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Freeway service patrol (FSPs) programs have been considered as an effective tool for traffic incident management in minimizing
the adverse effects of traffic incidents. In this study, random parameters hazard-based duration modeling method was used to
evaluate the impact of the newly implemented Alabama Service and Assistance Patrol (ASAP) program, using incident clearance
time as a performance measure. It was determined that there is a statistically significant difference in the factors that influence
incidents clearance times between incidents that occurred inside and outside the ASAP regions. A total of five variables (on-road,
nighttime, peak hours, rain, and fire response present) were observed to have random effects along with ten fixed effects variables
on incidents occurring inside the ASAP regions. On the other hand, incidents that occurred outside the ASAP regions were found
to have three random effects variables (on-road, nighttime, and fire response present) and seven fixed effects variables. &e
estimation results indicate a significant association of incident clearance times to incident related variables such as involvement of
CMVs, fatality, vehicle towing, seat belt indicated as involved, and on-road incidents that occurred both inside and outside the
ASAP regions. &e results also reveal that incident clearance times are influenced strongly by temporal variables (e.g., nighttime),
traffic factors (e.g., AADT), and operational variables (e.g., fire response present) for incidents both inside and outside the ASAP
area models. Overall, it was observed that the incident clearance times recorded in the regions where the ASAP program is in effect
are significantly different. &e findings of this study are expected to be useful for the state traffic incident management (TIM)
agencies in developing and executing strategies to minimize incident clearance times. Ultimately, the study provides a data-driven
evidence-based assessment of the ASAP program in the state.

1. Introduction

Nonrecurrent traffic incidents cause acute traffic congestion
which can lead to secondary crashes, travel delay, excessive
fuel consumption, vehicle emissions, air pollution, and social
and economic insufficiency [1, 2]. To mitigate the negative
effects of nonrecurrent incident related congestion, many
major cities have adopted intelligent transportation systems
(ITS) in their incident management plans [3–5]. Traffic in-
cident management (TIM) requires the coordination and

cooperation among different agencies, including fire and
rescue, hazardousmaterial response, towing and recovery, law
enforcement, emergency medical services and freeway service
patrols (FSPs) for quick and efficient detection, verification,
response, and clearance of the incidents [6–8]. As one of the
most popular and efficient TIM programs, FSPs can improve
traffic conditions, and hence traffic safety by decreasing the
incident duration through quicker response [9, 10] as well as
reducing the possibilities of consequences of traffic incidents,
such as secondary crashes [11].
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FSP programs use roving vehicles, usually and specially
equipped pick-up or tow trucks, to provide several types of
assistance to motorists [1]. Typically, these vehicles are
assigned to patrol higher traffic volume areas such as
freeways and provide services such as removing obstructions
(e.g., abandoned vehicles and debris), extinguishing fires,
providing emergency gas and mechanical services to dis-
abled vehicles, and providing emergence medical service
[12]. FSP programs are also intended to reduce incident
durations by detecting, responding, and clearing traffic in-
cidents quickly and timely in cooperation with other
emergency agencies [6, 9]. Additionally, these programs help
provide real-time traffic status to motorists through variable
massage signs (VMSs) and traffic apps [2, 13].

&e Alabama Department of Transportation (ALDOT)
operates FSP programs, referred to as the Alabama Service
and Assistance Patrol (ASAP), in conjunction with its Traffic
Management Centers (TMCs). Currently, the ASAP pro-
gram is the only FSP program in the state and monitors and
covers the regions around four major cities in the State
(Montgomery, Mobile, Birmingham, and Tuscaloosa). &e
goals of the ASAP program are to restore mobility by re-
ducing incident durations and to eliminate the adverse ef-
fects of traffic incidents [14].

&is paper uses a random parameter hazard-based du-
ration modeling method to investigate the impact of the
ASAP program on incident clearance times. Freeway traffic
crash incidents that occurred within and outside program
coverage areas were obtained and the factors that influenced
clearance times of were examined to identify the contri-
bution of the ASAP program. To assess the effectiveness of
the ASAP program, incidents that occurred outside the
coverage area were also analyzed to serve as baseline con-
dition for comparison. &e findings of the study will be
useful for the trafficmanagement agencies in developing and
executing strategies to minimize incident clearance times.

