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Generally, the box bearing of railway freight cars has no bearing sample failure data at the end of the time-terminated reliability
test. However, it is expensive and has high service reliability requirements. Given a small sample size and zero-failure data, the
traditional failure probability calculation formula based on a large sample size and the reliability modeling technique cannot easily
assess the reliability of rolling bearings accurately. Considering the applicability of the bearing of railway freight cars, this study
integrated the prior information of samples and the simulation test information according to Bayes statistical theory, deduced the
mathematical model of cumulative failure probability under failure-free data, calculated the distribution parameters using the
least square method, and established the reliability estimation model of rolling bearings on the basis of Weibull distribution. *e
failure-free simulation data of rolling bearings were produced according to the Monte Carlo simulation, and the reliability of the
journal bearing of railway freight cars was simulated and assessed by three methods. Simulation results demonstrate that the
proposed reliable Bayes multilayer estimation method could not only meet the design requirements of the ISO 281 rolling bearing
standards on that basis of the failure-free data and small sample size of the time-terminated simulation, but also assess the
reliability of the rolling bearing of railway freight cars.

1. Introduction

As the key bearing component, the tapered journal roller
bearing of railway freight cars bears the bogie and car body
vibration loads during service and the random flexural-
torsional loads during contact with the wheel track. Rolling
contact fatigue is the major damage mode. *e journal
bearing may cause temperature increase in the axle and can
even cut the axis and cause train derailment once it fails [1].
Railway freight traffic is developing toward large power and
heavy loads, implying the increasing requirements on the
reliability and service time of rolling bearings. *e reliability
of journal bearings directly determines the reliability of
railway freight cars. Hence, the accurate estimation of the

service time of rolling bearing is particularly important [2].
Number/time-terminated fatigue life tests are practical
methods of obtaining the reliability assessment data of
bearings. Within the regulated time, if failures occurred,
then the reliability can be estimated using the classical
probability statistical method and a big sample size [3].
However, if no failure occurred, traditional methods, like
maximum likelihood estimation and optimal linear unbi-
ased estimation, cannot obtain accurate assessment results
[4]. *e journal bearing of railway freight cars is expensive
and has high reliability, therefore being unsuitable for the
long-period and high-cost number-terminated and com-
plete failure test. It usually chooses the small-sample-sized
time-terminated test. *e establishment of a reliability
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model and the estimation of the service time of journal
bearings with a small sample size and failure-free data are the
weak links of the study on the reliability of the rolling
bearing of railway freight cars and must be urgently
addressed.

Increasing the size of the sample information and using
the traditional bootstrap method, maximum likelihood es-
timation [5], and other reliability modeling methods are
effective ways of increasing the reliability assessment ac-
curacy under a small sample size. However, the calculation
of failure probability has some defects because these
methods ignore the prior information of samples, and the
reliability assessment cannot meet the requirements. *e
Bayesian method has attracted significant attention because
it can make full use of all sample information and increase
the reliability assessment accuracy [6]. Currently, the
bearing reliability under a small sample size has been widely
applied. However, the assessment of the reliable service time
of the rolling bearing of railway freight cars lacks relevant
studies. For this reason, prior information and the time-
terminated simulation data based on the Monte Carlo
method were integrated first using beta distribution as the
prior distribution, thereby obtaining the cumulative failure
probability (CFP) formula on the basis of the Bayesian
method. *e Weibull distribution of unknown parameters
was estimated according to the least square method, and the
reliability estimation model of the journal bearing of railway
freight cars was established using a small sample size.
Moreover, the simulation assessment of reliability was
carried out according to the European standards. *e re-
search results provide references for the reliability assess-
ment of the journal bearing of railway freight cars using a
small sample size and failure-free data.

