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(e implementation of ship speed control is extremely important in the shipping industry. It is affected by various factors, such as
water depth, obstacles, and environmental factors. Traditional speed control methods only consider geographical constraints,
which is difficult to achieve the goal of safe navigation and maritime traffic efficiency simultaneously. Accordingly, a two-stage
speed dynamic control model is proposed in this study. In the first stage, certain safety navigation factors, including obstacles, sea
environment conditions, and limit of estimated time of arrival to destination port, are considered. In the second stage, the speed
dynamic control model considering safety and environmental factors is established by combining multisource data and particle
swarm optimisation algorithm.(emodel’s superiority and advantage are validated by experiments conducted on an ocean-going
ship. (e experimental results show that the proposed dynamic speed control model can reduce the ship’s fuel consumption and
improve energy efficiency while ensuring the safety navigation. (e study is anticipated to be used as a reference for speed
dynamic control.

1. Introduction

Marine transportation is efficient because more than 80% of
goods delivered to various countries are shipped [1]. (e
efficiency of maritime transportation can be effectively
improved by implementing ship speed control and route
planning [2–4]. In maritime transportation, speed control is
vital to ensure the safe navigation of the vessel to arrive at the
destination port. However, many factors affect the ship’s
navigation safety, such as obstacles, number of nearby ships
[5, 6], and water depth [7, 8]. In addition, because the
environmental conditions are highly uncertain [9], ocean-
going vessels may encounter strong typhoons, introducing a
considerable challenge to decision-making associated with
speed control.

Vessel speed control has attracted considerable attention
from the industry due to its role in achieving the goal of
green shipping. A ship may encounter extreme sea states,
which can adversely affect the ship’s navigation safety and
energy efficiency. (erefore, in formulating a ship speed

control strategy, fully ensuring the ship’s navigation safety is
foremost before dynamically controlling the speed based on
the weather and sea conditions. (e implementation of
speed control can lead the ship towards greener and safer
navigation. However, ship speed control is a dynamic op-
timisation problem with multiple constraints and objectives
[10, 11]. Consequently, deriving an optimal solution using
traditional optimisation algorithms is difficult. (e devel-
opment of artificial intelligence, data mining, and deep
learning provides a new approach for ship route planning
and dynamic speed control [12–15].

In this paper, a speed dynamic control model that
considers safety and environmental factors is proposed. (e
model is mainly divided into two steps. First, the naviga-
tional restrictions based on the sailing route are identified to
ensure that the ship arrives safely at its destination port. (e
second step considers the uncertainty as well as the variation
of weather and sea conditions with time and the limitation of
estimating the time of arrival to the destination port. Based
on the navigational restrictions selected in the first step and
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using weather forecast data, a real-time dynamic speed
optimisation model is established.

2. Literature Review

Route planning and speed control aid in improving the
energy efficiency of ships. Route planning mainly involves
the selection of an optimal route based on the weather and
sea conditions [16]. Under extreme sea states, the ship may
experience considerable speed loss [17]; hence, the crew may
opt to reduce the ship speed to ensure navigational safety.
Accordingly, literature review is implemented considering
path planning and speed control.

2.1. Route Planning. Route planning attracted interest in
seafaring because it identifies a suitable route for vessels.
Jasna et al. [18] assumed that a ship’s crew voluntary reduces
speed to ensure safe voyaging; however, the ship unavoid-
ably loses speed due to the strong winds and waves acting on
the ship’s hull. (erefore, data from the six sailing routes of
an ocean-going container ship are used to determine the
speed loss under different sea states and wave heights. Choi
et al. proposed a speed optimisation model for ice regions,
considering that ice areas can change over time [19]; they
used the A∗ algorithm to plan an optimal navigation path.
Park et al. [20] proposed a two-stage weather routing model.
In the first stage, the ship’s speed is maintained and the A∗

algorithm is employed to achieve route path optimisation. In
the second stage, speed optimisation is implemented using
the optimal route path derived in the first stage.

Traditional route planning mainly selects an optimal
sailing route according to weather and sea conditions for
navigation safety. However, the planned navigation route is
not the most economical path because it only considers
safety. Lee et al. [21] proposed a model that simultaneously
optimised speed and voyage route, reducing fuel con-
sumption by 12.1% and 10.2%, respectively. (e model
yields better results than the Dijkstra and isochrone algo-
rithms. Wang et al. [22] accounted for the variation in
weather and sea conditions during voyage by adjusting the
speed, path, and ship’s course in real time. (ey combined
dynamic programming and genetic algorithm to achieve
three-dimensional dynamic voyage optimisation. Zaccone
et al. [23] assessed ship motion and comfort and then si-
multaneously optimised the speed and navigation route
considering different arrival times. Zhang et al. [24]
established an optimisation model for ship energy efficiency
according to a route for Arctic navigation.

