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Aiming at the dynamic multicompartment refrigerated vehicle routing problem with multigraph based on real-time traffic
information, this study, based on the idea of preoptimization followed by real-time adjustment, establishes a two-stage
mathematical model with minimizing delivery cost. In the preoptimization phase, this study, based on historical traffic in-
formation, designed a hybrid chaotic genetic algorithm with variable neighborhood search (HCGAVNS) to obtain the initial
delivery scheme. In the real-time adjustment phase, the order in which customers are served remains the same and a path selection
strategy is proposed to solve the problem according to the real-time traffic information of different paths..e validity of the model
and the algorithm are verified through the analysis of instances. .e research results can enrich the related research on cold chain
vehicle routing problem and provide a theoretical basis for logistics companies to optimize their delivery scheme.

1. Introduction

Dynamic multicompartment refrigerated vehicle routing
problem with multigraph based on real-time traffic infor-
mation is a dynamic vehicle routing problem (DVRP) based
on real-time traffic information provided by traffic big data,
considering the multigraph between two nodes and real-
time adjustment of the driving route. With the continuous
development of the e-commerce network, customers’ re-
quirements for timeliness and quality of fresh products are
constantly improving. Logistics enterprises are required to
deliver fresh products to customers as quickly as possible.
However, the driving speed of vehicles is affected by real-
time traffic conditions. .ere are some paths between two
nodes in the delivery network. .e different paths have
different real-time traffic information. Depots need to plan
the delivery routes according to the actual road conditions
and allocate appropriate paths to reduce the cargo damage
cost and improve delivery timeliness. Multicompartment
refrigerated vehicles have been widely used in recent years
because they can meet customers’ requirements for different
fresh-keeping temperatures. For example, supermarkets

may have delivery requirements for fresh products such as
seafood, raw meat, and vegetables at the same time. If a
single compartment refrigerated vehicle is used, multiple
deliveries are required. While a multicompartment refrig-
erated vehicle can meet the delivery requirements at one
time, many scholars have studied the DVRP based on real-
time traffic information, DVRP with multigraph, and
multicompartment refrigerated VRP.

For DVRP based on real-time traffic information, Tang
et al. [1] considered the relationship between speed and time
in a delivery network and designed a multiobjective particle
swarm optimization algorithm to solve the problem. Lin
et al. [2] designed an improved A-star exact solution al-
gorithm and a hybrid simulated annealing algorithm to solve
the DVRP problem. Considering the time-dependent de-
livery network, Ge and Zhang [3] applied the improved
genetic algorithm to solve the problem. Tong [4] applied a
tabu search algorithm to solve VRP based on real-time
information. Li et al. [5] considered two situations of fre-
quent and occasional traffic congestion in the delivery
network and solved the problem by combining the genetic
algorithm with Dijkstra algorithm. Kok et al. [6] avoided
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congested road sections by finding alternative paths and
combined the Dijkstra algorithm with heuristic algorithm to
solve the problem. Sabar et al. [7] applied an adaptive
evolutionary algorithm to solve the DVRP problem con-
sidering traffic congestion. With the rapid development of
ITS, more and more scholars have integrated traffic big data
into the research of DVRP. Xu and Guo [8] used a big data
platform to obtain real-time traffic information and applied
a genetic algorithm based onMapReduce in Hadoop, the big
data platform, to solve the problem in parallel. Tang et al. [9]
collected and processed initial data by big data calculation
and proposed a vehicle routing algorithm based on the big
data calculationmodel to solve the problem. Yao andHe [10]
combined traffic big data with a cold chain delivery man-
agement information system and applied an ant colony
algorithm to solve the problem.

Most of the traditional DVRP only considered the sit-
uation of a single path between two nodes. However, the real
delivery network is complicated, and there is often more
than one path between two nodes; the research of DVRP
with multigraph is essential. Garaix et al. [11] introduced
VRP with multigraph for the first time and proposed many
possibilities in the path selection of two nodes. Ticha et al.
[12] proposed a DVRP with multigraph and time windows
and designed an adaptive large neighborhood search algo-
rithm to solve it. Wang et al. [13] considered alternative
paths and applied a two-stage particle swarm optimization
algorithm to solve the problem. Huang et al. [14] established
a mixed integer programming model considering deter-
ministic and stochastic traffic conditions and solved it with
an improved Dijkstra algorithm. Setak et al. [15] applied a
heuristic algorithm based on a tabu search algorithm to solve
the VRP problem with multigraph between two nodes. Qian
and Eglese [16] took the path and vehicle speed as decision
variables and applied a tabu search algorithm based on a
column generation algorithm to solve the time-dependent
DVRP with multigraph. Li et al. [17] researched a delivery
network with multigraph attributes and applied a double-
cycle simulated annealing algorithm to solve the problem.

.e multicompartment refrigerated VRP is a kind of
problem combining multicompartment VRP and cold chain
VRP. To solve the multicompartment refrigerated VRP,
Chen et al. [18] aiming at minimizing the total cost, applied
particle swarm optimization algorithm combined with
neighborhood search strategy to solve the problem. Wang
and Li [19] applied a hybrid fruit fly optimization algorithm
to solve the multicompartment VRP to minimize the total
transportation distance. Martins et al. [20] allocated the
delivery period according to the customer demand within
one week and used the adaptive large neighborhood search
algorithm to solve the problem tominimize the total delivery
cost. Eshtehadi et al. [21] aimed at minimizing the fixed and
variable delivery costs and applied the improved adaptive
large neighborhood search algorithm to solve the multi-
compartment VRP. Kaabachi et al. [22] aimed at minimizing
the number of vehicles and the distance and combined the
ant colony algorithm with a hybrid adaptive generalized
variable neighborhood algorithm to solve the problem. Chen
et al. [23] considered the oil consumption in the waiting

time, aiming at minimizing the total delivery cost and ap-
plied the ALNS algorithm to solve the problem. Ostermeier
and Hübner [24] considered a mixed delivery method of two
different types of vehicles, respectively: single compartment
and multicompartment. It applied the fast large-scale do-
main search algorithm to solve the problem. Hu et al. [25]
considered the characteristics of multitemperature code-
livery and the time window constraints of customers and
applied the genetic algorithm to solve the problem. Henke
et al. [26] took the waste glass classification and recycling
problem as an example and applied the variable neigh-
borhood search algorithm to solve the problem. Goodson
[27] considered the random demand and applied a simu-
lated annealing algorithm to solve it. Alinaghian and Sho-
kouhi [28] applied a hybrid algorithm combined large-scale
neighborhood search with variable neighborhood search to
solve the problem. Coelho and Leandro [29] applied the
branch and bound method to solve the multicompartment
delivery problem in oil transportation. In response to the
cold chain VRP, Osvald and Stirn [30] considered the impact
of the perishability of fresh products on the cost in the cold
chain delivery process and effectively reduced the loss of
fresh products. Miao et al. [31] considered the cost of fresh
product loss in the delivery process and applied an improved
genetic algorithm to solve the problem. Zhang and Xu [32]
integrated the refrigeration cost into the total delivery cost
and solved it with an improved genetic algorithm. Du and Li
[33] considered the customer satisfaction, fresh product loss,
and oil consumption in the fresh products delivery process
and applied the improved simulated annealing algorithm to
solve the fresh products delivery problem. Du and Li [33, 34]
considered the cost of fresh product loss and fuel con-
sumption in the total cost and applied a hybrid ant colony
algorithm to solve the problem. Tao et al. [35] considered the
cost of fresh product loss and a carbon tax in the delivery
process and applied the global artificial fish swarm algorithm
to solve the problem. Zhao et al. [36] considered the eco-
nomic cost and environmental cost in delivery process and
applied an improved ant colony algorithm to solve the
problem. Xu [37] considered time window constraints and
applied a genetic algorithm to solve the problem.

With the rapid development of the cold chain industry,
more andmore attention has been paid to the quality of fresh
products. .rough literature review, it can be seen that the
existing research still has the following deficiencies: (1) for
DVRP, based on real-time information, the road state or
vehicle speed between two nodes is the same or the update
frequency was low, and it ignores the real-time change of
traffic information, resulting in large deviation from the
actual situation; (2) for DVRP with multigraph, most of the
delivery routes are schemed according to historical data, and
few of the paths in delivery routes are updated according to
the real-time traffic data; (3) for multicompartment re-
frigerated VRP, most references assume that the vehicle
speed is constant during the delivery process, ignoring the
impact of real-time traffic information. So, the delivery
scheme based on constant speed is unable to solve the
practical problems. Moreover, although most references
consider the different fresh products loss costs in different
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temperature compartments, they seldom consider the re-
lationship between fresh product loss costs and the
remaining fresh products in the compartments, resulting in
the inaccurate calculation of fresh product loss costs.

