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Dockless bicycle-sharing (DLBS) is one of the novel transportation modes emerging in recent years. As a newly arisen mode,
dockless bicycle-sharing inevitably has influence on the existing components of the public transportation system, especially the
metro system. A large number of scholars have explored the integration relationship between the two. However, through the
evaluation and quantification of the dockless bicycle-sharing data and the metro automatic fare collection data, we find that the
relationship between the two is not unique. Based on the location of origin and destination, the travel duration, and the travel
distance, the dockless bicycle-sharing trips closely related to the metro were identified and categorized into three different
temporal-spatial relationships: competition trips, connection trips, and complementation trips.*ree indicators were proposed to
characterize the relationship between the two systems. A case study was carried out in Shanghai, China.*e proposed method was
applied to investigate when, where, and to what extent the dockless bicycle-sharing trips compete with, integrate with, and
complement the metro. *e results show that dockless bicycle-sharing mainly integrates with and complements the metro. It is
where the dockless bicycle-sharing trip takes place and the trip significantly determines its relationship with the metro. *e
findings provide significant implications regarding the design and management of dockless bicycle-sharing and the metro.

1. Introduction

Since the end of the 2000s, bicycle-sharing systems have
been rapidly developed and adopted worldwide [1] and have
become an important component of the public trans-
portation system for short-distance travel in cities. *e
Internet-based dockless bicycle-sharing (DLBS) systems are
particularly well received by the public and universally
recognized by the market [2]. *e DLBS enhances urban
mobility, promotes the accessibility of public transport, and
reduces the use of motorized transport [3]. As a newly arisen
mode, DLBS inevitably has influence on the public transit
systems, including the bus system and the metro. *e DLBS
can positively or negatively impact public transit meaning it
can be either a collaborator or a competitor for public
transit. [4] As a solution to last-mile problems, the first- and
last-mile connections to and from the metro have gotten

wide attention. In Shanghai, there are 1.07 million DLBS
trips on average whose origins or destinations are associated
with metro stations, accounting for about 34% of the daily
DLBS trips [5]. Statistics in Shenzhen [6] also show that 47%
of the DLBS trips are used to reach metro stations. However,
the relationship between the DLBS and the metro is mixed
and complex. Except for the collaboration (connection), the
other relationship, such as the complementation and
competition relationship between the two systems have not
been well substantiated and qualified.

*e lack of data integration and the lack of integrated
analytic skills are the two reasons for the research gaps in
deciphering the relationship between the two systems. *e
understanding of the relationship between the two systems
requires the traceability of the entire journey with multiple
transportation modes. Some existing studies collected data
based on traditional inquiry surveys which cannot fully trace
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the entire travel process. Some literature applied large-scale
datasets from the two systems, respectively, but lacked the
ability to incorporate the different data sources.

To fill the research gaps in the existing literature, this
study introduces the DLBS data and the metro automatic
fare collection (AFC) data to evaluate and quantify the
relationship between DLBS and the metro. Based on the
location of origin and destination of DLBS trips, the DLBS
travel duration, and the DLBS travel distance, five scenarios
are proposed to establish the connection between DLBS and
the metro and enable to analyze the travel patterns of the two
systems as a whole. DLBS trips closely related to the metro
are identified and categorized into three groups: competition
trips, connection trips, and complementation trips. To in-
vestigate when, where, and to what extent the DLBS trips
compete with, integrate with, and complement the metro,
three indicators are proposed to characterize the relationship
between the two systems. Finally, the proposed method is
carried out in the case study of Shanghai, China. Several
significant implications regarding the design and manage-
ment of DLBS and the metro are summarized from the
results.

*e contributions of this paper are as follows:

(i) A method is proposed to identify the relationship
between DLBS and the metro based on the data
integration of the large-scale dataset collected from
the two systems, respectively. A set of indicators is
proposed to integrate the travel patterns of the two
systems and quantify the relationship between the
two systems.

(ii) *rough the example verification of Shanghai, it is
confirmed that in addition to the connection, there
are also overlapping (competition relationship) and
supplement (complementation relationship) be-
tween dockless bicycle-sharing and the Metro.

*e remainder of this paper is organized as follows.
Section 2 presents a review of the related works. Section 3
introduces the multi-source dataset. Section 4 presents the
methodology of the relationship identification between the
two systems. Section 5 presents the case study in Shanghai,
China. Finally, conclusions and future directions are given.

2. Related Works

In this section, the related work is summarized in three
aspects, which are the DLBS usage characteristics analysis,
the relationship between the BSS and the public transit
system, the relationship between the DLBS and the metro.