2. Review of Previous Studies

Over the past several decades, there have been many pre-
vious studies to evaluate the effectiveness of FSP programs.
For example, Latoski et al. [15] conducted a benefit-cost
analysis of the FSP program, known as Hoosier Helper,
operated by the Indiana Department of Transportation, and
calculated the benefit-cost ratio based on the savings on
delay caused by nonrecurrent congestion and vehicle op-
erating cost, as well as reduction in secondary crashes.
Hagen et al. [16] estimated the benefit-cost ratio for the
Florida Road Ranger FSP program based on savings on
vehicle delay and fuel consumption. Also, several other
studies evaluated the benefit-cost ratio of FSP programs
using simulation techniques. For example, Ma et al. [1] used
a microscopic simulation software PARAMICS to estimate
the benefits of FSP program by focusing on the reduction of
roadway blockage and delays caused by crashes. Similarly,
Chou et al. [17] used a different microscopic simulation tool,
CORSIM, to evaluate the benefits of the Highway Emergency
Local Patrol (HELP) operated by New York State, and es-
timated the benefit-cost ratio based on vehicle emission, fuel

consumption, secondary incidents, and travel delay reduc-
tion. Li andWalton [18] used event-driven simulationmodel
in estimating the benefit-cost ratio of Kentucky FSP pro-
gram, known as Safety Assistance for Freeway Emergencies
(SAFE) Patrol in low-traffic areas, and shown that event-
driven simulation model is better than analytical model in
terms of faster simulating speed, larger road network, and
longer period of simulation. Zhang et al. [19] assessed the
relationship between incident data sample sizes and the
reliability of incident duration analysis models. &ey ob-
served that the variation of estimated coefficients decreases
as the sample size increases and becomes stabilized when the
sample size reaches a critical threshold value. &ey rec-
ommended a sample size of 6,500 to be enough for a reliable
incident duration model. Huang et al. [20] proposed a
knowledge transferability analysis method, featuring an
automated process to assess, select, and transfer existing
prediction rules to perform incident duration estimate for
new target highways in Maryland, USA. Zou et al. [21]
proposed a BayesianModel Averaging (BMA) to account for
uncertainty by averaging all plausible models using posterior
probability as the weight. &ey observed that the BMA
approach provides a better prediction performance than the
Cox proportional hazards model and the accelerated failure
time models. Zhao et al. [22] explored an ensemble learning
method based on multiple clustered individual models to
provide good and diverse prediction performance for traffic
incident models and they found that the ensemble model
performs better than the traditional model with fixed
clusters and the classical model without clustering.

FSP programs are generally considered to be an efficient
low-cost approach of incident management and some past
studies have assessed the effectiveness of FSP programs based
on incident duration [18, 23, 24]. In an early study, Sullivan
[25] developed a model called IMPACT in predicting non-
recurrent freeway incidents along with the associated vehicle
delay based on traffic volume, freeway characteristics, and
incident management with or without FSP in six different
urban areas for both weekday peak and off-peak periods.
Dougald andDemetsky [6] developed a deterministic queuing
methodology to determine incident durations with or without
FSP for Northern Virginia region and applied the results to
quantify the benefits of FSP in association with reductions in
motorist delay, fuel consumption, and emissions. Chou and
Nichols [26] proposed a queuing technique in evaluating the
safety impact of FSP program focusing on reduced incident
duration. Karlaftis et al. [11] developed logistic regression
models to evaluate the efficiency of Indiana’s Hoosier Helper
FSP program based on savings from reducing the probability
of secondary crash occurrence and the findings showed that
improvements can be made on road safety and cost-effec-
tiveness of FSP program using the presented methodology.
Salum et al. [2] developed a quantile regression model and
showed that Florida Road Rangers response resulted in
shorter incident clearance duration. Fries et al. [27] used
PARAMICS as a traffic simulation tool to ultimately estimate
the financial impact of quick-clearance legislation and
compared it with other incident management strategies, such
as FSP program, traffic cameras, and sensors.
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Simulation modeling is used not only for evaluating the
benefit-cost ratio of FSP program, but also for assessing the
performance and overall operational impact of FSP pro-
grams. For instance, Pal and Sinha [23] developed a sim-
ulation model for evaluating FSP, Hoosier Helper program,
and the results of this study showed that the existing FSP
program can be improved by changing some specific pa-
rameters, including fleet size, area coverage, service hours,
beat design, and dispatching policies. Wu et al. [24] used a
discrete event-based simulation model for examining the
performance of the existing FPS program and for planning
new FPS program. Hadi at al. [9] developed a simulation tool
to evaluate the performance of FSP program by changing
incident durations in terms of delay, road safety, vehicular
emission, fuel consumption, and dollar value, and the
benefit-cost assessment proved that the developed model
could help in planning FSP program by adjusting FSP op-
eration parameters, such as number of beats and vehicles,
area of operation, and hours of operation.