2.2. Speed Optimization Control. An effective approach to
improve the efficiency of maritime traffic is the dynamic
control of ship speed. (e implementation of speed control
can improve the energy efficiency of ships by reducing
operating costs. Furthermore, it enables the ship to avoid
strong winds and areas with intense waves, ensuring safe
arrival at the destination port. Wang et al. [25] considered
the influence of wind and waves on ship speed and pro-
posed a multiobjective voyage optimisation model capable

of reducing fuel consumption by more than 5%. Ma et al.
[26, 27] considered that ships burn expensive bunker oil in
the sulphur emission control area. Accordingly, they
proposed a model for simultaneously optimising ship route
and speed to reduce costs. In the foregoing, the total
shipping cost includes the fixed time costs, cargo inventory,
and fuel costs. Hence, by adjusting the sailing route and
speed simultaneously, shipping costs and emissions are
both minimised [28]. Yan et al. [29] proposed a two-stage
ship fuel consumption prediction and reduction model for
a dry bulk ship. In the first step, random forest (RF) is used
to estimate the fuel consumption considering different
influencing factors. (e second step established speed
optimisation based on the fuel consumption predicted by
RF. After considering the limit of the arrival time at the
destination port, the model achieved 2–7% fuel saving. Du
et al. [30] used an artificial neural network (ANN) to model
fuel consumption based on container’s noon report. (ey
implemented three-speed optimisation according to ap-
plication scenarios and finally achieved 4–9% fuel saving.
Yuan et al. [31] initially considered sailing speed as the
decision-making variable. However, they noted that, in
actual voyages, the operator is required to adjust the main
engine speed to drive the ship forward. Accordingly, the
main engine speed is selected as the decision-making
variable instead of the sailing speed, leading to 33.54% fuel
saving.

Existing speed optimisation control models seldom
account for the effects of weather and sea conditions.
Note that a ship may suffer speed loss under extreme sea
conditions caused by adverse weather. Although some
studies have also considered the effects of weather and
sea conditions, most are based on historical navigation
data. Consequently, their models have an inadequate
practical application value. Based on the foregoing, the
dynamic control of a ship’s speed in real time according
to the variations in weather and sea conditions is
necessary.

(1) If the sea current direction and wind directions are
not within [0, 180], delete the entire row of data.

(2) Delete draughts that are clearly outside the normal
range, such as when the draught is 0 or 100. If the
draught is abnormal, delete the entire row of data
where the draught is located.

(3) (e value of fuel consumption is generally distrib-
uted in the normal range; these data are marked
abnormal and deleted once the value of fuel con-
sumption indicates extremely high or low.

(4) Delete the entire row of data in which the speed over
the ground and speed over the water are negative.

(5) Some data on latitude and longitude may clearly
deviate from the ship’s trajectory. For these data
points, latitude and longitude are interpolated.

(6) Sort data according to voyage time. If the data point
of the distance over ground is less than the previous
data point (identified as anomalies), linear inter-
polation is implemented for these points.
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3. Data Description

3.1.DataCollectionandDataPreprocessing. In this work, the
target ship is a bulk carrier that departs from Dalian Port,
China, to São Luis, Brazil; its sailing route is shown in
Figure 1. Numerous sensors, such as log equipment, global
positioning system (GPS), automatic identification system
(AIS), and fuel consumption gauge, are installed on the ship.
(ese devices collect data that are synchronously trans-
mitted to the shore database. (e collected data include the
latitude and longitude of ship position, speed over ground,
and speed through water. Information related to collected
data is summarised in Table 1.

(e foregoing data are sampled every 5min, and the fuel
consumption of the main engine is averaged within 5min.
For convenience, the fuel consumption is converted into
daily consumption according to the time ratio. In addition,
because the wind and sea current directions are absolute, we
converted them into relative wind and sea current directions
according to the heading of the vessel.

Errors may have been introduced into the collected data
due to a number of factors, such as faulty acquisition
equipment, poor transmission signal, and human factors. If
these erroneous data are directly used for model training,
they can negatively impact the model’s accuracy. (us,
identifying abnormal data and data cleaning are necessary.
Data preprocessing using marine domain knowledge is
based on the following principles.

