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*is study aims to investigate the spatial riding characteristics under different demand scenarios using association rule mining
with hotspot detection, and to establish the subordinate rules between bike-sharing demand and land elements and between land
elements. To reduce deviation from modifiable areal unit problem (MAUP) and improve objectivity and accuracy, we impose
spatial constraints using the hotspot detection model instead of the square grid and traditional traffic zone. *e bike-sharing
trajectory-based kernel density algorithm is employed to explore the optimum analysis locations and the analysis areas with the
relatively high demand. More importantly, the research featured here involves five demand scenarios for the differentiation of
riding characteristics. *e results show that the most significant influencers on bike-sharing demand include financial insurance
facilities, dining facilities, and landscapes. As for characteristics of riding destination, the combinations between landscapes and
financial insurance facilities, between landscapes and companies/enterprises, and between companies/enterprises and financial
insurance facilities are more likely to be visited simultaneously. *ese findings make us understand urban spatial structure in
response to traffic plan and provide evidence for bike-sharing dispatch optimization.

1. Introduction

Bike-sharing has improved the efficiency of the traffic system,
but it has also faced many problems in its development [1].
For example, how to effectively explore the riding charac-
teristics and the relationship between land use and bike-
sharing demand is a fundamental problem to be solved [2].
*e land use-based demand forecast is helpful to grasp the
potential trend and to find out the connection and coordi-
nation control methods with other travel models, especially in
cities that are just starting to develop bike-sharing. Analysis of
the spatial riding characteristics also nudges the optimization
of land use structure. Not surprisingly, a well-planed zone will
naturally attract more bike-sharing users and encourage
visitors to prefer bike-sharing travel.

Generally speaking, bike-sharing trips mainly consist of
riding distance, riding time, riding purpose, riding volume,
and other characteristics [3]. As one of the most important
research instruments, spatial riding characteristic analysis

fulfills its role in wisely expanding the bike-sharing stations
and codesigning a premium user experience with the
management department plan. Like other travel charac-
teristics, spatial riding characteristics can be divided into two
categories, namely, origin characteristics and destination
characteristics:

(1) Trip-generation is the focus point of origin char-
acteristics. For example, Amiri et al. [4] study the
riding behaviors in freezing weather using intercept
survey with cross-tabulation. Based on barrier
models, Ahmadreza et al. [5] explore the spatial-
temporal interaction of bike-sharing demand in New
York City. Afterward, data mining technology makes
researches more accurate and objective. As bike-
sharing big data and traffic networks make solid
ground, clustering [6, 7], regression analysis [8], and
time series [9, 10] have been widely introduced to
model the characteristics of bike-sharing generation.
*e usefulness of these methods goes much beyond
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improving the bike-sharing service quality, especially
as the traffic system keeps constantly changing. In
recent years, more novel algorithms make break-
throughs for interpreting the multiscale interactions
between land use and bike-sharing demand: fusion
modules consisting of random forest, probability
fitting, and time-domain analysis [11]; a spatial-
temporal flow model (DestiFlow) [12]; and a gravity
model-based Bayesian algorithm [13]. It is found that
different land use and built-up environment impose
different influences on bike-sharing trip-generation.
Conversely, bike-sharing popularity can also change
the direction of urban land plan. Not surprisingly,
the interesting conclusions published in existing
literature enable us to better understand the
changing mechanism for bike-sharing demand and
to improve service efficiency.

(2) Well-rounded researches regarding the travel des-
tinations especially for taxi users have ruled out the
bike-sharing [14, 15]. Moreover, the existing travel
destination inference model in bike-sharing essen-
tially draws lessons from the ideas of other trip
modes. For example, Zhang et al. [16] put forward a
trip behavior-based regression method to infer trip
destinations and predict tourism destinations [17].
Considering the individual heterogeneity of bike-
sharing users, many destination inferencing models
study the activeness of macro-land use by integrating
multiple factors. Obviously, a pool of likely candidate
destinations from aggregation narrows the research
scope and improves efficiency [18, 19]. Additionally,
in addition to machine learning, the most common
destination choice model is logit and its various
improved forms [20, 21], which can be used to
evaluate the influencing factors of riding destina-
tions. Relevant results show that destination choices
are determined by multiple elements, such as bike
lane [22] and weather [23]. Based on these models
for inference and prediction, it is possible to further
grasp the spatial variations of bike-sharing in real
time and to promote regional economic
development.

Nevertheless, how to determine optimum combination
of facilities remains unknown. Most significantly, the
existing square grid methods are rather no-brainer, missing
a comprehensive investigation of the influence of data ag-
gregation. For example, MAUP can lead the study into the
error caused by scale or partition problem [24, 25]. Due to
the complexity of traffic problem, most of the previous
researches on characteristics and behaviors have neglected
this potential problem. Generally, traffic zones play an
important role in traffic engineering, and most early models
pay extra attention to the division method [26, 27]. With
deepening the research, researchers find that the zoning size
has a tremendous negative impact on the subsequent
practical applications [28]. In other words, errors may have
preceded the investigation of the traffic characteristics based
on square grids or other arbitrary zoning methods. In

response to the above-mentioned challenges, this paper will
propose a more-oriented method for illustrating spatial
riding characteristics in order to address the following
questions:

(1) Which facility combination can generate maximum
travel demand for bike-sharing?

(2) If there are the associations between visiting desti-
nations of bike-sharing users, how different are they
in demand scenarios?

(3) How to establish spatial constraints for character-
istics modeling to avoid MAUP?