.e refrigerated vehicle routing problem proposed in
this paper is to optimize the storage and transportation links
of cold chain logistics by considering the influence of re-
frigeration cost and cargo damage cost on the route opti-
mization. Fresh products delivery has the characteristics of
“multiple varieties and small batches.” Refrigerated and
frozen cargos have different requirements on temperature
and humidity. If multiple cargos are transported separately,
the loading rate of vehicles will be reduced, and the
transportation cost will be increased. If multiple cargos are
transported together, the product freshness will be reduced.
In the delivery process, multicompartment refrigerated
vehicles can not only improve the loading rate but also
ensure the freshness of products, reducing the cargo damage
and meeting the diversified needs of customers.

In view of the above deficiencies, the dynamic multi-
compartment refrigerated vehicle routing problem with
multigraph based on real-time traffic information is studied.
.e novelty of this paper is as follows: first, few papers have
considered the refrigerated vehicle routing problem with
multigraph. .e delivery time of refrigerated vehicle routing
problem is very important. .e speed of vehicles is different
in different paths; by selecting different paths, the trans-
portation time can be shortened, and the efficiency can be
improved. Second, as for the vehicle routing problem with
multigraph, once the selected path is fixed, it will not change.
However, in the actual delivery process, the traffic infor-
mation of different paths is time-varying, so the selection of
the path must be updated in real-time according to the traffic
information. .ird, the refrigerated vehicle routing problem
should not only consider the transportation cost and fixed
cost but also the refrigeration cost and cargo damage cost in
the process of transportation. For refrigerated and frozen
cargos transportation, customers generally have time re-
quirements, so the time penalty costs should be included.

.e contributions of this paper can be summarized as
follows:

(i) Considering the multiple paths between two nodes
and the real-time traffic information in different
paths, as well as the cargo damage cost and refrig-
eration cost in the delivery process, a two-stage
mixed integer programming model is established
based on the idea of preoptimization followed by
real-time adjustment to minimize the total cost.

(ii) A hybrid variable neighborhood chaotic genetic
algorithm is designed to solve the model. Pseudor-
andomness of chaotic system is introduced into the
algorithm to ensure the diversity of initial solutions,
and an adaptive neighborhood search number
strategy is introduced to balance the breadth and
depth required by population evolution.

2. Data Acquisition and Processing

Tang et al. [9] show that traffic big data have the 4V
characteristics of volume, velocity, variety, and veracity. In
this paper, the path selection of dynamic road network is
based on a big data processing platform, and the specific
framework is shown in Figure 1. Historical traffic infor-
mation, depot information, customer information, and cost
information are integrated into one system. Historical traffic
data include the daily traffic volume and occupancy data. At
the same time, the vehicle routes, vehicle location, and
customer information are outputted by the dynamic VRP
module and are inputted into the multisource module to-
gether with updated traffic information. Among them, the
traffic data are collected by the Twin Cities Highway in the
United States (https://www.d.umn.edu/tdrl/services.htm).
.rough the TravelTimeMetroTC software (https://www.d.
umn.edu/∼tkwon/TDRLSoftware/Download.html), the
daily traffic volume and occupancy data are used to estimate
the vehicle speed of each road.

3. Problem and Mathematical Model

3.1. Problem Description. .e dynamic multicompartment
refrigerated vehicle routing problem with multigraph based
on real-time traffic information studied in this paper is
descripted as follows: the delivery network has a complete
directed graph G � (V, E), where nodes set is V � 0{ }∪V0, 0
represents the depot, and V0 � 1, 2, 3, · · · , n{ } represents the
customer set. E � (i, j)|i, j ∈ V􏼈 􏼉 represents the edge set.
.is paper considers that there are multiple paths between
two nodes, as shown in Figure 2. m represents any path in
the path set M � 1, 2, 3, · · · , m, · · · , η􏼈 􏼉 between two nodes,
and the vehicle only chooses one of them to travel and lijm

represents the distance of path m between node i and node j.
k represents a vehicle and each vehicle is equipped with two
compartments, namely, the refrigerated compartment and
the frozen compartment. .e capacity of each compartment
is equal to Qh. H represents the product set, h � 1 represents
the refrigerated cargos, h � 2 represents the frozen cargos,
and the demand for each product at the customer i is dih.

.e service time window of the customer is [ETi, LTi], in
which ETi represents the earliest acceptable service time of
the customer i and LTi represents the latest acceptable
service time of the customer i. [ETi, LTi] is the time window
when the customer allows the vehicle to serve. .ere is no
time penalty cost only when the vehicle serves the customer
within the [ETi, LTi]. .e vehicle arriving earlier or later
than the customers’ time window [ETi, LTi] will incur
penalty cost, in which c1 represents the waiting cost per unit
time and c2 represents the delay cost per unit time. .e
working time window of the depot is [Ts, Tf], and it means
that the depot only operates within this time window.
Vehicles must leave the depot after Ts and return to the
depot before Tf. .ere is an additional constraint that LTi

must be less than Tf; otherwise, it may result in the vehicle
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not returning to the depot before Tf. ts
ik represents the

service time at customer i. c3 represents the unit fuel con-
sumption cost; c4 represents the vehicle fixed cost. .e
decision variable xijkm indicates whether the vehicle k goes
from node i to node j through the path m, which is 1 and not
0. .e problem to be solved is that the depot preoptimizes
the delivery route according to the known customer in-
formation, historical traffic information, and the customer
demand for different kinds of fresh products. During the
delivery process, the path selected may not be the optimal
path as the delivery time and real-time traffic information
change, so the path needs to be reselected according to the
real-time traffic information to minimize the total delivery
cost.

3.2. Speed Function Determination. In this paper, historical
traffic information of roads is obtained through the big data
platform, and a dynamic speed curve represents the pre-
dicted driving speed of a road section with an update fre-
quency of 30 seconds per time. .e update frequency is the
same as real-time traffic information and the driving speed
on a certain road section of a certain day is shown in
Figure 3. Among them, the prediction of road speed is based
on historical data. On weekdays, the speed data are predicted
according to the historical data of the previous week

displayed on the data platform. On the rest days, the speed
data are predicted according to the historical data of rest
days of the first five weeks displayed on the data platform.

First, the predicted traffic information on a day is divided
into several periods at a time of 30 seconds, and the working
hours of the depot are divided into P periods according to
the same frequency based on the delivery start time and
traffic information. It is assumed that the time Tik when the
vehicle departs from the node i belongs to [Tp, Tp+1]. .e
predicted speed of the path is vpm. .ere are two possibilities
for vehicles traveling from node i to node j, respectively:
intraperiod and interperiod. Intraperiod refers to that the
vehicle can arrive at node j within the time period when it
starts from node i, without crossing the time period.
Interperiod refers to that the vehicle needs to cross multiple
time periods to reach node j, and the speed will change once
for each period. If lijm ≤ (Tp+1 − Tik)vpm, the vehicle arrives
at the node j within the first time period, there is no need to
travel across time periods. Otherwise, it is necessary to travel
across time periods. Assuming that the vehicle travels from
node i to node j across f time periods, the distance traveled
in each period is lijmp, lijm(p+1), . . . , lijm(p+f). Vehicle travels
at speed vpm until it enters the p + 1 time period. .e speed
of the vehicle in the p + 1 time period is v(p+1)m, and so on.
.e speed when the vehicle leaves the different paths of the
road section (i, j) is v(p+f)m. At this time, the speed of the
vehicle at different times of the different paths of the road
section (i, j) can be expressed as
vijm � vpm, v(p+1)m, . . . . . . v(p+f)m􏽮 􏽯. In summary, the pre-
dicted travel time that a vehicle chooses a different path from
node i to node j can be calculated by the following equation:

tijkm �

lijm/vpm, lijm ≤ Tp − Tik􏼐 􏼑vpm,

􏽘
f∈F

lijm(p+f)

vm(p+f)

, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
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As shown in Figure 4, the time that the vehicle leaves
node i is the ending moment of time period T2. .ere are
two possibilities for the time of the vehicle arriving at node j.
.e first one is that the vehicle arrives at node j before the
ending of time period T3. .at is to say, lijm ≤ (T3 − Tik)v3m,
tijkm � lijm/v3m. .e second one is that the vehicle arrives at
node j after the ending of time period T3, which crosses two
time periods T4, T5. .at is to say,
tijkm � 􏽐

2
f�1 lijm(3+f)/vm(3+f).