According to the above principles, a data cleaning al-
gorithm (i.e., Algorithm 1) is designed.

After implementing the foregoing data preprocessing
steps, the number of rows of data was reduced from 12,975
to 12,769.

3.2. Data Feature Selection. (is research aims to establish a
speed optimisation model to reduce fuel consumption and
gas emissions. (ere are many factors that affect the ship’s
fuel consumption, such as draft, speed over ground, and sea
and weather conditions. (us, establishing a high-precision
and robust fuel consumption prediction model is the
premise for developing ship speed control. Sailing speed is
known to be the most important factor affecting fuel con-
sumption. Many studies assume that fuel consumption is
proportional to the cube of sailing speed. Additionally,
draught and trim change the area of the ship underwater. In
turn, the vessel’s resistance is affected. Weather and sea
conditions also affect fuel consumption. Accordingly, seven
variables are selected as inputs: speed over ground, draught,
trim, wind speed and direction, and sea current speed and
direction. Daily fuel consumption is selected as output
variable. (e distribution of each data feature is shown in
Figure 2.

4. Development Model for Ship Fuel Prediction

4.1. Tree-Based Models for Ship Fuel Prediction

4.1.1. Decision Tree. Decision tree (DT), a machine learning
algorithm based on a tree structure, is typically used for

classification and regression [32]. It is composed of a root
node, several internal nodes, and many leaf nodes. (e root
node, which is the main node of the tree, represents the
attributes of a dataset. Based on splitting criteria, the root
node is separated into several nodes until all dataset samples
belong to the same category or cannot be split. However,
frequently, a DT is extremely large and prone to overfitting.
(us, termination criteria must be set to control its di-
mensions. (e max_depth, min_samples_leaf, and min_-
samples_split are generally used as the termination criteria.

Max_depth: the maximum depth of decision tree used
to control the depth of subtree; the tree stops splitting
immediately once the depth of tree reached to max
depth
Min_samples_leaf: this is the minimum number of
samples required for leaf nodes; if the number of leaf
nodes is less than the min_samples_leaf, the tree stops
splitting the nodes
Min_samples_split: this is the minimum number of
samples for nodes; if the number of node samples is less
than the min_samples_split, the tree stops splitting the
nodes

(e main steps for constructing a DT are presented as
Algorithm 2.

Sao Luis 
(destination)

Dalian 
(departure)

Figure 1: Sailing route of the ship.

Table 1: Information related to collected data.

Feature Units
Ship course Degree
Longitude Degree
Latitude Degree
Sea current speed (SCS) n mile/h
Fore draft (FD) m
Aft draft (AD) m
Speed over ground (SOG) n mile/h
Distance over ground (DOG) n mile
Ship heading course Degree
Wind speed (WS) m/s
Wind direction (WD) Degree
Sea current direction (SCD) Degree
Shaft power kw
Main engine rotating speed r/min
Main engine fuel consumption (FC) Mt
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(e visualisation of DT for predicting fuel consumption
is shown in Figure 3. Note that DTs are prone to overfitting.
To avoid this, ensemble learning techniques are applied to
estimate the ship fuel consumption [33]. Base learners,
usually composed of DTs, are mainly involved in ensemble
learning.(e regression results of learners are combined and
considered as the predicted value of the target. Ensemble
learning is classified into bagging and boosting depending
on the relationship among learners. Each learner is trained
independently and used for bagging, such as in RFs.(e base
learner modifies the sampling of training data as boosting
based on the training results of the previous learner; the

weight of the base learner is also modified. Gradient
boosting DT (GDT) can overcome the prediction defect of a
single DT. It is frequently applied to ship data cleaning [34]
and modelling for main engine power and ship fuel [35, 36].
For detailed information on GDT, refer to the literature [37].

4.2. Neural Network-Based Models for Ship Fuel Prediction.
Numerous studies on modelling ship fuel consumption have
been conducted using neural networks. An ANN includes an
input layer, a hidden layer, and an output layer. All variables
are entered into the input layer and transmitted to the output
layer through the hidden layer. Finally, the results are found

Input: the data set x of dimension n × p

Output: cleaning data by using Algorithm 1
(1) Sort voyage time of data entries
(2) While (|LOG(i) − LOG(i − 1)|> 0.1)∩ (|LOG(i + 1) − LOG(i)|> 0.1) or
(3) (|Lat(i) − Lat(i − 1)|> 0.1)∩ t(|Lat(i + 1) − Lat(i)|> 0.1) or(DOG(i)<DOG(i − 1))