Although many previous studies have evaluated the
performance of FSP program, very few studies have eval-
uated the impact of FSP program using incident clearance
time as a key performance metric. Incident clearance time is
an important measure of highway performance as it indi-
cates how quickly the highway returns to normal perfor-
mance after an incident. Programs such as freeway service
patrol schemes have therefore been instituted to aid in in-
cident identification and clearance efforts. While incident
identification is the key to incident management, the time
that it takes to clear the incident is perhaps a more ap-
propriate measure of the performance of highway patrol
programs. &is study therefore makes a unique contribution
to the body of work, by using a random parameter hazard-
based duration model to evaluate the effects of the ASAP
program by assessing the statistical significance in the dif-
ferences of the factors that influence the clearance times for
crash incidents that occurred in and outside of the ASAP
coverage areas.

3. Data Description

In this study, a total of 2,206 crash incidents that occurred on
Alabama freeways in 2018 were examined. &e final data for
the study was obtained by matching and merging four
different datasets: freeway incident duration data from the
Alabama Department of Transportation (ALDOT) Traffic
Management Centers (TMCs), freeway crash data from the
Center for Advanced Public Safety (CAPS) at the University
of Alabama, traffic volume data from the Highway Per-
formance Management System (HPMS), ALDOT, and
ASAP data from ALDOT. &e data was divided into two
groups: incident occurring inside (76.16% of the total crash
incidents) and incidents occurring outside (23.84% of the
total crash incidents) of ASAP existing coverage in order to
investigate whether there are any differences in the ex-
planatory variables that influence incident clearance times.
Figure 1 represents the current coverage of the ASAP
program in the state of Alabama. In this study, incident
clearance time was considered as dependent variable and

was defined as the time between the arrival of the first re-
sponder on the incident scene and the moment when the
incident has been cleared from the freeway [28].

&e descriptive statistics of the variables included in the
random parameters hazard-based duration models are
represented in Table 1. As shown in Table 1, average annual
daily traffic (AADT), detection time (in minutes), and re-
sponse time (in minutes) variables were considered as
continuous variables, and the other remaining 18 variables
were categorical. &e average incident clearance time was 48
minutes and 74 minutes for inside and outside the ASAP
existing coverage areas, respectively. Preliminary data
analysis showed that the proportion of multivehicle crash
incidents was higher inside the ASAP coverage area (75%)
than the outside the ASAP area (55%). About 7% of inci-
dents inside the ASAP area involved commercial motor

ALABAMA DEPARTMENT OF TRANSPORTATION
ASAP Program Route Evaluation

Incident Factor (IF) Calculation Courtesy of PENNDOT

IF ≥ 4
IF 3.0- 3.9
IF ≤ 2.9
Existing Coverage
Interstate

US Highway
State Route
Country Boundary
Coastal- Lakes-Rivers

Figure 1: ASAP coverage area.
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vehicles (CMVs), whereas 10% of incidents that occurred
outside the ASAP region involved CMVs. Only 0.5% of
incidents that happened inside the ASAP area recorded
fatality, while fatality was recorded in 3.2% of incidents that
occurred outside the ASAP area. Also, about 82% of inci-
dents that recorded in the ASAP region occurred on-road,
compared to 65% outside the ASAP area. &e proportion of
nighttime crash incidents was almost the same for inside
(27.4%) and outside (28%) of the ASAP area. About 49% of
incidents that occurred inside the ASAP area were recorded
during peak hours (AM and PM), compared to 37% for
outside the ASAP area. Crash incidents with police and fire
response present were about 95.5% and 32.6%, respectively,
for incidents that occurred inside the ASAP area, and these
values were 97.3% and 28.3% of incidents that happened
outside the ASAP area, respectively. &e presence of haz-
ardous material response was found in 0.3% of incidents that
occurred inside the ASAP area and 0.2% of incidents outside
the ASAP area.

4. Methodology

Previous studies have found various statistical modeling
methods to be appropriate for examining incident clearance

times. &ese models include simple regression models [29],
switching regression models [30], quantile regression
models [2, 31], hazard-based duration models [32–38],
accelerated failure time (AFT) models [33, 39, 40], finite
mixture models [41], generalized F distribution models [42],
artificial neural network models [43], and Bayesian network
models [44]. Hazard-based duration models have been
found to be more appropriate in examining duration data
[32, 45, 46]; therefore, in this paper, random parameters
hazard-based duration models were employed to identify
contributing factors of incident clearance time.