3.3. Analysis of Refrigeration Cost and Cargo Damage Cost in
Delivery Process

3.3.1. Refrigeration Cost. Because fresh products are per-
ishable, the refrigerant needs to be consumed during
transportation to keep the temperature in the cabin con-
stant [34], it will incur refrigeration cost. .e refrigerant
consumption during transportation is related to the tem-
perature difference between the inside and outside of the
compartment, the inside and outside surface area of the
compartment, and the transportation time. .e amount of
refrigerant consumption during loading and unloading
process is related to the heat load generated by opening and
closing the door. .e inside and outside temperature of the
compartment is constant, and the vehicle is the same. .e
door only needs to be opened and closed once during
loading and unloading process. Under these circumstances,
the refrigeration cost during loading and unloading process
is approximately positively related to the loading and
unloading time. According to literature [25], the calcula-
tion of refrigeration cost is shown in the following
equations:

C
1

� 􏽘
i∈V

􏽘
j∈V

􏽘
m∈M

􏽘
k∈K

ρ
����
s1s2

√
ΔT1α + ρ

����
s3s4

√ ΔT2α( 􏼁tijkmc5xijkm􏽨 􏽩,

(2)

C
2

� 􏽘
i∈V

􏽘
j∈V0

􏽘
k∈K

􏽘
m∈M

t
s
ikc6xijkm, (3)

Ccold � C
1

+ C
2
. (4)

Ccold represents the total refrigeration cost incurred during
delivery, in which C1 represents the refrigeration cost incurred
during the transportation process. C2 indicates the refrigera-
tion cost incurred during loading and unloading process. ΔT1
indicates the temperature difference between inside and out-
side of the refrigerated compartment. ΔT2 indicates the
temperature difference between inside and outside of the
frozen compartment. V indicates the thermal conductivity
coefficient of the vehicle. θ indicates the heat load coefficient
during loading and unloading process. s1 indicates the outside
surface area of the refrigerated vehicle body. s2 indicates the
inside surface area of the refrigerated vehicle body. s3 indicates
the inside surface area of the frozen vehicle body. s4 indicates
the outside surface area of the frozen vehicle body. V indicates
the volume of each compartment. α indicates the refrigerant
consumption per unit time. c5 indicates the unit price of the
refrigerant. c6 indicates the refrigeration cost per unit time
during loading and unloading process.

3.3.2. Cargo Damage Cost. .ere is a fixed temperature
range inside the vehicles. However, the transportation
process is affected by factors such as shaking of the vehicle
body and loading and unloading process; cargos will be
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Figure 3: Driving speed on a certain road section of a day.
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damaged during the transportation process. .erefore, we
have introduced the cargo damage rate related to the
compartment temperature of different kinds of fresh
products. Even if the fresh products are in the appropriate
temperature range, the quality of the products will deteri-
orate with the increase in the delivery time. Besides, when
the vehicle arrives at the customer to start loading and
unloading, the heat exchange inside the compartment
caused by the switch of each compartment door will also
affect the quality of fresh products, resulting in a certain
cargo damage cost. Assuming that the temperature does not
change during the delivery process, the cargo damage rate of
fresh products does not change. .e damage cost is mainly
affected by the length of transportation time, the number of
times that a door opens and closes during the loading and
unloading process, the heat exchange between the inside and
outside of the compartment when the door is opened and
closed, and the loading and unloading time. To calculate the
cargo damage rate, we have introduced the Arrhenius
equation [28].

φ�Ae
−

Ea

RT
􏼒 􏼓

.
(5)

φ represents the reaction rate constant at temperature
T, T is the thermodynamic temperature
R is the molar gas constant, the unit is kj/(mol · k)

Ea is the apparent activation energy, the unit is
kj/(mol · k)

A is an antecedent factor, also known as the Arrhenius
constant

It can be known from (5) that when the temperature of
the compartment in which the fresh products located is
different, the cargo damage rate is also different, and the
cargo damage rate increases with the increase of compart-
ment temperature. .erefore, the cargo damage cost is
calculated as follows:

C
3

� φ1 􏽘
i∈V

􏽘
j∈V

􏽘
k∈K

􏽘
m∈M

􏽘
h∈H

tijkmc7Qihxijkm + φ2 􏽘
i∈V

􏽘
j∈V

􏽘
k∈K

􏽘
m∈M

􏽘
h∈H

tijkmc8Qihxijkm, (6)

C
4

� φ1 􏽘
i∈V

􏽘
j∈V

􏽘
k∈K

􏽘
m∈M

􏽘
h∈H

t
s
jkc7 Qih − djh􏼐 􏼑xijkm + φ2 􏽘

i∈V
􏽘
j∈V

􏽘
k∈K

􏽘
m∈M

􏽘
h∈H

t
s
jkc8 Qih − djh􏼐 􏼑xijkm,

Cda mage � C
3

+ C
4
,

(7)

where Cdamage is the total cargo damage cost in the delivery
process, C3 is the cargo damage cost in the transportation
process, C4 is the refrigeration cost in the loading and
unloading process, c7 is the unit refrigerated cargo value, c8
is the unit frozen cargo value, φ1 is the refrigerated com-
partment cargo damage rate, φ2 is the frozen compartment
cargo damage rate, and Qih is the amount of cargo in each
compartment when the vehicle leaves node i.

3.4. Assumption. .e model assumes the following:

(1) .e vehicles are the same model and have the same
performance, and the number of vehicles can meet
the needs of all customers

(2) .e vehicle departs from the depot and finally
returns to the depot

(3) Only one vehicle will be delivered once, and each
customer will only accept the service of one vehicle

(4) .e locations of depot and customers and the cus-
tomer demand for different cargos are known

(5) .e capacity of the depot must be able to meet all
customer demands

3.5. Mathematical Model. In this paper, the strategy of
“preoptimization followed by real-time adjustment” is
adopted to solve the dynamic multicompartment refriger-
ated vehicle routing problem with multigraph based on real-
time traffic information.

3.5.1. Preoptimization Stage Model. As shown in Figure 5,
during the preoptimization phase, the predicted travel speed
functions at different times throughout the day are known.
Based on the predicted travel speeds of all road sections, the
transit time of different paths at a certain moment is cal-
culated. .e transit time of each path is tijkm; this paper
selects the path with the shortest predicted arrival time
during this period, so the path 1 is selected.

t3 t4 t5t1 t2 t6 t7

node i departure time

node j arrival time (intra – period)

node j arrival time (inter – period)

Figure 4: Schematic diagram of intraperiod and interperiod.
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According to the above description, the preoptimization
phase model is as follows:

minC � c1 􏽘
i∈V

􏽘
j∈V0

􏽘
k∈K

􏽘
m∈M

xijkm · max ETj − Tjk􏼐 􏼑, 0􏽮 􏽯 + c2 􏽘
i∈V0

􏽘
j∈V0

􏽘
k∈K

􏽘
m∈M

xijkm · max Tik − LTi( 􏼁, 0􏼈 􏼉

+ c3 􏽘
i∈V

􏽘
j∈V

􏽘
k∈K

􏽘
m∈M

lijmxijkm + c4 􏽘
j∈V0

􏽘
k∈K

x0jk + Ccol d + Cda mage,
(8)

􏽘
m∈M

􏽘
k∈K

􏽘
j∈V0

x0jkm ≤ |K|, (9)

􏽘
m∈M

􏽘
i∈V0

x0ikm � 􏽘
m∈M

􏽘
j∈V0

xj0km � 1,∀k ∈ K, (10)

􏽘
m∈M

􏽘
k∈K

􏽘
i∈V0

xijkm ≤ 1,∀j ∈ V, (11)

􏽘
m∈M

􏽘
k∈K

􏽘
j∈V0

xijkm ≤ 1,∀i ∈ V, (12)

􏽘
i∈V

xijkm � 􏽘
i∈V

xjikm , ∀j ∈ V0 , m ∈M , ∀k ∈ K, (13)

􏽘
m∈M

􏽘
i∈V

􏽘
j∈V0

􏽘
h∈H

xijkmdih ≤Qh, (14)