(4) implemented linear interpolation for Lon (i), Lat (i), DOG (i)
(5) for i � 1, 2, ..., n do
(6) if (0≤WD(i)< 180)∩ (0≤ SCD(i)< 180)∩ (0<FC(i)< 18)∩ (6< SOG(i)< 16) and
(7) (6< SOW(i)< 16)∩ (10<FD(i)< 15)∩ (10<AD(i)< 15)

(8) j� j+ 1
(9) newdata[j, :]←data[i, :]
(10) end
(11) end
(12) end

ALGORITHM 1: Data cleaning by using domain knowledge.
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Figure 2: Distribution of each feature.
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in the output layer. (e ANNmodel for fuel consumption is
shown in Figure 4.

(e connection weight among the layers is continuously
adjusted through error backpropagation. (e value of each
neuron in the hidden layer can be expressed by the following
equation:

yl � f 􏽘
u

e�1
zelχe + dl

⎛⎝ ⎞⎠, (1)

where χe is the value of the e-th neuron in the previous
layer of the hidden layer, u is the total number of neurons
in the previous hidden layer, zel is the connection weight
between the previous layer of neuron u and next layer of
neuron l, dl is the bias, and f(·) is the activation function.
(e essence of dataset training is to find an optimal
connection weight. (e minimum error between the ac-
tual training set value and predicted value is the objective.
(e error is backpropagated, and all connection weights

are continuously updated after each iteration. Finally, the
optimal connection weights can be obtained upon
reaching the maximum limit of iterations.

4.3. Instance-Based Models for Ship Fuel Prediction

4.3.1. Support Vector Machine. Support vector machine
regression (SVR) seeks to establish a hyperplane that divides
a dataset sample to become linearly separable.(e regression
process is shown in Figure 5. (e regression value can be
expressed as

f(x) � 􏽘
n

i�1
ξi − ξ∗i( 􏼁k xi, x( 􏼁 + b, (2)

where ξi and ξ
∗
i denote the upper and lower slack variables,

respectively, C is the penalty parameter, and k(xi, x) is the
kernel function. (e value of ξi and ξ

∗
i can be obtained from

the following equation:

Trim<=0.61
mse=77.33
samples=8

value<=31.93

Current speed<=0.07
mse=18.41
samples=3

value=42.36

Mean dra�<=0.07
mse=8.14
samples=5

value=25.67

mse=0.0
samples=1

value=42.11

mse=0.0
samples=1

value=42.11

mse=0.0
samples=1

value=37.24

mse=0.0
samples=1

value=27.56

mse=0.0
samples=1

value=24.15

mse=0.0
samples=1

value=21.00

mse=0.0
samples=1

value=29.19

mse=0.0
samples=1

value=47.74

Trim<=0.58
mse=2.48
samples=2

value=22.58

SOG<=9.37
mse=0.33
samples=2

value=26.99

Trim<=0.45
mse=1.30
samples=3

value=27.72

Trim<=0.71
mse=5.94
samples=2

value=39.67

True False

Figure 3: Visualisation of DT for predicting fuel consumption.

Input: training set D and termination conditions Ta.
Output: regression tree f(x)

Step 1: find the best attribute feature j and attribute feature value sj which can be obtained by solving
min 􏽐Xi∈R1(j,s)(yi − c1)

2 + 􏽐Xi∈R2(j,s)(yi − c2)
2

􏽮 􏽯, R1(j, s) � x(j) ≤ s􏼈 􏼉, R2(j, s) � x(j) > s􏼈 􏼉,
c1 � (1/N1)􏽐xi∈R1(j,s)yi, c2 � (1/N2)􏽐xi∈R2(j,s)yi

Step 2: use (j, s) to split the current node into two nodes which contain two subnodes R1(j, s) � x(j) ≤ s􏼈 􏼉 andR2(j, s) � x(j) > s􏼈 􏼉

Step 3: repeatedly apply Steps 1 and 2 to split the node until the present node satisfies the termination conditions. (e present node is
changed to two subnodes c1 � (1/N1)􏽐xi∈R1(j,s)yi and c2 � (1/N2)􏽐xi∈R2(j,s)yi. (e remaining nodes continue to split in the same
manner.
Step 4: repeatedly use Step 3 until no nodes can be split; assume that the entire dataset is split into disjoint subsets R1, R2, . . . , RM. (e

predict result is f(x) � 􏽐
M
a�1 caI(·), where I(·) �

0, x ∉ ca

1, x ∈ ca

􏼨

ALGORITHM 2: DT construction.