In studying incident duration data, the hazard-based
duration models are employed to study the conditional
probability of a time duration ending at some time t, given
that the duration has continued until time t [46]. Since, in
many instances, the probability of a duration ending is
related to the length of the time in which the duration has
lasted, the concept of probability of a duration ending is
important [32]. In this study, the incident clearance time is a
continuous random variable T, with a cumulative distri-
bution function F(t), which is also known as the failure
function. Alternatively, the survival function, S(t), is the
probability of the duration being greater than or equal to
some specific time t. Mathematically,

Table 1: Descriptive statistics of the variables included in the random parameters duration models.

Variables
Inside ASAP area (76.2%) Outside ASAP area

(23.8%)

Mean Standard
deviation Mean Standard

deviation
Dependent variable
Incident clearance time 47.823 38.447 74.131 55.197
Explanatory variables
Incident characteristics
Multiple vehicles involved in crash incident (1 if yes, 0 otherwise) 0.748 0.434 0.550 0.498
Commercial motor vehicle (CMV) involved (1 if yes, 0 otherwise) 0.066 0.248 0.097 0.296
Fatality involved (1 if yes, 0 otherwise) 0.005 0.069 0.032 0.177
Vehicle towed (1 if yes, 0 otherwise) 0.543 0.498 0.688 0.463
Seat belt indicated as involved (1 if yes, 0 otherwise) 0.815 0.388 0.848 0.359
On-road (1 if yes, 0 otherwise) 0.820 0.383 0.646 0.478
Overturn (1 if yes, 0 otherwise) 0.032 0.176 0.061 0.239
Collision type: rear end collision (1 if yes, 0 otherwise) 0.485 0.500 0.344 0.475
Temporal characteristics
Nighttime (lighting condition at time of crash incident: 1 if yes, 0 otherwise) 0.274 0.446 0.280 0.449
Winter (incident occurred in month of December, January, or February: 1 if yes, 0
otherwise) 0.261 0.439 0.183 0.386

Peak hours (1 if incident occurred between 7 AM–9 AM and 4 PM–6 PM, 0
otherwise) 0.488 0.500 0.373 0.484

Environmental characteristics
Rain (1 if yes, 0 otherwise) 0.156 0.363 0.173 0.378
Traffic characteristics
Average annual daily traffic (AADT/1000) 87.634 27.309 46.658 18.776
One lane in the traffic way 0.013 0.113 0.008 0.087
More than two lanes in the traffic way 0.911 0.285 0.920 0.271
Less than four lanes in the traffic way 0.208 0.406 0.095 0.293
Operational characteristics
Detection time (in minutes) 1.460 4.019 1.328 5.983
Response time (in minutes) 0.831 6.070 0.831 6.069
Police response present (1 if yes, 0 otherwise) 0.955 0.208 0.973 0.161
Fire response present (1 if yes, 0 otherwise) 0.326 0.469 0.283 0.451
Hazardous materials response present (1 if yes, 0 otherwise) 0.003 0.054 0.002 0.044
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F(t) � P(T< t) � 1 − P(T> t) � 1 − S(t). (1)

&ehazard function h(t) is the conditional probability that
an incident will occur between time t and t � dt, given that the
incident has not occurred up to time t [46] and is given by

h(t) �
f(t)

1 − F(t)
. (2)

&e slope of hazard function defines the dependence of
the probability of a duration ending on the length of the
duration. &e hazard function can be decreasing with the
incident clearance duration increasing (dh(dt)/dt < 0),
which indicates that the probability that an incident clear-
ance duration will end soon decreases as the incident lasts
longer. Conversely, the hazard function can be increasing as
the incident clearance duration decreases (dh(dt)/dt > 0),
indicating the probability that an incident clearance dura-
tion will end soon increases as the incident lasts longer. If the
hazard function has a slope of zero (dh(dt)/dt � 0), it means
that the probability in which an incident clearance duration
will end soon is independent of the length of time in which
the incident has lasted.

Proportional-hazard approach has been proven appro-
priate while examining the effects of the explanatory vari-
ables (i.e., covariates) on the incident clearance times, which
act multiplicatively on some baseline hazard functions h0(t)

[46, 47] and is expressed as

h(t|X) � h0(t)e
βX

, (3)

where eβX represents the effect of explanatory factors on the
hazard, X is the vector of external contributing factors, and β
is the vector of estimable parameters.