􏽘
m∈M

􏽘
i∈S

􏽘
j∈S

xijkm ≤ |S| − 1,∀k ∈ K,
(15)

Ts + 􏽘
i∈V

􏽘
j∈V

􏽘
m∈M

xijkmtijkm + 􏽘
i∈V

􏽘
j∈V0

􏽘
m∈M

t
s
jkxijkm ≤Tf, ∀k ∈ K, (16)

Tik + t
s
ik + tijkm􏼐 􏼑xijkm ≤Tjk,∀(i, j) ∈ V0,∀k ∈ K,∀m ∈M, (17)

xijkm � 0, 1{ } ∀i ∈ V, ∀j ∈ V,∀k ∈ K,∀m ∈M. (18)

Equation (8) is the objective function, which indicates
the total transportation cost, including vehicle fixed cost,
transportation cost, time window penalty cost, refrigeration
cost, and cargo damage cost. Equation (9) indicates that
vehicles sent from the depot cannot exceed the number limit.
Equation (10) indicates that the vehicle departs from the
depot and returns to the depot. Equations (11) and (12)
indicate that each customer is served by only one vehicle.
Equation (13) ensures the balance of vehicles entering and
leaving each node. It restricts the total in-degrees and out-

degrees for each node. Equation (14) indicates that the
service volume of each vehicle to customers shall not exceed
the compartment capacity. Equation (15) is the subtour
elimination constraint. Equation (16) ensures that the time
when the vehicle returns to the depot does not exceed the
working deadline of the depot. Equation (17) calculates the
time of the vehicle arriving at node j from node i by sum of
the arrival time of node i, the service time at node i, and the
travel time from node i to node j. Equation (18) is a decision
variable attribute.

t8t7t6t5t4t3t2t1

predicted arrival time of path 1
predicted arrival time of path 2

predicted arrival time of path 3

departure time of node i

Figure 5: Schematic diagram of predicted arrival time.
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3.5.2. Adjust Strategies and Models in Real-Time

Adjust Strategy in Real-Time. In the real-time adjustment
stage, the order of customers in the preoptimization stage is
kept unchanged. Firstly, the paths are selected according to
the rules shown in Figure 6. .e time of the vehicle passing
through a selected path between two nodes may be different
from the predicted time; when the vehicle goes to the next
node, the travel time of different paths needs to be predicted
again. As shown in Figure 6, the real transit time tz

ijkm and
the service time of the previous node are used to calculate the
real arrival time Tz

jk at the node j. .e real departure time to
the next node is calculated based on the service time of the

node j. Figure 6(a) indicates that the real arrival time is later
than the predicted arrival time. Figure 6(b) indicates that the
real arrival time is earlier than the predicted arrival time. If
the real arrival time is different, the real departure time and
the predicted arrival time to the next node will also be
different.

3.5.3. Real-Time Adjust Models. Since the calculation of
cargo damage cost and refrigeration cost is related to the real
transit time between two nodes, equation (6) is updated to as
follows:

C
1

� 􏽘
i∈V

􏽘
j∈V0

􏽘
m∈M

􏽘
k∈K

ρ
����
s1s2

√ ΔT1α + ρ
����
s3s4

√ ΔT2α( 􏼁t
z
ijkmc5xijkm􏽨 􏽩. (19)

Equation (9) is updated to as follows:

C
3

� φ1 􏽘
i∈V

􏽘
j∈V0

􏽘
k∈K

􏽘
m∈M

􏽘
h∈H

t
z
ijkmc7Qihxijkm + φ2 􏽘

i∈V
􏽘

j∈V0

􏽘
k∈K

􏽘
m∈M

􏽘
h∈H

t
z
ijkmc8Qihxijkm. (20)

Objective function:

minZ � c1 􏽘
i∈V

􏽘
j∈V0

􏽘
k∈K

􏽘
m∈M

xijkm · max ETj − Tjk􏼐 􏼑, 0􏽮 􏽯 + c2 􏽘
i∈V0

􏽘
j∈V0

􏽘
k∈K

􏽘
m∈M

xijkm · max Tik − LT( 􏼁i, 0􏼈 􏼉

+ c3 􏽘
i∈V

􏽘
j∈V

􏽘
k∈K

􏽘
m∈M

lijmxijkm + Ccol d + Cda mage.
(21)

Equations (9)–(16) and (18),

T
z
ik + t

s
ik + t

z
ijkm􏼐 􏼑xijkm ≤T

z
jk,∀(i, j) ∈ V0,∀k ∈ K,∀m ∈M.

(22)

Equation (21) is the objective function of the real-time
adjustment stage, including transportation cost, time window
penalty cost, refrigeration cost, and cargo damage cost.
Equations (9)–(16) and (18) are the same as the pre-
optimization stage. Equation 22 calculates the arrival time of
node j from node i by the sum of the arrival time of node i, the
service time at node i, and the travel time from node i to node j.

4. Solution Approach

.e dynamic multicompartment refrigerated vehicle routing
problem with multigraph based on real-time traffic infor-
mation studied in this paper considers such factors as
multicompartment refrigerated vehicle, multigraph, time
window, real-time traffic information, and so on. As an
extension of classical VRP, it also belongs to NP-hard
problem. It cannot obtain an optimal solution within a

reasonable calculation time, so it is essential to solve it with a
heuristic algorithm. .e proof of NP-hard problem is as
follows.

Theorem 1. 2e dynamic multicompartment refrigerated
vehicles routing problem with multigraph based on real-time
traffic information is an NP-hard problem.

Proof. .is model is an extension of Garaix et al. [11] to
multicompartment refrigerated vehicle, time window, and
real-time traffic information problem. As it is presented by
Garaix et al. [11], the fixed sequence arc selection problem
(FSASP) is NP-hard. So, the model proposed in this paper is
NP-hard as well. Furthermore, there are several papers that
the multicompartment vehicle routing problems are NP-
hard (Kaabachi et al. [22], Ostermeier and Hübner [24], and
Coelho and Leandro [29]).

Genetic algorithm (GA) is a heuristic algorithm based on
genetic theory and natural selection, which has been widely
used in vehicle routing problems [38]. It combines the
survival rules of the fittest and the random exchange
mechanism of genetic information in the population in the
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process of biological evolution. It has good robustness and
global search performance. However, the algorithm is easy to
converge prematurely, and the initial population of the
traditional genetic algorithm is mostly generated randomly.
Most seemingly random species in real biological systems
follow certain rules-genetic theory. Aiming at this charac-
teristic, this paper initializes the population through the
chaos phenomenon. .e variable neighborhood search al-
gorithm uses multiple different neighborhood structures for
systematic search and has a strong local search capability.
.erefore, this paper combines a genetic algorithm and
variable neighborhood search algorithm and designs an
improved hybrid chaotic genetic algorithm with variable
neighborhood search algorithm based on the idea of pre-
optimization followed by real-time adjustment. In the
preoptimization stage, this algorithm is used to obtain the
optimal delivery route and path selection scheme. In the
real-time adjustment stage, the optimal path is reoptimized
and is selected at the customer according to the real-time
traffic information to minimize the loss of fresh products.
.e algorithm flow is shown in Figure 7. □

4.1. Encoding and Initial Population Generation. .e algo-
rithm in this paper adopts the form of natural number
coding. Since the type of customer demand is uncertain,
when generating the initial population, the initial value of
logistic mapping is generated randomly according to the
population size. .e chaotic system of each group (each
group consists of n values) is calculated by equation (23), and
the initial population is generated according to the position
of n values in the chaotic system of each group.

xn+1 � rxn 1 − xn( 􏼁, n � 1, 2, · · · , r ∈ (3.57, 4], xi ∈ [0, 1].

(23)

.e purpose of studying chaos is to reveal the laws
generally followed by some complex problems that may be
hidden behind seemingly random, chaotic, and disordered
phenomena. In a given chaotic equation
y � f(x), x ∈ [a, b], if there is an initial value x0 ∈ [a, b],

making f(0) � x0, then x0 is said to be the fixed point of y.
In the logistic mapping, x0 � 0.25, 0.5, 0.75 are fixed points,
and Figure 8 shows the nature of the fixed point. As can be
seen from Figure 8, when the initial value x0 is a fixed point,
the system loses ergodicity. If the initial value of the logistic
mapping is x0 ∈ [0, 1] and x0 ≠ 0.25, 0.5, 0.75, the pseudo-
random number xi ∈ [0, 1/4r] is generated by multi-itera-
tion. When r � 4, any xi ∈ [0, 1] is always established, and
when r � 4, the system is in a completely chaotic state, it has
all the characteristics of a chaotic system, so the value of
chaotic coefficient r in this paper is 4.