2.1. (e DLBS Usage Characteristics Analysis. Sufficient
studies have analyzed the characteristics of the usage of
bicycle-sharing. Compared to docked bicycle-sharing, DLBS
have no fixed stations and are usually private, start-up, and
venture capital projects. Most DLBS users are mobile In-
ternet users and most DLBS units are equipped with GPS
devices for easy redistribution and maintenance. [7] Many
studies [8–12] have proposed a series of methods to analyze

the temporal and spatial heterogeneity of DLBS usage
characteristics. For example, Zhuang et al. [8] applied cluster
analysis to a DLBS dataset to automatically identify typical
cyclic patterns in the spatiotemporal dimension. Song et al.
[9] analyzed the demand of BSs and used global and local
Moran’s I index and community detection to model the
spatiotemporal dynamics of circular mobility. Bao et al. [11]
applied clustering methods and text mining-based potential
dirichlet assignment methods to identify DLBS trip distri-
butions and trip purposes. Zhang et al. [13] studied the
temporal and spatial heterogeneity from the perspective of
penetration theory, and the results revealed the oversupply
of bikes in urban centers and the imbalance between supply
and demand on a larger scale. In addition, a series of studies
have analyzed the factors influencing usage characteristics,
showing that conditions such as land use, socio-economics,
population density, roadway designs, transportation facili-
ties, cycling infrastructures, weather (including temperature,
humidity, air quality) [3, 14–18], and changes in human
mobility due to the COVID-19 pandemic [19–21] can have
an impact on the mobility characteristics of bike-sharing
(either DBS or DLBS).

2.2. (e Relationship between BS and the Public Transit.
With the gradual increase of research on the regularity of
bicycle-sharingmovement, the relationship between bicycle-
sharing and the public transit is being further explored.
Fuller D pointed out that bicycle-sharing is associated with
transportation mode transfer in his research on the impact
of BS on collision accidents in Canada [22]. Zhang [23]
investigated the relationship between the frequency of public
transportation use and the probability and frequency of BS
use using survey data from the United States. *e results
showed that for each unit increase in the frequency of public
transportation use, the probability of using BS increased by
4.0% and the frequency of using BS increased by 1.4%. Zhu
et al. [24] surveyed public bicycle users in Shanghai and
found that most users used shared bicycles to replace their
original public transportation. Martin et al. [25] focused on
Washington, DC and Minneapolis bicycle-sharing users’
travel behavior. *ey found that in low-density urban areas,
bike-sharing users used it more to connect to public
transportation services; in high-density urban centers, more
bike-sharing trips were used to replace public trans-
portation. Fishman [26] surveyed bikeshare users in five
cities, Melbourne, Brisbane, Washington D.C., London, and
Minneapolis, and ultimately found a substitution relation-
ship between bikeshare, walking, and public transportation.
Fuller et al. [27] used telephone survey data to investigate
bikeshare use in Montreal and found that bikeshare had a
substitution effect on public transportation. Campbell [28]
developed a two-difference model using data from transit
and bikeshare systems to test the substitution relationship
between BS and transit in New York City. Kong et al. [29]
deciphered the relationship between bicycle-sharing and
public transit and divided them into three categories: Modal
substitution, integration, and complementation, which have
great reference value.

2 Journal of Advanced Transportation



2.3. (e Relationship between BS and the Metro. In practical
applications, bicycle-sharing is one of the important ways to
solve the “last-mile” problem of public transportation;
therefore, in recent years, a wealth of research on the re-
lationship between bike-sharing and metro systems has
focused on the integration between the two. Bocker et al.
[30] found that when other factors such as distance, ele-
vation, travel time, and urban form are consistent, bike-
sharing traffic will be significantly higher if the trip origin
and destination are related to a rail transit station. Part of the
literature [10, 18] mined the impact of bike-sharing on rail
transit stations and used hierarchical clustering to cluster rail
transit stations into morning and evening peak bike-gath-
ering stations, morning peak bike-gathering stations, and
evening peak bike-gathering stations. Yu et al. [31] used
bike-sharing data and subway travel data to extract indi-
cators and used a confidence ellipse approach to make an
analysis of the service area of shared bicycles around metro
stations. Yan et al. [32] extracted shared bicycle operation
order data related to Shanghai rail transit line 9, visualized
and analyzed the differences in the usage patterns of dockless
shared bicycles around the metro on weekdays and holidays,
and revealed the characteristics of the service area of
dockless shared bicycles around the metro. In addition,
some studies have investigated the factors influencing the
integration between bike-sharing and metro. For example,
Muhammad et al. [33] investigated and analyzed user
preferences for last-mile feeder using a mixed choice model
and found the influence of user preferences on metro-BS
integration. Hu et al. [34] fitted a set of generalized additive
models considering marginal nonlinear interactions and
examined the relationship between the external environ-
ment (including land use, sociodemographics, roadway
designs, transportation facilities, metro station features, and
DLBS operator features) and the activity characteristics of
metro-integrated bicycles. And, some bike-sharing systems
that primarily serve city centers (e.g., the bike-sharing
system in downtown Dublin) or serve suburban areas (e.g.,
the system in Jiangning District, Nanjing, China) show
integration relationships with the metro as users need to
commute between central and suburban areas. [35–37].