Proportional-hazard functions can be applied using a
variety of fully parametric models, including gamma, ex-
ponential, Weibull, and log-logistic [46]. Among all these
distributions, the Weibull distribution is the most used
parametric model in examining duration data, as this model
form allows the hazard function to be monotonically in-
creasing (the probability of an incident clearance duration
ending decreases over time) or decreasing (the probability of
an incident clearance duration ending increases over time)
[32]. &e Weibull distribution has the hazard function with
parameters λ> 0 and P> 0 and is given by

h(t) � (λP)(λt)
P− 1

. (4)

In hazard-based duration models, the typical propor-
tional-hazard method is based on the assumption that the
effect of any explanatory variable is homogeneous across
observations. However, there is a possibility that the incident
duration is not homogeneous across observations and this
can lead to inaccurate model results. In order to examine the
homogeneity assumption, a randomly distributed term is
introduced in the duration models in a way that allows some
(or all) of the model parameters to vary across observations
[46, 48] and is expressed as

βn � β + ωn, (5)

where βn is a vector of parameters that varies across n

observations and ωn is a randomly distributed term (e.g.,
normally distributed term with mean zero and variance σ2).
&e random parameters incident clearance duration models
are estimated by simulating the maximum likelihood using
Halton draws, an efficient substitute to random draws [46].

In this study, likelihood ratio test was performed to
determine if there is a difference in the model estimation
based on whether incidents happened inside or outside of
the ASAP existing coverage area as

χ2 � −2 LL βTotal( 􏼁 − LL βin( 􏼁 − LL βout( 􏼁􏼂 􏼃, (6)

where χ2 is a chi-squared distributed parameter with degrees
of freedom equal to the total number of estimated param-
eters in both the inside and outside ASAP coverage area
models minus the number of estimated parameters in the
combined model. LL(βTotal) is the log-likelihood at con-
vergence of the model estimated with all the data, LL(βin) is
the log-likelihood at convergence of the model estimated
with the incidents that occurred inside ASAP coverage area,
and LL(βout) is the log-likelihood at convergence of the
model estimated with the incidents that occurred outside the
ASAP coverage area.

5. Estimation Results

A likelihood ratio test was conducted to justify the esti-
mation of separate random parameters hazard-based du-
ration models between inside and outside of ASAP regions.
Using (6), the likelihood ratio was found to be 59.6 with 17
degrees of freedom and P-value <0.001. &erefore, the null
hypothesis indicating that the models are statistically in-
distinguishable is rejected with 95% level of confidence. In
other words, it is determined that two separate random
parameters hazard-based duration models should be de-
veloped for incidents that occurred inside and outside of
ASAP regions.

Before developing these two separate models, a com-
bined model analysis was employed to identify statistically
significant influential variables of incident clearance times
on incident duration data in general. Table 2 represents the
model estimation results of the three models along with the
parameter estimate, t-statistics for significant variables, and
the model parameters and the log-likelihood at convergence.
&e random parameters models were evaluated based on
simulated maximum likelihood using 200 Halton draws for
all three models [33, 49]. In order to capture unobserved
heterogeneity, the random parameters durationmodels used
continuous mixing distribution where the random param-
eters were normally distributed. All the explanatory vari-
ables were found to significantly affect the incident clearance
time at 95% level of confidence. In interpreting the signs of
the parameter estimate, a positive sign indicates decrease in
the hazard function (since NLOGITestimates the parameter
vector as −β instead of just β) and hence indicates increase in
the incident clearance time, and a negative sign indicates an
increase in the hazard function which means decrease in the
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incident clearance times. Similar variables were used in all
three models to identify their effects on incident clearance
times. A total of sixteen variables were found to be statis-
tically significant with four random effects variables (on-
road, nighttime, AADT, and peak hours) and twelve fixed
effects variables for the combinedmodel. For the incidents in
the ASAP area model, fifteen variables were found signifi-
cant with five random effect variables (on-road, nighttime,
rain, peak, and fire response present) and ten fixed effects
variables, whereas a total of twelve variables were observed
to have significant effects on incident clearance time with
three random effects variables (on-road, nighttime, and fire
response present) and seven fixed effects variables in the
model for incidents that occurred outside the ASAP area.