After the initial population is generated according to the
chaos principle, the depot is inserted before the first cus-
tomer, and then the depot is inserted into the customer
arrangement by using the nearest neighbor insertion
method. When the sum of the demand for exactly one kind
of cargos at a customer exceeds the compartment capacity,
the insertion operation is performed. .e insertion position
of each “0” is recorded. It will arrange vehicles according to
the number and location of “0,” as shown in Figure 9. From
Figure 9, the route served by each vehicle can be confirmed
only by recording the location of each depot, i.e., the service
sequence of the first vehicle is 3-7-4, and the service se-
quence of the second vehicle is 2-1-5. By using this method,
the feasibility of generating the initial solution can be en-
sured, and the problems of unfixed coding length and dif-
ficulty in repairing the infeasible solution can be avoided.

4.2. Fitness. .e fitness function of chromosomes can be
constructed according to objective function. .e fitness
function of a chromosome s can be expressed as follows:

fS �
1
z

, (24)

where z is the objective function value of the chromosome s.

4.3. Selection. .e selection operation adopts the strategy of
combining elite selection with roulette. .e specific steps are
as follows: firstly, the individuals are ranked in descending
order of fitness value. .en, some elite individuals are

Departure time from depot Predicated arrival time Actual arrival time

Service time

t8 t9 t10t7t6t5t4t3t2t1

(a)

Departure time from depot

Predicated arrival time

Actual arrival time

Service time

Real time to the next node

Predicted time for arriving at the next node

t8 t9 t10t7t6t5t4t3t2t1

(b)

Figure 6: Schematic diagram of real-time calculation. (a) Later than the predicted arrival time. (b) Earlier than the predicted arrival time.
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reserved, and the remaining individuals are reserved by
roulette. .e probability of everyone being selected is
proportional to the fitness function value, i.e., the higher the
fitness function value, the higher the probability of the in-
dividual being selected. On the contrary, the lower the
probability of being selected. When each generation of
disturbance is over, the elite individuals are compared with
the optimal offspring. If the elite individuals are superior to
the offspring, the offspring are directly replaced; otherwise,
the elite individuals are updated.

4.4. Evolution. .e evolutionary operation in this paper
adopts a sequential crossover operator. As shown in Fig-
ure 10, when parent A is crossed sequentially, parent B is
randomly selected from the population. Firstly, points i11,
i12, i21, and i22 are randomly generated; the part between i11
and i12 of the parent A is taken as the first segment of the
subgeneration. A1 and the subsequent points of the sub-
generation A1 are related to parent B, i.e., the customers
between i11 and i12 in the parent B are eliminated first. In the
elimination process, the position sequence of the customers
in the parent B is not changed, and then the eliminated
customers are arranged as the second segment of the

subgeneration A1 to form the subgeneration A1 and the
subgeneration B1.

4.5. Local Search Strategy

4.5.1. Neighborhood Structure. Firstly, neighborhood
structure sets Nk � N1, N2, . . . Nl􏼈 􏼉 are constructed; the
individual x in the population starts to be disturbed from the
first neighborhood structure N1. If no improved solution is
found within the preset neighborhood search times Sn, the
next neighborhood structure is executed. Otherwise, if an
improved solution x′ is obtained in a certain neighborhood
structure, then x � x′ is made, and the iteration is restarted
by returning to the first neighborhood structure. Until the
iteration is cycled to the last neighborhood structure, and
when the improved solution is not found, the search is
terminated. When the number of variable neighborhood
search cycles reaches the preset MaxSn, the search is ter-
minated, and the algorithm enters the next stage. In this
paper, three neighborhood structures are used to enhance
the local search capability of the algorithm.

(1) Insert: randomly select customers i and j from the
chromosome and insert i after j. As shown in

The first stage Start

Generate initial
population

Select

Insert

Evolution

Exchange

2-OPT

Output

Improve

Improve

Improve

MANGEN
N

Y

N

N

N

Y

Y

Shortest time

Reselect path

N

Output

Y

Y

Stopping criteria

Stop

The second stage

Figure 7: HCGAVNS flowchart.
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Figure 11(a), customer 3 and customer 6 are selected
randomly; customer 3 is inserted after customer 6.

(2) Exchange: randomly select customer i and j, then
exchange their positions. As shown in Figure 11(b),
customer 3 and customer 6 are selected randomly;
customer 3 and customer 6 exchanged locations.

(3) 2-OPT: randomly select customers i and j and ex-
change the order of other customers among

customers i and j. As shown in Figure 11(c), the
position of customer 3 is kept unchanged, and
customers 4, 5, 7, and 6 are in reverse order.

4.5.2. Adaptive Mechanism. In this paper, an adaptive
neighborhood search number strategy is proposed to en-
hance the breadth and depth of the algorithm search so that
the variable neighborhood search algorithm can jump out of
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Figure 8: Fixed points of logistic mapping.
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Figure 9: Schematic diagram of the encoding mode.

3 5 6 7 4 8 2 91A
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6 7 4 3 1 9 8 25A1
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Figure 10: Schematic diagram of a sequential crossover operator.
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the local optimization. Neighborhood search times have a
great influence on the searchability of the algorithm, which
directly leads to the performance of the algorithm. In the
iterative process of the algorithm, the disturbance intensity
required by the population is different. At the beginning of
the iteration, the number of neighborhood searches should
be small to make the population converge quickly. However,
with the continuous iteration of the population, the number
of neighborhood searches is increased to enhance the search
capability of the algorithm. .e adaptive neighborhood
search number strategy in this paper is as follows:

(1) Setting the initial neighborhood search number Sn �

1 and the number of times that the optimal solution
is continuously unchanged con num.

(2) If the optimal solution of the population after this
iteration is not improved, let
con num � con num + 1, Sn � Sn + 1. If the per-
turbed solution is improved, let con num � 0,
Sn � 1.

(3) When the number of times con num that the op-
timal solution has not changed continuously until
the preset value stop num, the algorithm terminates
and outputs the optimal solution.

4.6. Calculation of Double-Loop Objective Function.
When the real departure time and the predicted departure
time of the same road section are different, the speed of the
vehicle will be different, and the travel time of the same road
section will be different in the first and second phases.
.erefore, in the second phase of the solution, this paper
designs a double-loop iteration to realize the route selection
with the shortest travel time and the calculation of the cost.
.e specific process is shown in Figure 12. .e inner cycle
calculates the travel time by calling in the predicted traffic
data and the distance matrix corresponding to different
roads, and the outer cycle starts by comparing the recorded
travel times of different paths and calls the traffic data of the
real-time data platform at the same time and records the
real-time of the selected path and the time period when it
reaches the customer, thus calculating various costs, and
takes the time when it reaches the customer as the new
departure time for the next loop.

4.7. Time Complexity Analysis of the Algorithm. .is section
analyzes the time complexity of the algorithm. Assume that

the customer scale is n, the population size is pop size, and
the maximum number of iterations is max gen. .e time
complexity of the algorithm is calculated as follows: (1)
generate initial population. O(T1) � pop size; (2) fitness
function calculation. O(T2) � max gen; (3) selecting op-
eration. O(T3) � max gen; (4) evolution operation.
O(T4) � n · pop size · max gen; (5) variable neighborhood
search (including three neighborhood structures):
O(T5) � 3n · pop size · stop num; (6) calculation of dou-
ble-loop objective function.
O(T6) � n · pop size · stop num. To sum up, the time
complexity of the algorithm can be calculated as O(T) �

pop size · (1 + n · max gen + 3n stop num) + 2max gen.