Apart from integration, other relationships between
bike-sharing and metro have been less studied. Ma Knaap
[38] compared the use of bicycle-sharing and metro in
Washington, DC in 2010 and 2015, and found that for metro
stations in the downtown area, there are bicycle-sharing
stations within a 1/4 mile (about 402 m) range, which re-
duces the number of metro travels, and for the metro sta-
tions in the fringe area, the stations with bicycle-sharing
increase the metro passenger flow. *is demonstrates the
substitution and complementarity of bike-sharing for the
metro.

2.4. Literature Summary. In summary, the research on the
relationship between bike-sharing systems and public
transportation: bike-sharing and public transit (bus) can be
summarized as substitution, integration, and complemen-
tation. In contrast, research on the relationship between

dockless bicycle-sharing systems (DLBS) and subways fo-
cuses on integration, and there is a gap in research on other
relationships between the two. In addition, it can be seen
from the previous studies that most of the studies are based
on questionnaire surveys, studying the relationship between
bicycle-sharing and public transportation and trying to find
out the influence factors. However, traditional survey
methods have many drawbacks. With the development of
information and communication technology, multi-source
big data contain a wealth of crowd movement information
and has the characteristics of large samples and low cost [39],
which can provide more effective tools for bicycle-sharing-
related research.*erefore, to fill the research gap, this study
aims to fuse the travel data of the two systems, quantify the
relationship between the DLBS system and the metro, and
investigate the spatiotemporal patterns of DLBS trips that
replace, integrate, and complement the metro.

3. Datasets

3.1. (e Dockless Bicycle-Sharing Data. In this study, the
DLBS data were provided by Shanghai Transportation
Commission, including dockless bicycles registered through
all formal channels in Shanghai from May 1st to May 12th,
2019. It is composed of more than 1.7 million bicycles and
generates 1.07million average daily trips.*e information of
each data includes the bicycle ID, lock status, timestamps,
and longitude and latitude coordinates. In addition, most of
the data processing in this paper is supported by the Python
package TransBigData. [40].

Several filters were applied to the data before further data
processing. First, the OD information was extracted. *e
data were generated when the lock was opened and closed, so
by which record the starting and ending positions of each
single bicycle travel.*e change of lock status of each bicycle
with the same ID can correspond to the beginning and end
of a riding order. *us, the OD information of each order
can be extracted. And, through the calculation and sorting,
the bicycle ID, the duration and distance of travel, the
departure and arrival time, and the departure and arrival
position are explicitly recorded in the dataset. *erefore, by
monitoring the DLBS data, the DLBS system can be turned
into a virtual sensor network for sensing mobility in the city.
Second, there existed some outliers with too short or long
travel time. In this study, trips with durations less than 1min
or greater than 120min were identified as outliers and were
dropped. *ird, to reflect the actual demand of DLBS, May
6th (Monday) and 12th (Sunday) were selected as two typical
days to represent the travel demand on weekdays and
weekends. After data cleaning and data filtering, 1,086277
and 853237 DLBS trips were obtained on May 6th and 12th,
respectively (Figure 1).

3.2. Metro Automatic Fare Collection Data. *e metro au-
tomatic fare collection (AFC) data were collected from the
metro system in Shanghai from May 1st to May 12th, 2019.
Shanghai metro network is composed of 17 lines and 387
stations, with an average daily ridership of 10.6 million. *e
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metro AFC system stores the inbound and outbound rec-
ords, and the metro ridership at the station-to-station level.
*e metro AFC data used in this paper provide the infor-
mation of hourly passenger flows in 387 metro stations,
including the metro line ID, the metro station name, hours
of the day, the hourly inbound passenger flow, and the
hourly outbound passenger flow.

Figure 2 shows the temporal variation in hourly ridership
of the metro network on May 6th and 12th. *e temporal
variation of hourly ridership shows significant differences
between weekdays and weekends. Onweekdays, the temporal
variation presents obvious characteristics of morning and
evening peak within a day. While on weekends, the temporal
distribution of ridership tends to be relatively uniform.

4. Methodology

4.1. Methodology Framework. Figure 3 shows the method-
ology framework of this study. *e DLBS data, metro GIS
data, and metro AFC data were used to evaluate and analyze
the relationship between the DLBS system and the metro
system.*emethodology can be briefly described as follows:

(1) Spatial matching. *e origin and destination of each
DLBS trip are extracted from the DLBS data. With
the help of metro GIS data, spatial matching is
carried out to search and match the origin and
destination with their nearest metro stations.