&e random parameters hazard-based duration models
revealed that incidents that involve CMVs, fatality, and those
in which the vehicle(s) had to be towed were found to be
associated with longer incident clearance times in all three
models. &is finding is consistent with observations of
previous studies [32, 33, 37, 39, 40].&e variable for incident
location being on-road was found to be random and nor-
mally distributed for inside the ASAP area model (with
mean of −0.247 and standard deviation of 0.363) and for
outside the ASAP area model (with mean of −0.090 and
standard deviation of 0.144). &is indicates decreased in-
cident clearance times associated with 24.8% and 26.6% of
incidents that, respectively, occurred in and outside the
ASAP coverage area. Incidents occurring on-road are more

Table 2: Random parameters hazard-based duration model results.

Variables
Combined Inside ASAP area Outside ASAP area

Estimated
parameter

t-
statistic

Estimated
parameter

t-
statistic

Estimated
parameter

t-
statistic

Constant 4.167 64.07 3.843 51.42 4.302 29.11
Incident characteristics
Multiple vehicles involved in crash incident (1 if yes, 0
otherwise) 0.154 4.28 0.211 4.90

Commercial motor vehicle (CMV) involved (1 if yes, 0
otherwise) 0.397 8.70 0.437 8.20 0.413 4.43

Fatality involved (1 if yes, 0 otherwise) 0.818 7.52 1.106 5.06 0.617 4.41
Vehicle towed (1 if yes, 0 otherwise) 0.364 13.59 0.408 13.39 0.219 3.74
Seat belt indicated as involved (1 if yes, 0 otherwise) −0.155 −5.00 −0.070 −1.96 −0.319 −4.54
On-road (1 if yes, 0 otherwise) −0.190 −5.01 −0.247 −5.26 −0.090 −1.35
Standard deviation of normal distribution parameter 0.320 26.45 0.363 27.93 0.144 4.94
Overturn (1 if yes, 0 otherwise) 0.225 2.63
Collision type: rear end collision (1 if yes, 0 otherwise) 0.161 2.59
Temporal characteristics
Nighttime (lighting condition at time of crash incident:
1 if yes, 0 otherwise) 0.096 3.67 0.092 3.03 0.124 2.22

Standard deviation of normal distribution parameter 0.169 7.86 0.197 8.06 0.163 3.44
Winter (incident occurred in month of December,
January, or February: 1 if yes, 0 otherwise) 0.194 3.05

Peak hours (1 if incident occurred between 7 AM–9
AM and 4 PM–6 PM, 0 otherwise) −0.111 −4.65 −0.099 −3.68

Standard deviation of normal distribution parameter 0.127 7.72 0.124 6.78
Environmental characteristics
Rain (1 if yes, 0 otherwise) 0.070 2.23 0.077 2.09
Standard deviation of normal distribution parameter 0.270 8.27
Traffic characteristics
Average annual daily traffic (AADT) −0.006 −14.33 −0.004 −8.44 −0.004 −2.27
Standard deviation of normal distribution parameter 0.002 14.26
One lane in the traffic way −0.265 −2.07
More than two lanes in the traffic way 0.185 1.98
Less than four lanes in the traffic way −0.110 −3.79
Operational characteristics
Detection time (in minutes) 0.007 2.60 0.016 4.34
Response time (in minutes) 0.009 3.80 0.011 3.99
Police response present (1 if yes, 0 otherwise) 0.139 3.16 0.153 3.27
Fire response present (1 if yes, 0 otherwise) 0.197 7.46 0.224 7.53 0.178 3.23
Standard deviation of normal distribution parameter 0.085 3.80 0.185 4.33
Hazardous materials response present (1 if yes, 0
otherwise) 1.043 4.58

Sigma (scale parameter) 0.531 63.71 0.529 55.60 0.532 31.37
Log-likelihood at convergence −2426.087 −1866.010 −530.256
Number of observations 2206 1680 526
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likely to block one or more lanes. Lane blocking of traffic can
be detected more rapidly, which increases the probability of
quicker incident notification and clearance. &is finding is
supported by a recent study conducted by Islam et al. [37] and
Islam et al. [38]. In terms of the environmental characteristics,
incidents that occurred during rain events were found to be
associated with longer incident clearance times in the com-
bined model and were observed to be random in the ASAP
area model (with mean of 0.077 and standard deviation of
0.270). &is means that, for 61.2% of crash incidents that
occurred during rain events in the ASAP coverage area, in-
cident clearance times were higher. In terms of temporal
characteristics, nighttime variable was found random and
normally distributed (with means of 0.092, 0.124, and 0.096
and standard deviation of 0.197, 0.163, and 0.169) for inside
ASAP area model, for outside ASAP area model, and for the
combined model, respectively, and was observed to be as-
sociated with increased incident clearance times in all three
models. &is finding is consistent with many previous studies
[30, 32, 37, 38]. On the other hand, peak hour was found
significant and random (withmeans of −0.099 and−0.111 and
standard deviations of 0.124 and 0.127) for the ASAP coverage
area and combined models, respectively. &e peak hour in-
cident variable was found to be associated with decreased
clearance time for only a proportion of the observations.