5. Numerical Experiments

5.1. Example Description. .ere is no general example set at
present due to the excessive related constraints and multi-
graph characteristics of cold chain delivery vehicles under
the dynamic route delivery mode..e real-time information
of the road network in this paper uses the data published by
the University of Minnesota. It randomly selects n groups
historical data for prediction and generates n kinds of dif-
ferent speed information. .is paper adopts A-n45-k6 in the
international standard instance library, which has one depot
and forty-four customers. .e specific information is shown
in Table 1. .e customer demand is multiplied by 0.1 based
on the standard instance and divided into two types
according to the ratio of 2 :1..e unit of customer demand is
ton, and the customer demand in the instance is the quantity
on a given day. Assuming that there are three paths between
two nodes, the distance matrix is expanded from one to
three, in which the position coordinates are unchanged, and
the distance of different paths between nodes is randomly
multiplied by the distance coefficient [17]. .e coefficient
value is changing from 0.8 to 1.2. .ere are two types of
cargo to be delivered, and the temperature required for
refrigerated cargos is 0°C; the frozen cargos temperature is
−10°C. .e external temperature is 20°C. We select Dong-
feng refrigerated commercial vehicle (DFH5160XLCEX2B)
as the transport vehicle. It has a payload capacity of 8 t, a
compartment size of 8× 2.44× 2.4m, and the fuel con-
sumption of 25.9 L per hundred kilometers. A compartment
is divided into two compartments in the form of an inter-
mediate compartment partition according to a volume ratio
of 2 :1. .e working time window of the depot is 6 : 00–19 :
00. .e remaining parameters are shown in Table 2.

4 5 7 6 2 83 7 5 7 7 3 2 84 6

4 5 7 6 2 83 7 4 5 7 3 2 86 7

4 5 7 6 2 83 7 6 7 7 4 2 83 5
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Exchange

(c) 2-O
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Figure 11: Neighborhood structures. (a) Insert. (b) Exchange. (c) 2-OPT.
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Figure 12: Double-loop objective function solution.

Table 1: Data in the instance.

No. 1 2 3 4 5 6 7 8 9
X 31 11 52 81 97 71 6 48 91
Y 73 67 96 29 62 5 56 50 17
Time window [6, 19] [6.5, 10] [7.5, 16.5] [8.5, 15.5] [7.5, 16.5] [8.5, 13.5] [7.5, 16.5] [8.5, 13.5] [7.5, 16.5]
No. 10 11 12 13 14 15 16 17 18
X 49 85 11 74 56 13 66 96 36
Y 68 29 16 98 37 81 80 55 17
Time window [6.5, 9.5] [8.5, 13.5] [6.5, 10] [7.5, 16.5] [8.5, 13.5] [7.5, 16.5] [8.5, 13.5] [7.5, 16.5] [7.5, 15.5]
No. 19 20 21 22 23 24 25 26 27
X 32 6 64 87 75 40 1 60 27
Y 23 13 30 5 61 72 44 95 49
Time window [6.5, 10.5] [6.5, 9.5] [7.5, 16.5] [7.5, 15.5] [6.5, 9.5] [7.5, 16.5] [6.5, 12] [7.5, 12] [7.5, 16.5]
No. 28 29 30 31 32 33 34 35 36
X 15 46 28 3 1 53 98 6 7
Y 33 53 43 9 100 46 8 25 81
Time window [7.5, 16.5] [6.5, 16.5] [8.5, 13.5] [6.5, 12] [8.5, 13.5] [7.5, 16.5] [6.5, 12] [7.5, 15.5] [6.5, 10.5]
No. 37 38 39 40 41 42 43 44 45
X 96 2 32 95 9 96 90 33 6
Y 88 35 94 94 11 16 68 31 59
Time window [6.5, 9.5] [7.5, 12] [7.5, 16.5] [8.5, 14] [7.5, 15.5] [7.5, 16.5] [6.5, 12] [7.5, 16.5] [7.5, 16.5]
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5.2. Algorithm Test. After repeated tests, the parameters of
this algorithm are set as follows: population size
pop size � 30 ∼ 150, maximum iteration number
max gen � 800, initial variable neighborhood search
number Sn � 1, maximum neighborhood cycle number
MaxSn � 1000, and preset value stop num � 20 ∼ 50. .e
value of the parameter is related to the customer scale n,
when n≤ 50, pop size � 30, and stop num � 20, when
50< n≤ 100, pop size � 100, and stop num � 30, and
when n> 100, pop size � 150, and stop num � 50.

To verify the performance of HCGAVNS, we calculate
the C1A data provided by reference [40] and compare the
results with ant colony optimization (ACO) [40], adaptive
genetic algorithm (AGA), improved adaptive genetic algo-
rithm (IAGA), artificial bee colony (ABC), and particle
swarm optimization (PSO) [18]. .e results are shown in
Table 3. Figure 13 is the optimal circuit diagram for this
instance, and Figure 14 is the optimal circuit diagram of
reference [40].

As can be seen from Table 3, the results of HCGAVNS
are better than those of other algorithms, and the im-
provement ranges of other five algorithms are 1.6%, 3.1%,
2.3%, 0.7%, and 0.5% respectively. Moreover, as can be seen
from Figures 13 and 14, the number of customers served by
each vehicle in reference [40] is quite different, with each
vehicle serving at least 2 customers and up to 12 customers.
.emaximum number of customers served by per vehicle in
this paper is 11 and at least 4, which is more in line with the
actual status of logistics services.

To further verify the effectiveness of the algorithm
proposed in this paper in solving different scales instances,
PSO, ABC, a hybrid genetic algorithm with variable
neighborhood search (HGAVNS), and HCGAVNS pro-
posed in this paper are applied to 14 instances in the VRP
international standard instance library in the same adap-
tation way as the C1A instance in reference [40]..e optimal
results and mean values are shown in Table 4, where the
bolded items are relatively better in comparison, and the
deviation of the optimal solution is shown in Table 5.

From Table 4, we can see that among the four algorithms,
16 data solved by HCGAVNS are better than other algo-
rithms, and most of the optimal results are improved. From
Table 5, we can see that the maximum deviation of the
optimal solution of this algorithm is 4.1% and the minimum
deviation is 0.9%, and the average deviation of the optimal
solution is 2.1%, which is more stable than PSO and ABC.
.erefore, we can see that the algorithm designed in this
paper has a good optimization ability for different scale
instances and the effectiveness and applicability of this al-
gorithm have been verified again.

5.3. Example Comparison. .e instance in this paper is
modified to reduce the number of paths of two nodes to 1 in
the case of multicompartment, and the distance matrix of
single path is directly calculated by the standard instance.
Under the same assumptions and system optimization en-
vironment, the HCGAVNS algorithm designed in this paper
is used to solve the multigraph delivery and the single-graph

Table 2: Parameter values.

Symbol Value Reference Symbol Value Reference
c1 50 Reference [34] c2 100 Reference [34]
c4 150 Reference [34] c5 26 Approximate
c7 6000 Approximate c8 18000 Approximate
ρ 0.024 Approximate c3 1.95 Approximate
α 0.14 Reference [39] c6 12 Reference [34]

Table 3: Results of various algorithms.

No. ABC AGA IAGA ACO
[40] PSO [18] HCGAVNS

Best 566.18 574.85 570.23 560.74 559.84 556.81
Dev
% 1.6 3.1 2.3 0.7 0.05 —

0 10 20 30 40 50 60 70
X

0

10

20

30

40

50

60

70

Y

VRP distribution route map

1
2

3

4
5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
42

43

44 45

46

47

48

49

50

Figure 13: .e optimal circuit diagram in this paper.

0 10 20 30 40 50 60 70
X

0

10

20

30

40

50

60

70

Y

VRP distribution route map

1
2

3

4
5

6

7 8

9

10

11

12
13

14

15

16

17

18

19

20

21

2223
24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50

Figure 14: Reference [40] optimal circuit diagram.

14 Journal of Advanced Transportation



delivery problem ten times, and the results of ten times are
listed in Table 6.

As can be seen from Table 6, in the case of multigraph,
the optimal solution of the scheme is 7695.50, the cargo
damage cost is 1136.10, the worst solution is 8460.80, the
cargo damage cost is 1087.30, and the average value is
8141.48. Compared with this, the deviation of the optimal
solution is 5.4%, the deviation of the worst solution is 3.9%,
and the solution results are relatively stable. In the case of
single graph, the optimal solution of the scheme is 8214.30,
and the cargo damage cost is 1097.80. .e worst solution is
9264.00, and the cargo damage cost is 1397.70. .e average
value is 8697.79. Compared with this, the deviation of the
optimal solution is 5.4%, the deviation of the worst solution
is 6.5%, and the convergence result is also relatively stable.
.rough comparison, it can be seen that the total service cost
of the multigraph strategy is reduced by 6.3%, and the cargo
damage cost is reduced by 4.2%. It is not difficult to find that
the multigraph strategy can reduce the delivery cost, im-
prove the delivery efficiency of fresh products logistics
e-commerce providers, and reduce the resource limitation of
refrigerated vehicles. .e delivery routes corresponding to

the optimal solution in the preoptimization stage are shown
in Table 7.