2. Literature Review

As the core part of a rotating machine, rolling bearing plays
an important role in protecting the reliability and safety of
transportation. With respect to the reliability and service
time problems of bearing under service, scientific re-
searchers have conducted numerous intensive studies.
Warda and Chudzik [7] studied the influences of radial
cylindrical roller bearing misalignment on contact fatigue
life through the finite element method. Prakash [8] proposed
two Bayes hierarchical models; one model uses life data and
the other uses structural health monitoring data to construct
the degradation model and assess the reliability of rolling
bearings. Sakaguchi and Harada [5] discussed the contact
fatigue life of angular contact ball bearing under practical
working conditions through modeling using the ADAMS
software. Leturion et al. [9] established a multibody model of
rolling bearing and generated synthesis data that cover the
degradation related with the bearing surface; some output
variables are used as covariables of the proportional risk
model, which estimates the reliability of bearings through
training. Nelias et al. [6] studied the influences of the up-
setting moment and bearing clearance on the service time of
bearings by establishing the statics analysis model of bearing.
According to the three-parameter Weibull distribution

simulation, Ferreira et al. [10] discussed the statistical
propagation law of the fatigue life of bearings by using the
reliability data of the railway car axle’s ball bearing. To
estimate the residual service time of ball bearings, Sotrisno
et al. [11] developed three algorithms for predicting the
reliable service time of bearings according to 17 ball bearing
test data, including 6 bearing data for algorithm training and
11 bearing data for testing.

Bearings have several failure modes. Rolling contact
fatigue is one of the major failure modes. Recently, many
scholars have built various fatigue life calculation models of
bearings according to different stress life standards. Espejel
and Gabelli [12] built a bearing prediction model that
separates the surface rolling contact and rollaway fatigues,
considering various normal operation conditions of bear-
ings, including load, lubrication, and shape parameters. Ying
et al. [13] built a reliability model of rolling bearing
according to vibration signals, which were collected through
a simulation test and analyzed. To increase the accuracy of
fatigue life calculation during rolling bearing simulation,
Kabus et al. [14] simulated the rollaway contact according to
high-precision elastic space theory and proposed a new
quasistatic time-domain tapered roller bearing model with
multiple degrees of freedom and zero friction. Yakout et al.
[15] corrected the traditional Lundberg–Palmgren rolling
bearing life formula. According to the corrected formula and
dynamic characteristics of rolling bearing, the fatigue life of
bearings was predicted through the vibration modal analysis
method. Morales and Gabelli [16] studied the dynamic
sliding effect of Hertz contact and its influences on the
fatigue life of rolling bearings from three perspectives by
using tribological modeling.

Fatigue life test, which consumes considerable labor
forces andmaterials, is a simple method of obtaining bearing
reliability data. However, the bearing does not usually fail at
the end of a time-terminated test. Studies on the reliability
problem without failure data have attracted increasing in-
terest from the academic and engineering circles. Given that
the service time of bearings follows the Weibull distribution
[17], Li et al. [18] proposed a reliability analysis method
without failure data, which assesses the reliability of rolling
bearings by expanding the optimal confidence interval.
Meanwhile, the influences of the bearing groupingmode and
the shape parameters of the model on reliability assessment
results were analyzed. Xia [19] proposed a gray bootstrap
method of reliability estimation under incomplete bearing
information and estimated the life probability distribution
using the defined empirical failure probability function.
When the life probability distribution is unknown and
failure-free data exist, this method can assess the reliability
of rolling bearings. Considering the relatively high predicted
values of bearing life under extreme stress, Gupta [20] found
that correcting the critical subsurface shearing stress related
with the contact fatigue of rolling bearings could signifi-
cantly improve the reliable life of rolling bearings. To ensure
the safety of reliable assessment, Nguyen [21] applied the
three-parameter Weibull distribution model and predicted
the life probability related with the fatigue of rolling bearings
under any reliable conditions.