With respect to the traffic characteristics, the variable
for AADT (with mean of −0.006 and standard deviation of

0.002) was found random and normally distributed only in
combined model with shorter clearance times for a fraction
of the crash observations. Also, AADT was found to be
associated with shorter incident clearance times for crashes
that occurred both inside and outside the ASAP areas. &is
indicates that incident clearance times decrease on free-
ways as AADT increases. &is may be due to the early
detection and notification of crash incidents on freeways.
Also, higher AADT means that delay in clearing crash
incidents may lead to traffic build-up and this can lead to
significant economic loss and even the occurrence of
secondary crashes. &is finding is also consistent with
observations in many previous studies
[30, 37, 38, 40, 50, 51].&e effects of some of the operational
variables were found be consistent across the all three
models. For example, crash incidents that require fire re-
sponse are more likely to be associated with longer
clearance times in all the three models and were found
random and normally distributed (with means of 0.224 and
0.178 and standard deviations of 0.085 and 0.185) for the
ASAP coverage area and outside ASAP area models,
respectively.

6. Discussion

Table 3 shows the percent change in incident clearance
times for each variable found to be significant in the

Table 3: Percent changes in the random parameters hazard-based duration models.

Variables
Changes (%)

Combined
ASAP

Inside ASAP
area

Outside ASAP
area

Incident characteristics
Multiple vehicles involved in crash incident (1 if yes, 0 otherwise) 16.6 23.5
Commercial motor vehicle (CMV) involved (1 if yes, 0 otherwise) 48.7 54.8 51.1
Fatality involved (1 if yes, 0 otherwise) 126.6 202.2 85.3
Vehicle towed (1 if yes, 0 otherwise) 43.9 50.4 24.5
Seat belt indicated as involved (1 if yes, 0 otherwise) −14.4 −6.8 −27.3
On-road (1 if yes, 0 otherwise) −17.3 −21.9 −8.6
Overturn (1 if yes, 0 otherwise) 25.2
Collision type: rear end collision (1 if yes, 0 otherwise) 17.5
Temporal characteristics
Nighttime (lighting condition at time of crash incident: 1 if yes, 0 otherwise) 10.1 9.6 13.2
Winter (incident occurred in month of December, January, or February: 1 if yes, 0
otherwise) 21.4

Peak hours (1 if incident occurred between 7 AM–9 AM and 4 PM–6 PM, 0
otherwise) −10.5 −9.4

Environmental characteristics
Rain (1 if yes, 0 otherwise) 7.3 8.0
Traffic characteristics
Average annual daily traffic (AADT/1000) −0.6 −0.4 −0.4
One lane in the traffic way −23.3
More than two lanes in the traffic way 20.3
Less than four lanes in the traffic way −10.4
Operational characteristics
Detection time (in minutes) 0.7 1.6
Response time (in minutes) 0.9 1.1
Police response present (1 if yes, 0 otherwise) 14.9 16.5
Fire response present (1 if yes, 0 otherwise) 21.8 25.1 19.5
Hazardous materials response present (1 if yes, 0 otherwise) 183.8
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combined model, ASAP coverage area model, and model
for incidents that occurred outside the ASAP area. While
considering all other variables at their means, the ex-
ponent of the estimated parameter coefficient of a vari-
able is converted to a percentage change in incident
clearance times, resulting from a unit increase in con-
tinuous explanatory variables and a change from zero to
one for binary explanatory variables [52]. For example,
the exponent of the estimated parameter coefficient of
overturn in the ASAP coverage area model was 1.25,
which indicates that crashes involving overturn will re-
quire 25% longer clearance time compared to crashes
with the average clearance time. For incidents involving
CMVs, the incident clearance time increased by 48.7%,
54.8%, and 51.1% for the combined model, ASAP cov-
erage area model, and outside the ASAP area model,
respectively. Also, for crashes that resulted in fatality, the
incident clearance time increased by 126.6%, 202.2%, and
85.3% in the combined model, ASAP area model, and
outside ASAP area model, respectively. &ese findings
indicate that crashes involving CMV and those that
resulted in fatality inside ASAP areas required longer
incident clearance times than outside ASAP areas. Since
the ASAP coverage areas fall within the mostly populated
and urban areas in the state (Figure 1), perhaps, the
higher traffic volumes in these areas contribute to the
longer incident clearance times.