Journal of Advanced Transportation 5



min

w, b, ξi, ξ
∗
i

1
2
w

T
w + C 􏽘

m

i�1
ξi + ξ∗i( 􏼁

⎧⎨

⎩

⎫⎬

⎭,

s.t.

ye − w
T
k xi( 􏼁 − b≤ ε + ξi,

w
T
k xi( 􏼁 + b − yi ≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0, i � 1, . . . , m,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where k(xi, xj) is given by

k xi, xj􏼐 􏼑 � xi · xj􏼐 􏼑 + 1􏼐 􏼑
p
. (4)

4.3.2. K-Nearest Neighbour. K-nearest neighbour (KNN)
regression finds the k data points closest to the target
data point. (en, the average of the k data points is
considered as the regression result of the target point.
(e regression process is shown in Figure 6. (e

Euclidean distance can be used to measure the distance
between two data points. It can be expressed by the
following equation:

dis � 􏽘

p

j�1
xoj − xij􏼐 􏼑

2
. (5)

4.4. StatisticalLearning-BasedModels for ShipFuelPrediction.
Linear regression is applied to describe the relationship
between the independent variable and dependent variables;
it can be expressed as

yi � b0 + b1xi1 + · · · + bpxip + ε, (6)

where x � (x1, x2, . . . xp) is the input variable, p is the
number dimension of input variable, and
b � (b0, b1, b2, . . . bp) is the independent variable coeffi-
cient; the least square method is frequently applied to
calculate each coefficient. However, if some of the inde-
pendent variables are strongly correlated, the method
tends to cause extreme overfitting. To resolve this, the
least absolute shrinkage and selection operator (LASSO)
model is applied to some important variables by penal-
ising each regression coefficient. (is model can be
expressed as follows:

SSE � 􏽘
m

i�1
yi − b1xi1 − b2xi2 − · · · − bpxip􏼐 􏼑􏽨 􏽩

2
+ λ􏽘

p

j�1
bj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(7)

4.5. Metrics for Model Validation. (e coefficient of deter-
mination (R2), mean absolute error (MAE), mean square
error (MSE), root mean square error (RMSE), and mean
absolute percentage error (MAPE) are used to measure the
accuracy of the model as defined by equations (8)–(12),
respectively:

Input layer Hidden layer Output layer

Weights

Weights

Current speed
Current direction

Wind speed
Trim

Mean dra�

SOG

Wind direction

Fuel consumption
(Mt/day)

Figure 4: Structure of ANN model for fuel consumption.

wx+bξi

ξi*

Hyperplaneε

ε

Figure 5: Regression of SVR.

K= 3

K= 6

X1

X2

Real point
Targe point

Figure 6: KNN regression.
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R
2

� 1 −
􏽐

m
i xi( 􏼁 − yi( 􏼁

2

􏽐
m
i xi( 􏼁 − y( 􏼁

2 , (8)

MAE �
1
m

􏽘
m
i�1 f xi( 􏼁 − yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (9)

MSE �
1
m

􏽘
m
i�1 f xi( 􏼁 − yi( 􏼁

2
, (10)

RMSE �

����������������

1
m

􏽘

m

i�1
f xi( 􏼁 − yi( 􏼁

2

􏽶
􏽴

, (11)

MAPE �
1
m

􏽘

m

i�1

f xi( 􏼁 − yi

yi

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (12)

wherem is the number of testing sets, yi is the actual value of
testing set, f(xi) is the predicted value of input variable xi,
and y is the average test set value. R2 approaching 1 indicates
high prediction accuracy. Small values of RMSE, MAE,MSE,
and MAPE denote high accuracy.

5. Speed Optimisation Model

5.1. Description of Speed Optimisation Problem. (e changes
in weather and sea conditions are considered because they
influence navigational safety and fuel consumption. (e
weather forecast for the test case is based on the National
Weather Service data. (e wave and grid resolution is 0.5 ×

0.5 (updated every 6 h). (e ship departs from port A (at
time 0) and arrives at the destination port at the estimated
time. (e speed optimisation problem is shown in Figure 7.
(e entire voyage is divided into several large segments.
Each segment contains several subsegments; the sailing
speed in a subsegment is specified.(e weather forecast data,
combined with the ship’s draught and trim, are used in the
GBR model to calculate the fuel consumption of each
subsegment. (e least fuel consumption throughout the
voyage is set as the objective function.