(2) Buffer area segmentation. To distinguish the DLBS
demand around metro stations, a data-driven
method is proposed to segment the coverage area of
metro stations.

(3) DLBS trip classification. To establish the connection
between DLBS and the metro, DLBS trips closely re-
lated to the metro are identified based on the location
of DLBS origin and destination, the DLBS travel du-
ration, and theDLBS travel distance. According to the
relationship with the metro, the identified trips are
categorized into three groups: competition trips,
connection trips, and complementation trips.

(4) DLBS-metro Relationship Characterization. To an-
alyze the travel patterns of the two systems as a
whole, three indicators are proposed to characterize
the relationship between the two systems, including
the share of connection around themetro station, the
intensity of competition along the metro route, and
the demand of complementation outside the metro
coverage area.

4.2. Identification of Relationship between DLBS and the
Metro. *e large-scale dataset of DLBS trips applied in this
study enables to collect the travel information of DLBS trips
with smaller bias and less labor intensity. By comparing and
fusing the two types of data, the relationship between their
travel demands at the spatial and temporal levels can be
found and thus their relationship can be explored.

First, trips with a relationship to the metro are identified,
the distance between DLBS origin/destination and metro

station is the main factor to be considered. In previous
studies, most scholars often take a definitional approach to
identify the interchange trips: a bike-sharing trip is defined
as an interchange trip if its origin or destination is located in
a catchment area around a metro station. Some literature
defines the radius of the catchment area as 300m [41, 42] or
500m [5, 31, 43, 44], and the smaller the radius, the higher
the percentage of interchange trips within the catchment
area [45]. In a face-to-face questionnaire survey conducted
by Li et al. [46] on the trip purpose of bike-sharing users
around the metro, most respondents (>75%) indicated that
their bike-sharing trips were related to the metro when the
origin or destination was located within a 500 m buffer zone
of a Shanghai metro station. Zhao et al. [47] proposed a data
matching method based on association rules and verified it.
*e results show that 573 pairs of smart cards are matched
within 300m around the subway station, and the accuracy is
100%.*erefore, we can assume that by judging the distance
between DLBS origin/destination and metro station, we can
judge the relationships of most trips.

*en, the time of DLBS trip occurrence and DLBS travel
distance are considered to make it closer to the real situation
and thus increase the accuracy. Finally, the trips are cate-
gorized into three modes and they are defined as follows:

(1) Competition: Competition refers to the situation in
which DLBS is used as a substitute for the metro.
Within the service time of the metro system, if both
the origin and the destination of DLBS trip are close
to metro stations, the user is supposed to take the
metro to complete the trip without too much
walking, waiting, and transferring. In this case, DLBS
is considered an alternative to the metro.

(2) Connection: Connection refers to the situation where
the metro is the core of the entire journey, and DLBS is
used to get access to the metro. In this case, both the
spatial relationship and the temporal relationship be-
tween DLBS and the metro should be considered. *e
spatial relationship between the two systems requires
that either the origin or destination of the DLBS trip
should be close to metro stations. For temporal rela-
tionship, the DLBS trip should arrive shortly before the
departing time of metro trip or depart shortly after the
arriving time of metro trip. In addition, the duration of
the DLBS trip should not be too long.

(3) Complementation: Complementation refers to the
situation where DLBS is used in areas with insuffi-
cient metro coverage. In other words, if either the
origin or destination, or both, of the DLBS trip is far
away from metro stations, DLBS is considered a
complementary mode to the metro.

Based on the definition of relationships between the two
systems, a three-step method is proposed to distinguish the
relationship between DLBS and the metro.

4.2.1. Spatial Matching. *e first step is spatial matching. To
identify the relationship between DLBS and the metro, it is
important to understand the spatial relationship between the
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origin and destination of each DLBS trip and the metro
stations. To improve the speed of matching, this paper uses
�e KDtree algorithm to search the origin and destination of
DLBS trips, and matches them with the nearest metro
stations.

(1) Extract the departure and arrival information of
each DLBS trip from the DLBS data, and determine
the geographic coordinates of the origin and
destination.

(2) Divide the space of the metro stations, establish a
spatial index, and perform a binary tree search on the
origin and destination of each DLBS trip to �nd the
nearest metro station.

(3) Calculate the closest distance between the origin or
destination and the metro station.

dist � 2 arcsin
�������������������������������������
sin2

y1 − y2
2

+ cos y1 × cos y2 × sin2
x1 − x2

2

√

× 6378.137,

(1)

where x1, y1 denote the longitude and latitude of DLBS trip
origin or destination, x2, y2 denote the longitude and lati-
tude of the nearest metro station, and di st represents the
distance measured by the kilometer.