2 Journal of Advanced Transportation



*e above analysis indicates that the reliability test of
bearings can select a small sample capacity, which has not
failed yet. How to analyze and assess small-sample-sized
parameters is the core problem of reliability estimation. *e
famous Bayes theory can handle small-sample-sized pa-
rameters. Given that integrating sample and test information
can also shorten the bearing test time, the Bayesian method
has been widely used in the small-sample-sized reliability
assessment of bearings. On the basis of the Bayesian method,
Kwon [22] proposed the reliability verification method
without failure samples for samples with bearings following
Weibull and logarithmic normal distributions. Considering
the changes in reverse Weibull reliability, Pandya and Jadav
[23] proposed a variable-point model and achieved the Bayes
estimation of unknown variable points using the asymmetric
loss function. Shimizu [24] viewed rolling bearing as a
system formed by the series connection of the inner ring, the
outer ring, and rollers and believed that the contact fatigue
life observes the three-parameter Weibull distribution. On
this basis, the three-parameter Weibull distribution bearing
life prediction model based on contact fatigue was con-
structed. Kotzalas [25] discussed the fatigue life statistical
distribution in the high reliability region of tapered roller
bearings, calculated the fatigue life of rolling bearings, which
follows the two-parameter Weibull distribution, and carried
out a reliability verification experiment on the test data.
Most recently, it is worth noting that Bayesian methods have
also been leveraged to address the limited data in training
deep learning-based models. *is helps avoid overfitting
issues and shows its advantages to enhance the trustwor-
thiness of the deep learning-based approaches [26, 27].
Generally, these methods can be adopted to estimate various
reliability parameters in case of failure data in reliability test.
However, with the extension of product service time and the
improvement of reliability, a large number of nonfailure data
have appeared in the timed truncation life test of rolling
bearings. *e traditional statistical methods, such as simple
Bayesian method and Wellbull distribution method, have
been unable to meet the needs of reliability evaluation.

*e journal bearing of railway freight cars experiences
complicated random service loads, interweaving dynamic
loads, and the coexistence of the multifailure mechanism
and failure modes. A long test time is required to obtain the
failure data of bearings.*e reliable life of bearings is usually
analyzed and assessed using a small sample size and the
time-terminated test. *e traditional failure probability
calculation formula based on a large sample size and the
reliability modeling method cannot meet the reliability as-
sessment requirements. *erefore, the tapered journal
double-row roller bearing of railway freight cars was selected
as the research object. To assess the reliability through the
effective use of the small sample sized data of the time-
terminated test, the priori and test information of the
simulation bearing samples were integrated first using Bayes
statistical theory, and the mathematical model of the CFP of
journal bearing was deduced. Next, the Weibull distribution

parameters were calculated using the least squares method,
and a reliability estimation model of rolling bearing was
constructed. Meanwhile, the failure-free simulation data of
bearings were obtained using the Monte Carlo method, and
the numerical simulation of the reliability assessment of
bearings was carried out using different methods. According
to the simulation results, the proposed Bayes multilayer
estimation method of bearing reliability follows the ISO 281
design standards of rolling bearings and can estimate reli-
ability of journal bearing of railway freight cars.

*e remainder of this paper is organized as follows.
Section 3 discusses the integration of the prior and test
information using the multilayer Bayes estimation method
and the construction of a mathematical model of CFP. *e
undetermined parameters of the two-parameter Weibull
distribution are solved according to the least square method,
and amathematical model of the reliability assessment of the
journal bearing of railway freight cars was constructed.
Section 4 presents the generation of random numbers that
conform to Weibull distribution according to the Monte
Carlo method, thus getting the failure-free simulation data
of bearing. *ree methods were used in the reliability
simulation tests, and the simulation results were compared.
Section 5 summarizes the conclusions.

3. Materials and Methods

3.1. Multilayer Bayes Model of CFD

3.1.1. Simplified Model of Failure Probability. If ni is the
number of samples, ti is the sampling time, and (ti, ni)(i �

1, 2, . . . ., m) are the failure-free test data, in which n
products are involved in the time-terminated test, including
r products that fail before end time t and (n − r) products
that do not fail at t. *e time that product r fails is denoted as
tr, and the time that the first product fails after t is recorded
as tr+ 1. If the rth and (r+ 1)th-order statistics of uniformly
distributed samples are F(tr) and F(tr+ 1), respectively, then
their mathematical expectations are given as E [F (tr)]� r/
(n+ 1) and E [F (tr+ 1)]� (r+ 1)/(n+ 1). Given that the form
estimated value is slightly lower than the latter one, com-
promised term (r+ 0.5)/(n+ 1) is used for the estimation
results of F (tr).

*e failure-free data is indeed a special situation of the
failure data problem; that is, no failure product should exist
before end time t or 1/2 (n+ 1) can be estimated when r� 0.
Hence, the classical calculation formula of failure probability
􏽢pi is given as 􏽢pi � 1/2(si + 1).