5.2. Description of Speed Optimisation Mathematical Model.
(e speed optimisation mathematical model can be de-
scribed as follows.

(e speed optimisation model can be expressed as
follows:

min􏽘
n

i�1
􏽐
P

j�1
f

GBR
Vij,Draftij,Trimij, Wij􏼐 􏼑 ×

Vij

Sij

. (13)

(e foregoing is subject to

tij �
Sij

Vij

, (14)

Si � Si− 1 + 􏽘

g

j�1
si− 1,j, (15)

Ti � Ti− 1 + tij,∀i ∈ n, j ∈ g, (16)

Ti ≤Tmax, (17)

V
min
ij ≤Vij ≤V

max
ij . (18)

Objective (13) minimises the ship fuel consumption
throughout the voyage. Constraint (14) indicates the voyage
time of a subsegment. Constraint (15) defines the relational
distance between a segment and subsegment. Constraint
(16) defines the voyage time from the departure port to a
present segment. Constraint (17) ensures that the ship arrival
time to the destination port is no later than the allowable
arrival time. Constraint (18) regulates the upper and lower
bounds of sailing speed in each subsegment.

6. Computational Experiments

6.1.Model for Fuel Consumption Prediction. Six state-of-the-
art supervised learning techniques are used to model fuel
consumption: ANN, DTR, GBR, KNN, SVR, and LASSO.
(e training set accounts for 80% of the entire dataset, and
the remaining 20% is the test set.(e training and test sets of
each algorithm are the same. (e Bayesian method com-
bined with ten-fold cross-validation is used to optimise the
hyperparameters of each algorithm (Table 2). All experi-
ments are implemented on Python 3.7.9 (on Win10 oper-
ating system, Intel CoreTM i5-8265U processor (1.80GHz)
and 8-GB RAM). Each algorithm is tested five times. To
consider randomness, the average of the five experiments is
used as the final value of each algorithm. (e accuracy of
each algorithm is listed in Table 3.

In Table 3, the GBR model has the highest in terms of R2

value. Its MSE, RMSE, MAE, and MAPE values are all lower
than those of the other five models, indicating that it has the
highest prediction accuracy. Accordingly, the GBR model is
selected for predicting fuel consumption.

6.2. Solution Procedure. As discussed in Section 5.2, speed
optimisation is a dynamic optimisation problem that can be
solved using the particle swarm optimisation (PSO) algo-
rithm. (is algorithm was first proposed by Kennedy and
Eberhart in 1995 based on birds searching for food [38]. It
has been widely applied to speed optimisation because it
requires fewer parameters and has fast convergence [39, 40].
Each particle adjusts speed and position by constantly
sharing own position with other particles. (e speed and
position of each particle are updated as follows:

v
d
m+1 � w × v

d
m + c1r1 p

d
m − x

d
m􏼐 􏼑 + c2r2 g

d
m − x

d
m􏼐 􏼑,

x
d
m+1 � x

d
m + v

d
m+1,

(19)

where w is the inertia weight, c1 and c2 are the learning rate,
r1 and r2 are the random constant between [0, 1], vd

m is the
speed of d-th particle at them iteration, xd

m is the position of
d particle at the m-th iteration, pd

m is the best position of the
d-th particle in the previous m times, gd

m is the best position
of all particles in the previous m-th times, xd

m+1 is the
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position of d-th particle at the m+1-th iteration, and vd
m+1 is

the speed of d-th particle at the m+1-th iteration.
(e PSO process calculates the optimal speed of each

segment, as shown in Figure 8; the parameters of the PSO
algorithm are summarised in Table 4.

7. Analysis of Results

7.1. Speed Optimisation Results. (e accuracy of weather
forecast is presumed to decrease as time increases. (e ship
captain approximates the daily voyage path length based on

Port A Port B

Departure port
Time: T0

Destination port
Time: Tn

 Segment 1 Segment n

Sub-segment 1

Segment i

V1,1 V1,2 V1,3 V1,4 V2,1 V2,2 V2,3 V2,4 Vi,1 Vi,2 Vi,3 Vi,4 Vn,1 Vn,2 Vn,3 Vn,4

Figure 7: Speed optimisation problem.