Due to the local adjustment strategy adopted in this
paper, only the secondary selection of paths between two
nodes is reconducted based on preoptimization, so the
order of nodes in the real-time adjustment stage is the same
as in the preoptimization stage. .e route and information
of the minimum total cost of the dynamic multi-
compartment refrigerated vehicle routing problem with
multigraph based on updated traffic information are shown
in Table 8.

From Tables 7 and 8, the route selection based on the
real-time traffic information can reduce the cost of cargo
damage and reduce the delivery time to continuously meet
the strict requirements of customers on fresh products
delivery. To sum up, the algorithm designed in this paper can
stably solve the dynamic multicompartment refrigerated
vehicle routing problem with a multigraph based on real-
time traffic information.

To verify the effectiveness of the algorithm presented in
this paper in terms of solving efficiency, the solution results

Table 4: Comparison of optimal results and average values of different algorithms.

Best Average
PSO ABC HGAVNS HCGAVNS PSO ABC HGAVNS HCGAVNS

VRPNC1 559.84 566.18 566.24 556.81 576.76 572.38 576.23 571.54
VRPNC2 948.17 952.68 957.49 942.23 957.51 961.87 968.23 957.64
VRPNC3 953.41 959.4 951.64 949.64 975.77 967.15 966.81 962.43
VRPNC4 1250.79 1243.38 1253.97 1241.95 1279.64 1257.18 1267.58 1261.96
VRPNC5 1647.03 1605.32 1627.46 1618.79 1676.85 1641.35 1642.35 1644.33
VRPNC6 566.86 564.56 571.83 559.32 576.67 573.10 584.96 569.45
VRPNC7 948.17 952.88 956.42 942.23 957.51 964.44 967.46 959.35
VRPNC8 953.41 945.33 951.64 949.64 975.77 959.50 962.57 962.74
VRPNC9 1250.79 1236.75 1250.92 1240.64 1279.64 1254.52 1260.75 1251.34
VRPNC10 1647.03 1624.31 1634.76 1606.58 1676.85 1642.18 1651.39 1658.91
VRPNC11 1315.26 1298.13 1318.96 1305.79 1341.26 1340.94 1344.53 1338.74
VRPNC12 916.47 919.06 911.47 909.40 968.91 955.03 952.35 935.86
VRPNC13 1283.53 1276.3 1291.14 1268.71 1342.25 1331.29 1321.36 1323.57
VRPNC14 928.67 911.74 927.25 914.59 968.86 958.07 970.53 944.83

Table 5: .e optimal solution deviation values of each algorithm.

PSO (%) ABC (%) HGAVNS (%) HCGAVNS (%)
VRPNC1 2.9 1.1 1.7 2.6
VRPNC2 1.0 1.0 1.1 1.6
VRPNC3 2.3 0.8 1.6 1.3
VRPNC4 2.3 1.1 1.1 1.6
VRPNC5 1.8 2.2 0.9 1.6
VRPNC6 1.7 1.5 2.2 1.8
VRPNC7 1.0 1.2 1.1 1.8
VRPNC8 2.3 1.5 1.1 1.4
VRPNC9 2.3 1.4 0.8 0.9
VRPNC10 1.8 1.1 1.0 2.7
VRPNC11 1.9 3.2 1.9 2.5
VRPNC12 5.4 3.8 4.3 2.8
VRPNC13 4.4 4.1 2.3 4.1
VRPNC14 4.1 4.8 4.5 3.2
Average 2.5 2.1 1.8 2.1

Table 6: Multigraph and single-graph problem results.

No.
Multigraph Single graph

Total
cost

Cargo damage
cost

Total
cost

Cargo damage
cost

1 7695.50 1136.10 9264.00 1397.70
2 7949.30 1070.20 8856.30 1268.00
3 8273.60 1202.90 9021.30 1250.10
4 7969.20 1164.90 8706.30 1157.40
5 7970.50 1270.70 8214.30 1097.80
6 8455.70 1193.80 8336.60 1123.60
7 8371.40 1217.20 8640.20 1179.50
8 8460.80 1087.30 8413.70 1332.50
9 8136.00 1226.30 8750.40 1062.40
10 8132.80 1026.90 8774.80 1237.30
Average 8141.48 1159.63 8697.79 1210.63
Best 7695.50 1136.10 8214.30 1097.80
Worst 8460.80 1087.30 9264.00 1397.70
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and running time of the three algorithms for the problem
studied in this paper are showed in Table 9.

.e difference between the three algorithms is that
IAGA adds a reversal operation basis on adaptive genetic
algorithm (AGA). .e difference between HCGAVNS and
the other two algorithms is that HCGAVNS uses an
adaptive variable neighborhood search algorithm to re-
place mutation operation and uses a chaotic system to
generate initial solutions to increase the diversity of the
population. As can be seen from Table 9, the algorithm
designed in this paper is superior to AGA and IAGA in

both solution quality and efficiency..is is mainly because
the chaotic systems increase the diversity of initial so-
lutions and improve the solution quality. Adaptive vari-
able neighborhood search algorithm uses the
neighborhood structure composed of different actions to
carry out an alternate search and achieves a good balance
between concentration and evacuation. .e adaptive
search mechanism adopts the adaptive neighborhood
search number strategy to control the number of neigh-
borhood searches and improves the solution efficiency of
the algorithm.

Table 7: .e delivery routes corresponding to the optimal solution in the preoptimization stage.

Route Selected path Delivery time (h) Total cost Cargo damage cost
Vehicle1 0-39-15-22-7-8-41-0 2, 3, 1, 1, 1, 1, 1 5.70 1382.60 196.19
Vehicle2 0-31-38-14-35-0 2, 1, 1, 1, 1 3.61 716.73 130.83
Vehicle3 0-1-37-19-40-11-0 2, 1, 1, 1, 1, 1 3.24 660.25 89.05
Vehicle4 0-29-44-6-24-0 3, 1, 3, 3, 1 2.79 650.47 113.91
Vehicle5 0-12-36-42-4-16-0 3, 1, 1, 1, 1, 1 3.32 790.12 135.07
Vehicle6 0-25-2-20-33-21-17-0 3, 1, 3, 1, 1, 1, 1 5.80 1180.20 215.74
Vehicle7 0-10-5-3-13-32-9-26-0 3, 1, 1, 1, 1, 1, 1, 1 5.41 1093.30 146.16
Vehicle8 0-43-18-27-34-30-0 2, 1, 1, 1, 1, 1 3.06 863.93 85.58
Vehicle9 0-23-28-0 3, 1, 1 1.36 357.94 23.61
Total — — — 7695.5 1136.1

Table 8: Optimization results of delivery routes.

Route Selected path Delivery
time (h) Cargo damage cost

Vehicle1 0-39-15-22-7-8-41-0 1, 3, 2, 2, 2, 2, 1 5.7 197.24
Vehicle2 0-31-38-14-35-0 2, 1, 2, 2, 1 3.52 128.12
Vehicle3 0-1-37-19-40-11-0 2, 1, 1, 2, 2, 1 3.07 85.58
Vehicle4 0-29-44-6-24-0 3, 1, 2, 2, 1 2.75 112.27
Vehicle5 0-12-36-42-4-16-0 3, 1, 2, 2, 1, 1 3.32 135.24
Vehicle6 0-25-2-20-33-21-17-0 3, 1, 2, 2, 2, 2, 1 5.85 216.84
Vehicle7 0-10-5-3-13-32-9-26-0 3, 1, 2, 2, 2, 2, 2, 1 5.49 146.09
Vehicle8 0-43-18-27-34-30-0 2, 1, 1, 2, 2, 1 3 83.46
Vehicle9 0-23-28-0 3, 1, 1 1.35 23.79
Total – – – 1128.62

Table 9: Comparison of the three algorithms.