4.2.2. Bu�er Area Segmentation. Bu�er area segmentation is
applied to divide the coverage area of the metro system.
Previous studies mostly generated the bu�er area of public
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Figure 1: Spatial distribution of DLBS trips’ origin point (unit: counts/km2). (a) May 6th (Weekday). (b) May 12th (Weekend).
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Figure 2: �e temporal variation in hourly ridership of the metro network. (a) May 6th (Weekday). (b) May 12th (Weekend).

Journal of Advanced Transportation 5



transportation based on questionnaire surveys or empirical
experience, which cannot accurately reflect the buffer re-
lationship between bicycle-sharing and public trans-
portation. Hawas et al. [48] proposed that a place can be
considered to be covered by public transportation, if it gets
access to a public transit station within a comfortable
walking distance. Wu [49] determined this comfortable
walking distance to be 400 meters. Jin et al. [50] introduced
100 meters as another threshold to assist the analysis of the
relationship between Uber and public transit. Kong et al.
[29] proposed “traffic coverage” to measure the spatial
distribution of public transportation services, and divided
the urban space into three regions based on the threshold of
100 meters and 400 meters. And, Hu et al. [43] proposed a
spatial network density-based method to determine the
optimal size of the parking ring (buffer area) based on large
volume of bike-sharing travel data in determining the bike-
and-ride (BnR) trips, where the size of the parking ring is
measured by the network distance and its boundary is
obtained from the concave surface of all accessible nodes,
which can better reflect the real cycling scenario. (Figure 3)

*is study proposes a data-driven method for buffer area
segmentation based on large-scale DLBS data. Given the
origin and destination of DLBS trips, the distances between
the origin or destination and the nearest metro station can be
obtained. Applying Kernel Density Estimation to find the
estimated probability density function of distance, the spatial
relationship between DLBS and the metro can be visualized
in Figure 4.

Most DLBS trips start or end within two kilometers away
from metro stations. It can be seen from Figure 4 that there
are two peaks in the probability density function. *e first
peak is around 80–100 meters, the second peak is around
400–600 meters, and a trough can be found around 240–280
meters. *e first peak is likely to associate with the bicycle
parking facilities around themetro stations.*e second peak
is the outcome of the origins or destinations of users’ first-
mile or last-mile trips. *e trough between the two peaks
represents the weakened spatial agglomeration of DLBS
demand. It indicates that 260 meters can be used as a
threshold to distinguish the DLBS demand around metro
stations.

In addition, to distinguish whether the DLBS trip is
associated with the metro, set the second threshold. Without
considering the connection transportation, the service range
of the metro station is that people can walk (750m) to the
entrance and exit of the station within 10 minutes, and it
should be the superposition of the reasonable reachable
range of multiple single starting points [51]. *erefore,
considering the distribution of multiple entrances and exits
of the metro station and surrounding roads, it is set as
1000 m. *e two thresholds divide the coverage area around
a metro station into three parts:

(1) Near metro station area (Area A): Buffer areas within
260 meters away from the metro stations. Area A is
within a few minutes’ walk from the metro stations.
If the DLBS trip starts or ends in Area A, the user is
likely to pick up the bicycle after alighting the train or

drop off the bicycle before boarding. 21.20% of the
weekday DLBS trips and 23.23% of the weekend
DLBS trips start or end in Area A around the metro
stations.

(2) Metro radiation area (Area B): Buffer areas within
the range of 260–1000 meters away from the metro
stations. Area B is the transition area; it lies in the
coverage area of the metro station but outside the
comfortable walking distance which indicates the
service coverage of the subway system. 53.45% of the
weekday DLBS trips and 59.78% of the weekend
DLBS trips start or end in Area B around the metro
stations.

(3) Far metro station area (Area C): Areas outside the
buffer areas, more than 1000 meters away from the
metro stations. Trips in these areas will be unrelated
to the metro system, meaning that when the OD of
the trip is all far from the metro, the bike becomes a
transportation option.

4.2.3. DLBS Trip Classification. Allocating the origin and
destination of each DLBS trip to the areas as mentioned
above, the cases shown in Table 1 are proposed to represent
the relationship between DLBS and metro, which can
contain all valid DLBS trip orders in the dataset.

According to the spatial distribution of the seven ODs
obtained in the above table, to further improve the accuracy
of the relationship classification, attention should be paid to
the time of trip occurrence, and orders that exceed the
Shanghai metro’s operation hours (5 : 25 to 23 : 00) should be
excluded from the potential connection and substitution
relationships and categorized in the supplementary rela-
tionships. Finally, combined with the DLBS trip distances,
five key scenarios are proposed to represent the relationship
between DLBS and the metro which are shown in Figure 5.

Scenario 1. Short-distance DLBS trips between Area A and
Area B/C

In Scenario 1, Considering that the distance of DLBS
trips for connection should not be too long [4], we mainly
focus on the DLBS trip shorter than or equal to 2 kilometers.
*e DLBS trips either start or end very close to the metro
stations. DLBS is used as the first-mile/last-mile connection
of the metro. In this case, DLBS trips are categorized as
connection trips.