Sets and indices Meaning
n Total route divided into n segment

I Indicate the starting point of each segment, 0 represents the departure port A, n represents the destination
port B

i Set of all path segments, i ∈ 1, 2, . . . n{ }

j Each segment is divided into j subsegments, j ∈ 1, 2, . . . g􏼈 􏼉

Wij Sea and weather conditions in segment i and j subsegment
Draftij Draught in segment i and subsegment j
Trimij Trim in segment i and j subsegment
Vmin

ij Maximum allowable speed when sailing in segment i and subsegment j
Vmax

ij Minimum allowable speed when sailing in segment i and subsegment j

fGBR
ij (Vij,Draftij,Trimij, Wij)

Predicted ship fuel consumption by using the proposed GBR model when sailing speed is Vij, draft is
Draftij, trim is Trimij, sea and weather conditions is Wij

tij Indicates voyage time in segment i and j subsegment
Ti Voyage time from departure port A to segment i
Tmax Latest allowable arrival time
Sij Voyage path length of segment i and subsegment j
Si Total voyage path length from departure port A to segment i
Vij Ship sailing speed in segment i and subsegment j
Tij Total sailing time from departure port A to segment i and subsegment j

Table 2: Hyperparameters of each algorithm.

Model Hyperparameters Library

ANN activation� {“identity”, “logistic”, “tanh”, “relu”}, solver� {“lbfgs”, “sgd”, “adam”}, learning_rate� {“constant”,
“invscaling”, “adaptive”}, alpha� [0.1, 0.01, 0.001], hidden_layer_sizes� [10, 100] Sklearn

DTR max_depth� [1, 10], max_features� [1, 10], min_samples_split� [1, 10], min_samples_leaf� [1, 10] Sklearn

GBR max_depth� [1, 10], max_features� [1, 10], min_samples_split� [1, 10], min_samples_leaf� [1, 10], loss�

{“ls”,“lad”,“huber”,“quantile”} Sklearn

KNN n_neighbors� [1, 10], weights� {“uniform”, “distance”} Sklearn
SVR C� [0, 1] Sklearn
LASSO alpha� [0.001, 100] Sklearn

Table 3: Prediction accuracy of models.

Model R2 MSE RMSE (t/day) MAE (t/day) MAPE (%)
ANN 0.897 6.747 2.597 1.755 6.292
DTR 0.863 9.029 2.999 1.749 6.774
GBR 0.904 6.277 2.504 1.617 5.726
KNN 0.898 6.69 2.586 1.633 6.145
SVR 0.883 7.645 2.764 1.811 6.512
LASSO 0.447 36.524 6.041 4.144 22.915
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the estimated time of arrival. (e detailed sailing route
information of the target ship is summarised in Table 5.
Based on this information, the average daily voyage path
length Si is calculated as 263.3 n mile.

In an actual voyage, the operator must sail within a
reasonable speed range. When severe sea conditions are
encountered, sailing safety must be ensured. Because of
speed loss, low speed is usually adopted. If the speed is overly
high, the ship tends to consumemore fuel because speed and
fuel consumption have an exponential relationship. (e
speed distribution range is [6, 16] kn from Section 3.2; set
Vmin

ij � 6kn and Vmax
ij � 16kn. (e sailing speeds are dis-

cretised using a 0.1-kn interval. (en, the fuel consumptions
at different speeds, draughts, trims, and sea and weather
conditions can be predicted using the GBR model. Because
the forecast data are updated at 6-h intervals, set tij � 6 h to
synchronise with the update. With the fuel consumption
prediction and speed optimisation models, the optimal
speed for each subsegment can be obtained using PSO. As
shown in Figure 9, fitness varies with the number of iter-
ations. (e optimisation results are listed in Table 6.

Figure 9 shows that fitness basically converges at 50
iterations, indicating that the optimal solution can be found
rapidly and effectively using the PSO algorithm. As listed in
Table 6, the implementation of speed optimisation can save
71.3 t of fuel in one voyage (a savings ratio of 4.38%). If the
price of oil is assumed to be 400 USD/t, then
71.3∗ 400� 28,520USD can be saved in one voyage. If the
company has 100 ships and each ship voyages five times a
year, then 71.3∗ 5∗100� 35650 tons of fuel can be saved;
this is equal to savings of 14.26 million USD for the com-
pany. (e foregoing amount of fuel can also be expressed in
terms of carbon emissions. Based on the carbon intensity

value of 3.114 as conversion factor, 111 014 t of CO2 gas
emissions can be reduced.

In Figure 10, the original and optimal ship speeds are
shown. (e red curve represents the optimal speed, and the
blue curve is the original speed. (e figure indicates that the
optimal speed has more variations than the original speed.
(is is possible because speed can be adjusted in real time
according to the encountered wind and wave conditions to
reduce fuel consumption.