3.1.2. Empirical Bayes (E-Bayes) Model of Failure Probability.
If λ is the maximum failure probability, 􏽢pi− 1 is estimation of
last failure probability, and pi distributes uniformly on the
interval of [􏽢pi− 1λ]. When it meets the condition 􏽢pi− 1 <pi < λ,
the prior distribution function of π(pi) is then deduced as
π(pi) � 1/(λ − 􏽢pi− 1); otherwise, π(pi) � 0.
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To obtain the posterior distribution of failure probability
pi, the conjugate prior distribution of pi is beta distribution,
and its mean and variance are given as follows:

Eb pi( 􏼁 �
ai

ai + bi( 􏼁
,

Db pi( 􏼁 �
aibi

ai + bi( 􏼁
2

ai + bi + 1( 􏼁
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

Here ai and bi are hyperparametres. Since there exists the
formula B(ai, bi) � 􏽒

1
0 xai − 1(1 − x)bi − 1dx, the conjugate

prior distribution function π((pi|ai), bi) can be deduced as

π pi|ai( 􏼁, bi( 􏼁 �
1

B ai, bi( 􏼁
p

ai− 1
i 1 − pi( 􏼁

bi− 1
. (2)

*e empirical Bayes estimation pi can be derived, which
is called E-Bayes estimated value 􏽢pi with 􏽢pi � 􏽒 􏽢pi(b)π(b)db,
and the corresponding E-Bayes estimated value is obtained
as below.

􏽢pi �
1

c − 1
ln

si + c + 1
si + 2

. (3)

Multilayer Bayes Model of CFD. Define the function
Γ(x) � 􏽒

1
0 tx− 1e− tdt; then the posterior distribution function

of h(pi|si) can be derived from the Bayes theorem; that is,

h pi|si( 􏼁 �
Γ ai( 􏼁Γ si + bi( 􏼁

Γ si + ai + bi( 􏼁
p

ai − 1
i 1 − pi( 􏼁

si+bi − 1
. (4)

According to the point estimation of the Bayesian
method, the mean E[h(pi|si)] of the posterior distribution is
used as the Bayes estimated value of pi (i.e.,
􏽢pi � ai/(si + ai + bi)).

*e probability density curve on the interval of [0, 1] is
shown in Figure 1. When it meets the condition a≤ 1 and
b> 1, the probability density of the beta distribution is

monotone decreasing, which is consistent with the prior
information that the probability of relatively high pi is low,
and the probability of relatively low pi is high. For calculation
convenience, let a� 1 and 1<b< u, where u is determined by
the failure-free data information; then, the multilayer prior
distribution function of f(p1|u) can be obtained as

f p1|u( 􏼁 � 􏽚
u

1

1 − p1( 􏼁
b− 1

B(1, b)
.

1
u − 1

db. (5)

Given that Bayes point estimation is the estimation of
minimum risk, the Bayes point estimation based on the loss
function L(􏽢pi, p) � (􏽢pi − p)2 is the posterior mean. Finally,
the Bayes estimation model can be deduced as

􏽢pi � 􏽢pi− 1 +
1 − 􏽢pi− 1( 􏼁 1 + si( 􏼁lnsi + u + 1/si + 2 − si lnsi + u/si + 1􏼂 􏼃

u − 1 − si lnsi + u/si + 1􏼂 􏼃
. (6)

Obviously, the previous probability (􏽢pi− 1) is used when
􏽢pi is calculated, which makes full use of the sample infor-
mation by repeatedly using the data. Hence, the Bayes
multilayer estimation model can make accurate reliability
estimation.

3.2. Reliability Estimation Model. For Weibull distribution
function F(t) � 1 − exp[− (ti/η)β], Bayes estimated value 􏽢pi

is used to replace pi, with 􏽢pi � 1 − exp[− (ti/η)β]. Let
yi � ln ln(1 − pi)

− 1, xi � ln ti, a � − β ln η, b � β; then 􏽢pi

can be transformed into the linear equation as,
yi � a + bxi (i � 1, 2, . . . ., m).