Scenario 2. DLBS trips between Area A around different
metro stations

In Scenario 2, both the origin and destination of DLBS
trips are located very close to the metro stations. *e DLBS
trips in Scenario 2 are likely to replace the trips formerly
made by metro. In this case, DLBS trips are categorized as
competition trips.

Scenario 3. DLBS trips between Area B around the same
metro station

In Scenario 3, there is a certain distance between the
metro station and the origin and destination of DLBS trips.

6 Journal of Advanced Transportation



Are located very close to the metro stations. In this case,
since both the origin and destination are in the Area B
around the same metro station, DLBS is a complementary
mode to the metro. �erefore, DLBS trips are labelled as
complementation trips.

Scenario 4. DLBS trips between Area B around di�erent
metro stations

In Scenario 4, users prefer to use DLBS to complete the
entire journey between Area B around di�erent metro

stations. Both the origin and destination of DLBS trips are a
certain distance away from the metro stations. Compared
with the metro, DLBS provides a convenient, inexpensive,
and door-to-door service. In this case, DLBS is more likely to
be considered as a substitute for the metro. �erefore, DLBS
trips are categorized as competition trips.

Scenario 5. DLBS trips between Area B and Area C
In Scenario 5, either the origin or destination of DLBS

trips is outside the coverage of the metro. �ese DLBS trips

Table 1: Spatial relationship between DLBS trips OD and bu�er zone.

Cases Description Relationship
Case 1 Only one of O and D is in area A Potential connection
Case 2 Area A to area A around di�erent metro stations Potential competition
Case 3 Area B to area B around di�erent metro stations Potential competition
Case 4 Area A to area A around the same metro station Excluded due to short-distance
Case 5 Area B to area B around the same metro station Complementation
Case 6 Area B/C to area C/B Complementation
Case 7 Area C to area C No relation
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cannot replace or be combined with the rail transit. In this
case, DLBS acts as a complementary mode to enhance the
urban mobility in areas with insu�cient metro coverage. In
this case, DLBS trips are labelled as complementation trips.

4.2.4. DLBS-Metro Relationship Characterization. �e �ve
scenarios mentioned above establish the connection between
DLBS and themetro and enable to analyze the travel patterns
of the two systems as a whole. �ree indicators are proposed
to characterize the relationship between DLBS and the
metro.�e three indicators correspond to the travel patterns
of three types of DLBS trips, respectively, including the share
of connection around the metro stations, the intensity of
competition along the metro lines, and the demand of
complementation outside the metro coverage area.

(1) �e share of connection. �e share of connection refers to
the share of DLBS connection in the passengers of the metro
station. �is indicator is proposed to analyze the DLBS
connection demand of metro passengers at the station level.
Given a time windowΔt, letAi denote the Area A around the
metro station i, in the DLBS data, there are oi DLBS trips
departing from Ai and di trips arriving at Ai. Meanwhile,
there are oi′ boarding passengers in the metro station i and di′
alighting passengers in this station. �en, the share of
connection at metro station i can be calculated as :

Si �
di + oi
oi′ + di′

. (2)

(2) �e Intensity of Competition. �e intensity of competi-
tion refers to themetro passenger �ow that has been diverted
to DLBS. �is indicator is proposed to restore the distri-
bution of diverted metro passenger �ow from the O-D
demand of DLBS competition trips. Given a time window
Δt, let Ai and Bi denote the Area A, B, respectively, around
the metro station i, in the DLBS data, there are nij DLBS
competition trips from Ai to Aj and mij competition trips
from Bi to Bj. Assuming that all the DLBS competition trips
were formerly made by metro, the diverted metro O-D
demand from station i to station j can be calculated as (3):

rij � nij +mij. (3)

Based on the diverted metro O-Dmatrix R � (rij), tra�c
assignment is carried out to allocate trips between metro
stations to the metro network. For the two adjacent metro
stations i, j, the intensity of competition Iij refers to the
allocated passenger �ow in the segment from station i to j,
that is, the segment passenger �ow diverted by DLBS.

(3) �e Demand of Complementation. �e demand of
complementation refers to the number of DLBS comple-
mentation trips in the areas with insu�cient metro coverage.
�is indicator is proposed to analyze the demand of DLBS
complementation trips at the area level. Given a time
windowΔt and a 500m × 500m grid covering the study area,
there are ui DLBS competition trips departing from the grid
cell i and wi trips arriving at this cell. �en, the demand of
complementation trips in the grid cell i can be calculated as:

Di � ui + wi. (4)
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Figure 5: Illustration of the �ve scenarios.
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5. Results and Discussion

5.1. Travel Characteristics of DLBS. *e travel character-
istics of DLBS are analyzed based on the travel duration, the
travel distance and the turnover rate obtained from DLBS
data.

