMSE 0.016 0.017 0.008 0.019 b� 4.795

H0 � 6mins R-square 0.912 0.879 0.989 0.851 a� 2.770
RMSE 0.014 0.017 0.005 0.018 b� 6.021

H0 � 7mins R-square 0.917 0.883 0.989 0.856 a� 2.626
RMSE 0.014 0.018 0.005 0.019 b� 7.117

H0 � 8mins R-square 0.898 0.862 0.989 0.819 a� 3.080
RMSE 0.014 0.016 0.006 0.018 b� 8.121

H0 � 9mins R-square 0.859 0.819 0.976 0.894 a� 2.903
RMSE 0.017 0.019 0.007 0.013 b� 8.849

H0 �10mins R-square 0.917 0.890 0.987 0.919 a� 3.185
RMSE 0.012 0.013 0.004 0.008 b� 10.16

Table 5: Continued.

Line Gaussian Weibull Laplace Lognormal Parameters of best fit

521 downwards R-square 0.942 0.944 0.954 0.982 a� 1.024
RMSE 0.022 0.021 0.020 0.012 b� 0.562

570 upwards R-square 0.973 0.973 0.938 0.996 a� 1.145
RMSE 0.016 0.015 0.023 0.006 b� 0.402

570 downwards R-square 0.975 0.966 0.953 0.992 a� 1.192
RMSE 0.016 0.018 0.021 0.009 b� 0.377

963 upwards R-square 0.933 0.945 0.946 0.989 a� 1.384
RMSE 0.015 0.013 0.014 0.006 b� 0.576

963 downwards R-square 0.918 0.923 0.931 0.981 a� 1.319
RMSE 0.019 0.018 0.017 0.009 b� 0.478

105M R-square 0.977 0.968 0.963 0.986 a� 1.219
RMSE 0.018 0.021 0.025 0.014 b� 0.346

116M R-square 0.959 0.967 0.952 0.992 a� 1.260
RMSE 0.010 0.009 0.0109 0.004 b� 0.501

117M R-square 0.932 0.951 0.929 0.983 a� 1.317
RMSE 0.022 0.019 0.023 0.011 b� 0.485

118M R-square 0.960 0.971 0.949 0.986 a� 1.242
RMSE 0.017 0.015 0.019 0.010 b� 0.496

120M R-square 0.894 0.918 0.890 0.965 a� 1.433
RMSE 0.024 0.022 0.025 0.014 b� 0.463

121M R-square 0.883 0.938 0.893 0.983 a� 1.117
RMSE 0.028 0.021 0.027 0.011 b� 0.531

123M R-square 0.953 0.952 0.938 0.990 a� 1.339
RMSE 0.019 0.019 0.021 0.009 b� 0.406

Table 7: Expectation and standard deviation of IVT and WT.

Line
IVT WT

E (min/km) SD (min/km) E (min) SD (min)
902 3.7 3.3 2.4 5.7
320 3.7 2.4 5.1 5.6
333 3.7 2.4 3.6 5.6
362 2.9 2.0 3.6 5.6
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hours, and the roads are of low grade, which is narrow and
not suitable for oversize vehicles. Although the working area
in the study is small, the results show that the shuttle service
can significantly improve the travel time reliability of last-
mile trips.+e applicable scenarios can be expanded to more
similar areas such as residential areas or school areas.

5. Conclusions

+is paper proposes a methodology of last-mile shuttle
service for a commercial or residential area. Shuttle route is
designed to relieve the congested demand between the
unreliable OD and improve commuters’ time reliability for
the last-mile trip. +e main contributions of this study are as
follows:

(1) An offline method for estimating reliability is pro-
posed, including data processing methods and
statical fitting models. Buffer time is used to quantify
travel time reliability considering IVTandWT.With
more than 5 hundred thousand pieces of real-world
GPS data, fitting analysis is conducted. +e results
indicate that lognormal distribution and Laplace
distribution are the best fit for the distribution of
sample IVT and bus arrival time. Key parameters to
reflect reliability, including IVT reliability and WT
reliability, are estimated based on the fitting results.

(2) Shuttle demand is regarded as a dynamic decision
variable in the bilevel optimization model in this
study, which can be optimized with the shuttle route
jointly. In order to solve the mixed integer nonlinear
programming problem, a two-stage solution algo-
rithm is proposed combined with the linearized
solution method. +e shuttle route and the amount
of demand which are diverted from the conventional
transit network are estimated. Reliability cost is
defined as the key index to evaluate passenger travel
time reliability condition.

(3) To illustrate the robustness and quality of the model,
the real-world case study is conducted in Zhong-
guancun Software Park in Beijing. It is indicated that
the last-mile shuttle service can significantly improve
transit passenger travel time reliability by 14%. In
addition, 12.2% of total transit passengers choose the
new shuttle service in the case study. +e findings
can be promoted that in the area of the core business
district or residential community, when the com-
muting demand is concentrated, the shuttle service
will be more effective in solving the poor reliability of
the last-mile trip and the optimization result will be
better.

+e paper has limitations and more researches can be
improved in the future. +e last-mile shuttle service is a new
transit mode in Beijing. +erefore, actual operation data are
lacking, which are replaced by that of the microcirculation
bus in the study. +e effect can be better verified when the
actual service is provided in the future. In addition, the
influence of shared-bike and carpool is not considered.
Cooperation of multitransportation modes can be analyzed
to improve travel time reliability of last-mile trips.
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Table 7: Continued.

Line
IVT WT

E (min/km) SD (min/km) E (min) SD (min)
509 3.3 2.2 5.1 6.8
521 3.7 2.7 4.1 6.4
570 3.0 1.9 5.1 6.8
963 3.8 2.6 2.4 5.7
636 3.2 2.2 4.4 6.2
85 3.0 1.9 5.1 6.8
82 3.2 2.2 5.1 6.8

Table 8: Optimization results.

Last-mile shuttle route Diverting
demand Optimal cost of travel time reliability

Stop metro xierqi—stop road ruanjianyuan-
dongbeiwang 240 person/h

Origin conventional bus
network

After shuttle
operated

Optimization
effect

15651 yuan 13525 yuan 14%
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