*e nonlinear least squares method (NLSM) is very
suitable for solving the problem of parameter estimation of
nonlinear functions. NLSM transforms the nonlinear
problem into a linear problem through a specific transfor-
mation method. After the linear function estimate is ob-
tained, it is transformed into the nonlinear function estimate
according to transformation relation. *e values of a and b
are estimated according to the least square method as fol-
lows: 􏽢a � (B − A2)/(D − AC) and 􏽢b � exp[(BC − AD)/
(B − A2)], where A � 􏽐

m
i�1 wiyi, B � 􏽐

m
i�1 wiy

2
i , C � 􏽐

m
i�1

wixi, and D � 􏽐
m
i�1 wixiyi. wi is the weighted coefficient and

has two forms. In the design based on end time,
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Figure 1: Probability density functional curve of beta distribution.
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wi � ti/􏽐
m
j�1 tj. In the design based on the total test time,

wi � niti/􏽐
m
j�1 njtj. *ey are called the Bayes weighted co-

efficient method 1 (BWM1) and the Bayes weighted coef-
ficient method 2 (BWM2).

*e point estimation of Weibull distribution at any time
can be calculated as follows.

􏽢β � 􏽢b, 􏽢η � exp
− 􏽢a

􏽢b
􏼠 􏼡. (7)

Finally, the reliability calculation model is constructed as
follows.

􏽢R(t) � exp −
ti

􏽢η
􏼠 􏼡

􏽢β
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦. (8)

4. Results and Discussion

Tapered roller bearing is characterized by compact structure,
small radial size, high bearing capacity, and low operation
temperature and has been widely used in the journal bearing
of railway freight cars. Figure 2 shows that the journal
bearing of freight cars at the left and right of the axle bears
not only radial loads but also axial loads during service,
interference fit exists between the inner ring of the bearing
and the axle, and clearance fit exists between the outer ring
and the journal box, serving as the support.

*e reliability test on the rolling bearing is shown in
Figure 3. Considering the limitations of the testing machine,
one set of test bearing and two sets of accompanying test
bearings are selected during the test. *ree sets of bearings
are installed on the test shaft, with the test bearing in the
middle and the accompanying test bearing on both sides.
*e rear of the testing machine is a radial loading cylinder,
and the left side is connected to the transmission system.*e
test fixture is installed in the testing machine, and the
comparative test method is used in the test process. *e test
is divided into the number-terminated full-life and time-
terminated tests. To obtain complete test data, the number-
terminated test requires the failures of all samples and re-
liable assessment results. However, it is disadvantageous
when the test period is long and implies huge costs. *e
terminated life test only lasted to failure of partial samples,
and the life assessment results are calculated by collecting
some test data. Considering the high cost, high reliability
requirement, long test period, and high consumption of
bearings of railway freight cars, a small sample size and the
time-terminated simulation test are used in the reliability life
assessment to save time and decrease the cost without
influencing the life reliability assessment of bearings.

Supposing n tapered roller bearing samples were selected
randomly in the time-terminated test and divided into m
groups, then each group has ni (i� 1, 2, ..., m) samples. *e
terminated time of each group is ti, which satisfies following
condition: t1 < t2 < · · · < tm. Let si be the total number of
nonfailed bearing samples before ti. In other words, si
samples that have not exited the test at ti:
si � ni + ni+1 + · · · + nm. Supposing none of the bearing

samples failed after finishing the test, then the failure-free
test data of bearings is (ti, ni).

Currently, most of the rolling bearings used in railway
freight cars are manufactured by SKF (Sweden) and FAG-
INA (Germany). *e service time of bearings conforms to
the two-parameter Weibull distribution [10, 25]. According
to the requirements of European Standards EN12082, the
reliability of the journal bearing of railway freight cars shall
be checked according to ISO 281 standards [28].

During the time-terminated life simulation test, the
samples are supposedly chosen freshly for each terminated
test. If the bearing samples do not fail at the first terminated
test, they are used in the second time-terminated test. *is
iteration continues until all the samples fail. *e vertical and
radial loads applied onto the double-row tapered roller
bearing of heavy-duty freight cars were pv � 204.78 kN and
PH � 77.4 kN, respectively. Railway freight cars move at rated
speed under rated loads, and the life of the rolling bearing is
no shorter than the travel distance of 60×106 km [28]. In this
study, the rated speed of the heavy-duty freight cars was
80 km/h, which corresponds to the rotating speed of the
journal bearing of 505 rpm. If the service time of the bearing
exceeds 8000 h, it can meet the reliability design
requirements.