As for the travel duration, the average travel duration is
13.12 minutes on May 6th and 11.05 minutes on May 12th.
*e average travel duration on working days is slightly
longer than that on weekends.

As for the travel distance, the average travel distance is
1250.9 meters on May 6th and 1199.3 meters on May 12th.
*e estimated probability density function of DLBS travel
distance is shown in Figure 6. *ere is no great difference in
travel distance between weekdays and weekends. *e dis-
tribution of travel distance has an obvious peak and fat tail.
*e DLBS travel distance is mostly smaller than 5000 meters
and reaches a peak at around 600–700 meters (Figure 7).

*e daily turnover rate of bicycles can reflect the overall
situation of bicycle resource usage.*e average turnover rate
of active bicycles is 5.68 on May 6th and 4.97 on May 12th.
However, according to the statistics published by the gov-
ernment, the average turnover rate of all the shared bicycles
in Shanghai was 1.1 in 2019. *e dramatic difference indi-
cates that there are a large number of inactive bicycles in the
city. *e horizontal axis of the bar chart in Figure 7 rep-
resents the daily turnover rate, while the vertical axis is the
frequency, showing the frequency distribution of the dif-
ferent daily turnover rates of active bikes in the dataset. *e
figure shows that most of the bike-sharing bikes have less
than ten completed orders per day. And, compared with the
turnover rate on weekends, there are more bicycles used for
more than three times on weekdays.

5.2. Analysis of the Relationship between DLBS and the
Metro

5.2.1. General Patterns. Given the preprocessed DLBS data
on May 6th and 12th, 2019, the relationship between DLBS
and the metro was identified, and the proportion of different
kinds of relationship was illustrated in Figure 8. *e share of
three kinds of trips is significantly different between weekend
trips and weekday trips. Figure 8(a) shows that the con-
nection trips dominate weekday trips, followed by comple-
mentation trips and competition trips. Figure 8(b) shows that
the share of complementation trips is the largest in weekend
trips, followed by connection trips and competition trips.*e
share of connection trips and complementation trips are
considerable in both weekdays and weekends, accounting for
about 75% of DLBS trips. *e results show that DLBS mainly
integrates with and complements the metro.

5.2.2. Temporal Patterns. In addition to the difference be-
tween weekend and weekday trips, DLBS trips in different
times of day might also be different. Figure 9 illustrates the
number of connection, complementation, and competition
trips in different times of day, and Figure 10 illustrates the
temporal variation of the share of different kinds of trips.

Several observations can be made from the two figures. First,
the hourly patterns of DLBS trips are clearly different be-
tween weekday and weekend. All the three kinds of DLBS
trips show sharp morning and evening peak on weekdays,
whereas the weekend patterns are featured with relatively
smooth summits.*ese results suggest that all the three kinds
of DLBS trips have a large percentage of commuting trips,
whereas the purposes of weekend trips are more diversified.
Second, the temporal patterns illustrated in Figures 8 and 9
indicate that commute plays an important role in the
composition of DLBS trips. Connection trips dominate DLBS
trips during the morning and evening peak on weekdays, the
share of which ranges from 40% to 48%. DLBS has been
widely accepted as the seamless access to metro stations and
widely used in the peak commuting hours. Complementation
trips make up the majority of DLBS trips during the off-peak
hours of weekdays and the whole weekends. *e differences
in the share of connection trips and complementation trips
between peak hours and off-peak hours indicate that com-
mute as a trip purpose might be a significant determining
factor in the relationship between DLBS and the metro.

5.2.3. Spatial Patterns. Figure 11 shows the DLBS connection
shares around Shanghai metro stations, using the color and
size of the dots to indicate the proportion of passengers
entering and exiting the station at that metro station who
chose DLBS for their connection. *e results resonate with
our previous findings that the share of connection trips is
much larger on weekdays. *e mean value of the share of
connection is 7.5% on May 6th and 5.4% on May 12th.

From the spatial distribution of the share of connection
in Figure 11, significant spatial heterogeneity can be ob-
served. *e value of the share of connection is smaller in the
city center and suburban areas. *e city center is covered
with dense public transportation networks and well-devel-
oped metro networks. *ere barely exists the demand of
medium- or long-distance connection in the city center. As
for the suburban areas, the insufficient DLBS supply cannot
meet all the demand of connection with the metro.

Fuxing Island Station, Tongji University Station, Guo-
quan Road Station, Sanmen Road Station, and Wuwei Road
Station are the five metro stations with the highest share of
connection. *e five stations and other stations with high
share of connection have some common features that they
are located between city center and suburban areas and
surrounded with residential districts or industrial districts.