7.2. Sensitivity Analysis of Arrival Time. To study the in-
fluence of the estimated arrival time on speed optimisation, a
period of 7 d before or after the original sailing time is
examined. Figure 11 shows the fuel consumption variation
with sailing time after speed optimisation.

(e ship consumes less fuel when the sailing time is
within [43, 49] d; the lowest bunker fuel consumption is
upon the ship’s arrival, i.e., 44 d; beyond this, the con-
sumption increases. (is occurs because the ship’s low speed
considerably deviates from the economic speed due to in-
sufficient fuel combustion. (is increase in fuel consump-
tion throughout the voyage after 44 d seems contradictory to
the conclusion that fuel consumption decreases with in-
creasing sailing time, as reported in previously published
literature. However, this is not the case. In previous studies,
the sailing speed has always been at a higher value as the
sailing time increases. In this study, a similar situation is
depicted by the left side of the parabola shown in Figure 11.
If the estimated arrival time is reduced to less than 44 d, the
fuel consumption can increase with time. (is is because a
short voyage time requires a corresponding increase in
sailing speed, leading to greater fuel consumption per unit
time.

Yes

No

Initalization and state updata of each paricle

Calculate the fitness of each particle

Updata the Pbest and Gbest

Extract weather forecasts information 
combine with sailing speed to predict fuel

T > Tmax

Output optimal ship sailing speed

Figure 8: Flowchart of the optimal sailing speed by using PSO algorithm.

Table 4: Parameters of PSO algorithm.

w c1 c2 r1 r2

1 2 2 [0, 1] [0, 1]
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8. Extension and Future Research

In this study, speed optimisation is implemented based on a
fixed sailing route. In this route, a ship may sometimes
encounter severe weather conditions, such as strong winds
and typhoon. When this occurs, the planned route must be
changed to ensure safe navigation. Accordingly, in future
research, we will focus on developing a speed optimisation
model to create multiple routes. In addition, this study used
sensor data to develop a fuel consumption model; however,
only the noon report was utilised. (us, considering that
these data contain many features (such as water depth,

seawater temperature, and salinity) affecting fuel con-
sumption, these factors must be considered in the future.

9. Conclusion

Speed optimisation is one of the important measures
implemented by the International Maritime Organization to
improve ship energy efficiency and reduce emissions. It can
effectively reduce the ship fuel consumption, increase the
operating efficiency of shipping companies, and improve
their market competitiveness. (is study proposes a fuel
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Figure 9: Fitness varies with iterations.
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Figure 11: Fuel consumption with sailing time after speed
optimisation.

Table 5: Detailed sailing route information of the target ship.

Departure port Destination port Voyage path Estimated time of arrival
Dalian, China Sao Luis, Brazil 12508.7 n mile 47.5 days

Table 6: Results of speed optimisation.

Actual fuel consumption (ton) Optimize fuel consumption (tons) Reduce fuel consumption (ton) Saving ratio (%)
1629 1557.7 71.3 4.38
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consumption prediction and reduction model based on
sensor data. (ese data, collected by installing sensors on
an ocean-going dry bulk ship, were combined with do-
main knowledge. A statistical method of data cleaning was
also adopted to extract accurate information. Six ad-
vanced techniques (GBR, ANN, DTR, KNN, SVR, and
LASSO) are selected for fuel consumption modelling
based on a highly accurate fuel consumption dataset. (e
numerical results show that the GBR’s R2 value (0.904) is
the highest among the models. Its MSE, RMSE, MAE, and
MAPE values are all lower than those of the other five
models. (e foregoing indicates that the GBR has the best
predictive performance. Combined with the weather
forecast data, we used the GBR algorithm to predict the
fuel consumption at different speeds, draughts, trims, and
wind and current conditions. By considering the limit of
the estimated time of arrival, a speed optimisation model
is established based on the fuel consumption prediction
model. With the lowest fuel consumption as the objective
function, we calculated the optimal speed for each seg-
ment using the PSO algorithm. (e experimental results
show that speed optimisation can save 71.3 t of fuel
(equivalent to a savings ratio of 4.38% with respect to the
actual fuel consumption of the voyage). In addition,
optimal speed is related to the arrival time; only by setting
the arrival time to a reasonable value can the optimal
speed achieve fuel saving. (e proposed speed optimi-
sation model is anticipated to serve as a theoretical ref-
erence for ship crews in developing optimal speed plans
and setting a reasonable voyage arrival time.
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