According to recommended value of ISO 281, β� 1.5 and
η� 40000 are the initial values of the Weibull distribution.
*e probability density model of rolling bearing is expressed
as follows.

F(t) �
1.5t

0.5

400001.5 exp −
t

40000
􏼒 􏼓

1.5
􏼢 􏼣. (9)

*e point estimated values of β and η are calculated
through the maximum likelihood estimation of the Weibull
distribution parameters: 􏽢β � 1.4898 and 􏽢η � 39832. Hence,
the mathematical model of reliability estimation is expressed
as follows.

􏽢R(t) � exp −
t

39832
􏼒 􏼓

1.4898
􏼢 􏼣. (10)

*e estimation curves of reliability and failure proba-
bility, which are calculated and plotted using the CEM,
BWM1, and BWM2, are shown in Figure 4. Obviously, the
reliability estimated by BWM2 is the most ideal.

With 􏽢β and 􏽢η, a group of Weibull distribution random
numbers are generated using the Monte Carlo method and
sorted in ascending order. Ten data are placed in one group,
and 30 bearing samples are divided into 10 groups for 10
time-terminated tests.*e end time of each time (unit: hour)
is set as ti. *e test is terminated when the Monte Carlo
simulation continued to the 10th time and the test time of
the bearing is 9,079 h without failure data. According to the
previous repair cycle requirement that the travel distance of
railway freight cars should be no shorter than 60×106 km
[28], the end time of this simulation is determined to be
9,079 h.

*e simulation test data of the time-terminated test are
listed in Table 1, where i is the termination order, ni is the
number of bearing samples, and si is the number of nonfailed
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bearing samples. *e operation time and driving distance of
railway freight cars under different numbers of bearing
samples in the terminated simulation test are shown in
Figure 5.

Supposing the ultimate reliability of the journal bearing
of railway freight cars when traveling 60×106 km is 0.9975,
that is, the maximum failure probability does not exceed
0.0025. *e relation curves between the CFP, which are
obtained in the four terminated simulation tests, and upper
limit parameter u are shown in Figure 6.*e satisfying curve
is derived according to Figure 6. Finally, the value of u in the
equation (5) is determined to be 1000.

After determining the parameters in Table 2, the esti-
mated value (􏽢pi) of 􏽢pi is obtained using the CEM, BWM1,
and BWM2.*e estimated values of the Weibull parameters

and the calculated results of reliability using the CEM,
BWM1, and BWM2 are listed in Table 3.

Tables 2 and 3 indicate that the estimated results of the
CEM differ significantly from the expectation, while the
estimated results of BWM1 and BWM2 are relatively good.
*e Bayes weighted methods are chosen. When the reli-
ability is approximately 0.97, the reliability life of the bearing
is calculated to be 8,190 h, and the corresponding traveling
distance is 65.5×106 km. *e reliability assessment results
conform to the design requirements of the ISO 281
standards.

*e Weibull parameters, which are calculated using
failure-free data and failure probability, and the relative
errors (REs) are listed in Table 4. According to the above
calculation formulas, BWM1 only considers the end time of

Axle journal bearing

(a)

Outer race
Cage

Inner race Rolling element

(b)

PV

PH

(c)

Figure 2: Structure of axle journal bearing for railway freight wagon. (a) Car bogie of railway freight. (b) Double-row tapered roller bearing.
(c) Force analysis of axle journal bearing.

Monitoring system

Transmission component

Frame

Testing machine

Figure 3: Reliability test bench of axle journal bearing.
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Table 1: Time truncated data.

i ti ni si
1 981 7 30
2 1885 6 23
3 2768 5 17
4 3683 3 12
5 4583 2 9
6 5491 2 7
7 6378 1 5
8 7205 1 4
9 8190 1 3
10 9079 1 2
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Figure 5: Relationship between sample number, test distance, and test time.
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Table 2: CFP estimation ×10− 2.