*ese findings imply that for connection trips, the public
transportation networks, the supply of DLBS service, and the
building environment around the metro stations are de-
termining factors (Figure 11).

*e intensity of competition along the metro segments is
calculated and illustrated in Figure 12. *e color and the
width of lines represent the intensity of competition with
DLBS, that is, the segment passenger flow diverted by DLBS.

*e spatial distribution of the intensity of competition
on weekdays coincides with that on weekends. Most of the
metro sections with a large intensity of competition are the
sections before the first transferring stations from the
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suburban areas to the city center. �ese sections are usually
the maximum section of passenger �ow of the metro lines.

�ese results suggest that for competition trips, what
matters is not how far a place is away from the city center,
but rather how crowded the metro is. DLBS is regarded as an
alternative solution to escape from the crowded metro.

With the rapid development of the city and the con-
tinuous expansion of urban lands, DLBS can be a useful tool
to complement public transportation networks in areas with
insu�cient metro coverage. �e demand of complementa-
tion is calculated and plotted in Figure 13.

As can be seen from the �gure, complementation trips are
more widely distributed on weekends, which might be because
of the more diversi�ed travel demand on weekends. �e areas
with huge demand of complementation trips are mainly lo-
cated around the terminal stations in the suburban end of
Metro Line 1, 5, 9, and 12. In these areas, the public trans-
portation is not well-developed and short in supply. Preference
has been given to DLBS to complete the medium- or long-
distance trips. As a supplementary to public transportation
services, DLBS enhances the mobility in the area and promotes
the accessibility of public transportation networks.
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6. Conclusions and Future Directions

In recent years, DLBS has gradually been warmly welcomed
by the public. In the urban transportation system, as an
environment-friendly short-distance shared travel mode,
DLBS enhances the mobility of the city and promotes the
accessibility of the transportation network.*e development
of new transportation modes will inevitably have an impact
on the existing modes, especially the metro system. *is
study applies the DLBS data and the metro AFC data to
quantify the internal relationship and the interaction be-
tween the two systems. Using the large-scale dataset col-
lected from the two systems, respectively, a method is
proposed to identify the relationship between the two

systems.*ree indicators are proposed to integrate the travel
patterns of the two systems and quantify the relationship
between the two systems.

(i) *e relationship between DLBS and themetro can be
defined as competition, connection, and comple-
mentation. DLBS trips mainly integrate with and
complement the metro.

(ii) Corresponding to the three kinds of relationships,
the relationship between the two systems can be
characterized by the share of connection around the
metro stations, the intensity of competition along the
metro lines, and the demand for complementation
outside the metro coverage area.

Figure 13: *e demand of complementation trips.

Figure 12: *e intensity of competition along the metro segments.
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*e findings from the case study of Shanghai suggest
that both where the dockless bicycle-sharing trip
takes place and when the trip happens significantly
determine its relationship with the metro. Commute
as a trip purpose might be a significant determining
factor in the relationship between DLBS and the
metro.

Our study provides a framework for analyzing the re-
lationship between DLBS and other transportation modes.
According to the research conclusion, the accuracy of the
two systems can be recommended for the construction and
management of stations, lines, and regions to improve the
operation efficiency and service level of the two systems,
promote the reasonable integration and development be-
tween the two systems, and effectively promote the overall
optimization of the urban transportation system. We believe
that not only the proposed methods but also the problem-
solving ideas and management framework apply to other
cities with different conditions.

However, this paper only uses longitude and latitude
coordinates, which may not reflect street layout or terrain, in
the distance calculation of shared single vehicle travel, which
has certain limitations. In addition, it does not know more
about the relationship between DLBS companies and the
planning entity. It should continue to be discussed in future
research.

Meanwhile, based on the spatiotemporal heterogeneity
that we found for different categories of DBL trips, deeper
research can continue, for example, what are the potential
underlying mechanisms that present these spatiotemporal
patterns. Hu et al. [43] fitted a set of generalized additive
models considering marginal nonlinear interactions to the
association between metro-related trips and the external
environment in their study, including land use, socio-
demographics, road design, transportation facilities, metro
station characteristics, and DBS operator characteristics,
which is of great relevance to our subsequent study.
However, since the existing research data do not contain
information on the built-up urban environment and in-
dividual attributes, very accurate modeling of regression
and willingness models cannot be performed at this stage.

In future research, we will endeavor to obtain urban
built environment data such as POI and conduct spatial
regression models based on the known spatial heteroge-
neity. Secondly, we are already working on the design of a
survey on travel intention of bike-sharing users, which will
explore the degree of influence of weather environment,
personal factors, cycling environment, subway environ-
ment, travel characteristics, environmental protection
philosophy, and epidemic on people’s willingness to use
bike-sharing to connect, replace, and supplement the
metro.
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