&e estimation results further reveal that crashes that
occurred on the roadway (not off the road) inside the ASAP
area were found to have 21.9% lower incident clearance time
than those that occurred outside the ASAP area. &is in-
dicates that crashes that occurred inside the ASAP coverage
area required less time to clear on-road crashes compared to
those that occurred outside the ASAP area. &is finding
underscores the effectiveness of the ASAP program in
lowering incident clearance times. Similarly, crashes that
occurred during nighttime resulted in 13.2% increased
clearance times outside the ASAP area. However, crashes
that occurred during nighttime inside the ASAP area had
only 9.6% increase in incident clearance time. &is suggests
that crashes that occurred outside the ASAP regions during
nighttime required more time to clear. Also, crashes that
occurred during peak hours were found to be associated with
9.4% decrease in incident clearance times in the ASAP
coverage area.

Crash incidents that occurred during rain events were
observed to have 8% longer clearance times inside the ASAP
area. An interesting finding is that, for each 1% increase in
AADT, the incident clearance time decreased by same
percentage both inside and outside the ASAP areas. &e
results further show that the incident clearance times in the
ASAP coverage area increased by 25.1% and 16.5% for
crashes that required fire response and police response,
respectively. However, the percent change for crashes with
fire response present was lower (19.5%) outside the ASAP
area. Crashes that result in fire or involve hazardous ma-
terials are often severe [2]. As such, crashes that require the
presence of fire response team inside the ASAP areas needed
more time to clear.

7. Conclusion

FSP programs have been considered as an effective tool for
traffic incident management in minimizing the adverse ef-
fects of traffic incidents. Many previous studies have eval-
uated the benefits of FSP program using simulation models
as well as various statistical models based on different
performance measures. &is paper used the random pa-
rameters hazard-based duration modeling method to in-
vestigate the impact of the ASAP program on freeway
incident clearance times. &e hazard-based duration model
specification with random parameters enables correlation
across random parameters to capture heterogeneity, re-
vealing underlying information in the incident duration
data. A total of 2,206 freeway crash incidents that occurred
in Alabama in 2018 were investigated by combining and
matching four different datasets: freeway incident response
data from TMCs, ALDOT, freeway crash data from CAPS at
the University of Alabama, ASAP data from ALDOT, and
traffic volume data from HPMS, ALDOT. Based on a
likelihood ratio test, two incident clearance time models
were justified for crash incidents that occurred within the
ASAP coverage area and those that occurred outside the
coverage area.

&e estimation results indicate that a total of five vari-
ables (on-road, nighttime, peak hours, rain, and fire re-
sponse present) were observed to have random effects on
incidents occurring inside the ASAP regions, whereas three
variables (on-road, nighttime, and fire response present)
were found to have random effects on incidents occurred
outside the ASAP regions. A total of five incident related
variables, including involvement of CMVs, fatality, vehicle
towing, seat belt indicated as involved, and incidents that
occurred on-road were found to have significant influence
on incident clearance times. Incidents that occurred during
nighttime were found to have higher likelihood to be as-
sociated with longer incident clearance times in the outside
ASAP coverage area model. Also, incidents that required fire
response presence were identified to have longer incident
clearance times in the ASAP regions, compared to the in-
cidents that occurred outside the ASAP regions. An inter-
esting observation of this study is that AADT had similar
influence on incident clearance times for incidents that
occurred both inside and outside the ASAP regions.

Given the significant cost savings associated with faster
incident clearing times, the findings of this study validate the
expected benefits of the ASAP program in the state. In view
of these findings, it is recommended to expand the ASAP
program to cover most freeways in the state. In addition,
either the ASAP members should be trained in postcrash
care or the program should include trained professionals to
help stabilize crash victims at the scene of the incident before
being transported to the hospital. Further studies are
however recommended to evaluate the impact of the ASAP
program using incident datasets for other states and for
multiple years. Additionally, other phases of incident du-
ration times may also be used as an alternative to incident
clearance times to reassess the ASAP program in the state
[53–55].
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