CFP CEM BWM1 BWM2
􏽢p1 0.89 0.24 0.24
􏽢p2 1.09 0.49 0.49
􏽢p3 1.35 0.76 0.76
􏽢p4 1.72 1.05 1.05
􏽢p5 2.27 1.36 1.36
􏽢p6 3.13 1.7 1.7
􏽢p7 4.55 2.06 2.06
􏽢p8 7.14 4.47 4.47
􏽢p9 12.5 2.93 2.93
􏽢p10 25 3.46 3.46

Table 3: Parameter and reliability estimation.

Parameter CEM BWM1 BWM2
β 1.8455 1.4187 1.3389
η 28706 32621 36962
R (981) 0.9980 0.9979 0.9978
R (1885) 0.9935 0.9953 0.9952
R (2768) 0.9867 0.9924 0.9923
R (3683) 0.9776 0.9892 0.9892
R (4583) 0.9667 0.9858 0.9859
R (5491) 0.9539 0.9823 0.9825
R (6378) 0.9396 0.9787 0.9791
R (7205) 0.9250 0.9752 0.9758
R (8190) 0.9059 0.9709 0.9715
R (9079) 0.8874 0.9640 0.9649

Table 4: Comparison of calculation errors.

Method β η RE of β RE of η
CEM 1.8455 28706 0.2303 0.2823
BWM1 1.4187 32621 0.0542 0.1844
BWM2 1.3389 36962 0.1074 0.0085
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the samples, whereas BWM2 comprehensively considers the
influences of the end time and the sample size on theWeibull
distribution parameters. *erefore, BWM1 shows a higher
calculation error than BWM2, while BWM1 presents a
relatively high calculation accuracy.

Table 4 shows that the Weibull parameter error based on
the multilayer Bayesian methods is significantly lower than
that based on the CEM because the multilayer Bayesian
methods make full use of the prior information and sim-
ulation data of bearing samples. Furthermore, the estimation
results of the Bayesianmethods are more accurate than those
of the CEM, which uses few information. Hence, the
multilayer Bayesian methods are more applicable to the
reliability modeling and reliability life assessment of the
rolling bearings of railway freight cars on failure-free data.

5. Conclusions

Journal bearing of railway freight cars is expensive and has
high reliability requirements. *e failure data of bearings
takes quite a long time to obtain. *e reliable life of journal
bearing is usually estimated through the small-sample-sized,
time-terminated test. *e traditional calculation formula of
failure probability and the reliability modelingmethod based
on a big sample size cannot easily assess the reliable life of
bearings accurately. *us, beta distribution is used as the a
priori distribution.*e prior information of the samples and
the simulation test data are integrated according to Bayes
statistical theory through which the mathematical model of
CFP on failure-free data is deduced. *e bearing reliability
assessment model based on Weibull distribution is con-
structed by combining the least squares method. Moreover,
the failure-free simulation data of bearings are simulated
according to the Monte Carlo method. A numerical simu-
lation study on reliable life assessment is carried out using
different methods. Meanwhile, the simulation results are
compared. *e following conclusions could be drawn:

(1) *e failure-free simulation data of rolling bearing,
which is obtained from the Monte Carlo method, can
expand the parameter ranges based on multilayer
Bayes estimation, increasing the estimation accuracy
of model parameters in the numerical simulation test.

(2) *e multilayer Bayes reliability assessment model is
compatible with the sample data and the distribution
functional information. *e model information size
is significantly higher than that of the traditional
method. In particular, the reliability assessment
accuracy of Bayes weighted methods is far higher
than that of the traditional probability statistical
method.

(3) During implementation of the small-sample-sized,
time-terminated test of the journal bearing of railway
freight cars, the estimation results of the bearing
reliability model, which is built according to mul-
tilayer Bayesian method, and the Weibull distribu-
tion conform to the design requirements of the ISO
281 standards. *is model can accurately assess the
reliability life of journal bearings.

In this study, the failure-free data (ti, ni) were obtained
from the simulation results of the Monte Carlo method.
Determining the end time (ti) of the failure-free data and the
number of bearing samples (ni) in the reliability life test will
be discussed intensively in future studies. Additionally, the
proposed method is based on failure-free data and inap-
plicable only to the assessment of the reliability life of
bearings once failure data is produced in the reliability test.
*erefore, a more reasonable reliability assessment method
must be developed.
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