No.
AGA IAGA HCGAVNS

Total cost Cargo damage cost CPU Total cost Cargo damage cost CPU Total cost Cargo damage cost CPU
1 8914.2 1167.7 104.81 8445.6 1174.5 104.20 7695.50 1136.10 78.73
2 8249.0 1199.7 103.28 8417.2 1238.6 103.86 7949.30 1070.20 83.80
3 8497.0 1174.4 103.63 8729.0 1242.1 106.07 8273.60 1202.90 78.26
4 8264.7 1256.1 102.93 8268.7 1270.6 102.11 7969.20 1164.90 79.06
5 8468.3 1256.7 104.17 8766.4 1304.7 104.19 7970.50 1270.70 80.15
6 8836.9 1401.4 110.00 8607.8 1333.9 104.34 8455.70 1193.80 82.14
7 8735.9 1249.2 106.56 8651.7 1160.1 105.02 8371.40 1217.20 79.48
8 8530.0 1162.1 105.29 7780.0 1186.6 102.51 8460.80 1087.30 81.25
9 7786.0 1282.4 104.34 9109.0 1105.0 103.94 8136.00 1226.30 77.17
10 8553.7 1096.8 105.41 8053.6 1224.9 103.91 8132.80 1026.90 78.08
Average 8483.6 1224.7 105.042 8482.9 1224.1 104.02 8141.48 1159.63 79.81
Best 7786.0 1096.8 102.93 7780.0 1105.0 102.11 7695.50 1136.10 77.17
Worst 8914.2 1401.4 110.00 9109.0 1333.9 106.07 8460.80 1087.30 83.80
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6. Conclusions

.is paper studies the dynamicmulticompartment refrigerated
vehicle routing problem with multigraph based on real-time
traffic information. .e main conclusions are as follows:

(1) .e dynamic multicompartment refrigerated vehicle
routing problem with multigraph based on real-time
traffic information is a deepening and expansion of
VRP. It is beneficial to improve delivery efficiency
based on real-time traffic information reflected by a
big data platform and to fully combine the complex
and diverse characteristics of the road network en-
vironment in real life to plan delivery routes.

(2) .e model considers the impact of vehicle routing
planning on fresh products damage, refrigeration cost,
vehicle fixed cost, and time window penalty cost on the
total cost, which can more objectively and accurately
reflect the operation of the cold chain logistics system.

(3) .e HCGAVNS algorithm is designed to ensure the
diversity of initial solutions by using chaotic phe-
nomena, and the strategy of combining elite reser-
vation and roulette is adopted in the selection
operation to ensure the effective convergence of the
algorithm. Moreover, evolutionary operation and
adaptive search mechanism are used to improve the
local search capability, besides the solution quality.

.e research in this paper applies to the delivery network
based on the real road network, which can further reduce the
delivery cost of logistics enterprises and provide a theoretical
solution for logistics enterprises to use traffic big data. In the
future, we will consider the scenes closer to the actual de-
livery, such as delivery network sharing. We will also study
the convergence speed of the algorithm and the further
improvement of the quality of the optimal solution.

Data Availability

.e data used to support the findings of this study are
available at https://www.d.umn.edu/tdrl/index.htm https://
www.bernabe.dorronsoro.es/vrp/ and references [17, 34, 39, 40].

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.is work was supported by the Special Project of National
Emergency Management System Construction of the Chi-
nese National Funding of Social Science (20VYJ024).

References

[1] J. H. Tang, S. F. Tong, and G. C. Chen, “Vehicle routing
optimization with carbon emissions considered under time-
varying network,” Systems Engineering, vol. 33, no. 33,
pp. 37–44, 2015.

[2] X. Lin, Q. Q. Shao, Z. H. Yang, Q. Xu, and Z. H. Jin, “.e
Scheduling Optimization of Distribution Vehicles Consid-
ering Urban Road Network Conditions,” Operation Research
& Management, vol. 28, pp. 13–23, 2019.

[3] X. L. Ge and H. Zhang, “Study on the Optimization of Vehicle
Routing Problem in Urban Real Time Traffic Network,” In-
dustrial Engineering. & Management, vol. 23,
pp. 140–149+156, 2018.

[4] Z. Q. Tong and P. X. Li, “Vehicle routing problem of refined
oil distribution consider real-time traffic condition and ve-
hicle turnover rat,” Industrial Engineering & Management,
vol. 24, no. 2, pp. 109–115, 2019.

[5] Y. F. Li, Z. Y. Gao, and J. Li, “Vehicle routing problem in
dynamic urban network with real-time traffic information,”
System Engineering 2eory & Practice, vol. 33, pp. 1813–1819,
2013.

[6] A. L. Kok, E. W. Hans, and J. M. J. Schutten, “Vehicle routing
under time-dependent travel times: the impact of congestion
avoidance,” Computers & Operations Research, vol. 39, no. 5,
pp. 910–918, 2012.

[7] N. R. Sabar, A. Bhaskar, E. Chung, and A. Turky, “A self-
adaptive evolutionary algorithm for dynamic vehicle routing
problems with traffic congestion,” Swarm & Evolutionar.
Computer, vol. 44, pp. 1018–1027, 2019.

[8] J. X. Xu and J. N. Guo, “Research on logistics vehicle routing
problem based on big data framework,” Transportation Sys-
tem Engineering. & Information, vol. 18, pp. 86–93, 2018.

[9] D. Q. Tang, G. G. Jin, andW. Q. Shi, “Dynamic vehicle routing
schedule algorithm based on big-data platform,” Computer
Engineering, vol. 44, pp. 74–78, 2018.

[10] Y. G. Yao and S. Y. He, “Research on optimization of dis-
tribution route for cold chain logistics of agricultural products
based on traffic big data,” Management Review, vol. 31,
pp. 240–253, 2019.

[11] T. Garaix, C. Artigues, D. Feill, and D. Josselin, “Vehicle
routing problems with alternative paths: an application to on-
demand transportation,” European Journal of Operational
Research, vol. 204, pp. 62–75, 2010.

[12] H. B. Ticha, N. Absi, D. Feillet, and A. Quilliot, “Multigraph
modeling and adaptive large neighborhood search for the
vehicle routing problem with time window,” Computer Op-
erational Research, vol. 104, pp. 113–126, 2019.

[13] H. W. Wang, YenYi Lee, and Y. Y. Lee, “Two-stage particle
swarm optimization algorithm for the time dependent al-
ternative vehicle routing problem,” Journal of Applied &
Computational Mathematics, vol. 03, no. 04, pp. 1–9, 2014.

[14] Y. X. Huang, L. Zhao, T. V. Woensel, and J. P. Gross, “Time-
dependent vehicle routing problem with path flexibility,”
Transportation Research Part B: Methodological, vol. 95,
pp. 169–195, 2017.

[15] M. Setak, M. Habibi, H. Karim, and M. Abedzadeh, “A time-
dependent vehicle routing problem in multigraph with FIFO
property,” Journal of Manufacturing Systems, vol. 35,
pp. 37–45, 2015.

[16] J. N. Qian and R. Eglese, “Eglese Fuel emissions optimization
in vehicle routing problems with time-varying speeds,” Eu-
ropean Journal of Operational Research, vol. 248, pp. 840–848,
2016.

[17] S. Y. Li, B. Dan, and X. L Ge, “Optimization model and al-
gorithm of low carbon vehicle routing problem under multi-
graph time-varying network,” Computer Integrated
Manufacturing Systems, vol. 25, pp. 454–468, 2019.

[18] J. M. Chen, N. Zhou, and Y. Wang, “Optimization of multi-
compartment cold chain distribution vehicle routing for fresh

Journal of Advanced Transportation 17

https://www.d.umn.edu/tdrl/index.htm
https://www.bernabe.dorronsoro.es/vrp/
https://www.bernabe.dorronsoro.es/vrp/


agricultural products,” Systems Engineering, vol. 36,
pp. 106–113, 2018.

[19] C. L. Wang and S. W. Li, “A multi-compartment vehicle
distribution route optimization method based on complex
network,” Journal of Systems Management, vol. 28, pp. 708–
716, 2019.

[20] S. Martins, M. Ostermeier, P. Amorim, A. Hübner, and
B. Almada-Lobo, “Product-oriented time window assignment
for a multi-compartment vehicle routing problem,” European
Journal of Operational Research, vol. 276, pp. 893–909, 2019.

[21] R. Eshtehadi, E. Demir, and Y. Huang, “Solving the vehicle
routing problem with multi-compartment vehicles for city
logistics,” Computer Operational Research, vol. 115, Article ID
104859, 2020.

[22] I. Kaabachi, H. Yahyaoui, S. Krichen, and A. Dekdouk,
“Measuring and evaluating hybrid metaheuristics for solving
the multi-compartment vehicle routing problem,” Measure-
ment, vol. 141, pp. 407–419, 2019.

[23] L. Chen, Y. Liu, and A. Langevin, “A multi-compartment
vehicle routing problem in cold-chain distribution,” Com-
puter Operational Research, vol. 111, pp. 58–66, 2019.
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