To answer these questions, first, the study explores
optimum analysis areas with relatively high heat values
corresponding to bike-sharing travel demand. Compared
with the square grid and traditional traffic zone, hotspot
areas-based spatial constraints can identify the key problem
and clear away theMAUP triggered troubles. Next, the study
implements the Apriori algorithm with the riding demand
and land elements as result markers to establish the origin-
and destination-based subordinate rules. In addition, by
dividing the analysis areas into five demand scenarios, the
study differentiates the spatial riding characteristics under
different demand levels.

2. Methodology

2.1. Establishing Analysis Areas by Detecting Hotspots. As
expected, both the grid method and traffic zone method may
take on the MAUP effect and lead to the accumulation of
errors. *erefore, instead of dividing the entire research
zone, we directly identify areas where the bike-sharing
demand is the greatest. After all, taking the areas with greater
bike-sharing demand as spatial constraints contributes to
the analysis of spatial characteristics by weakening indi-
vidual heterogeneity. Based on this, we can improve the
regional attraction in the fastest way and avoid many un-
necessary troubles from zoning scale.

“*e hotspot (HS) detection model regulates good
positive progress for the research of this paper. Exploring the
HSs of various elements has always been the central of
analyzing urban mobility and spatial-temporal patterns. HSs
are usually defined as areas where features are the same as
geo-references on the map [29]. *e advances of spatial
density analysis algorithms make it simpler to identify the
exact location and extent of range effects. Density analysis
distributes the data in a spatial relationship across the
ground to calculate a density surface and to show the al-
location of elements. *e kernel density analysis (KDA) is
the most popular in geospatial analysis and is very suitable
for estimating the density of given large-scale spatial ele-
ments [30, 31]. Generally, there are three density analysis
methods, namely, dot density, line density, and kernel
density. Obviously, the bike-sharing data herein are dot
elements, and therefore line density analysis is no more
applicative. Despite the applicability of dot density analysis
to the data type herein, application of such simple analysis
results to the hotspot detection process fails. More
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importantly, we may take a knock because dot density
analysis requires an assignment of neighborhood zone to
calculate the density around each output image element. By
contrast, KDA employs a kernel function to calculate the
amount of points per unit area based on the point elements,
so as to fit each point to a smooth conical surface with a
continuous digital field pattern. KDA allows the dispersion
of all known points towards all directions, starting from the
point location. In KDA, the quadratic formula used to
generate the surface gives the highest value to the center of
the surface (the point location) and reduces to zero within
the search radius distance. For each output image element,
intersection points that accumulate for each dispersed
surface shall be calculated. Essentially, KDA deploys a
similar Gaussian kernel function for interpolation, which
makes the results more valid and reliable. Furthermore, the
smooth density field surfaces formed by the KDA provide a
stable basis for accurate hotspot detection. To sum up, KDA
is selected as the main tool for analyzing spatial riding
characteristics of bike-sharing users herein.

*e KDA scans the measurement area, casts the mesh
density according to (1), and produces a smooth surface.
After converting the discrete target model to a continuous
field model, we can intuitively visualize the density around
the target.
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whereN is the number of points, r is the bandwidth, a and b are
the coordinates of the center point k, ai and bi are the coor-
dinates of the sampling point, and f
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center point p(a, b) on the grid cell. Figure 1 shows the
principle of KDA. In the study area R, the KDA model takes
any point as the center (kernel K) and calculates the density
value of target points in bandwidth R, determined by the
number and distance of material points in bandwidth. *e
KDA calculates the point density around each output grid unit.
*e density of each output grid unit is calculated from the sum
of all values that cover the central core area of the grid unit.

As shown in Figure 1, the bandwidth usually determines
the fineness of the KDA results, so it is necessary to choose a
reasonable bandwidth according to the requirements. *e
bandwidth selectionmodel adopted in this paper is as follows:
firstly, determine the average center of n element points, then
take the medianDm of the distance from the average center to
each event point, and calculate the standard distance SD of
event points, with the equation being as follows:
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In addition, this paper introduces the K-adjacency
distance method as an auxiliary method to determine the
optimal bandwidth, as shown in the following equation:
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where dij represents the nearest distance of order k, that is,
the average distance from one event point to the kth element
point. *e k determines the smoothness of density surface.
*e larger the k is, the larger the bandwidth r and the
smoother the generated density surface will be. *e first
method is the default method of calculating the optimal
bandwidth in ArcGIS software, which only requires
importing data to obtain the results without any other
complex processing, while the second method needs to be
implemented in ArcGIS with the help of Python pro-
gramming. *e results of the two calculations are compared,
and the median value is chosen as the optimal bandwidth for
the KDA in this paper.

*e KDA algorithm can be employed to obtain a density
surface with a continuous digital field pattern. As a result, HS
detection model is constantly introduced to compensate for
the accurate hot areas, which helps model the spatial riding
characteristics. Figure 2 exhibits the algorithm flow of HS
detection according to density field. Firstly, data pre-
processing is carried out, such as eliminating abnormal data,
filling up missing data, and extracting origin-destination
data from the bike-sharing track. *en, export the origin-
destination data to ArcGIS, and apply the KDA based on
spatial analysis tools to output raster cells with kernel density
as the raster value. Using KDA, Window Analysis, Minus,
Reclassification, Raster to Polygon, and Turning Feature into
Point, the travel HSs and the corresponding raster value of
bike-sharing are obtained. *e working principle is dem-
onstrated in Figure 3.

*e bike-sharing HSs are defined as analysis points,
which are inputted into the geographic database to con-
stitute the buffer areas by the GIS and to determine the
analysis areas for spatial riding characteristics. According
to the bus evaluation system in the transit metropolis, the
buffer radius r of the analysis area for riding characteristics
is set as 500m herein, as shown in Figure 4. On the one
hand, bike-sharing is a service open to the public, and it
also has a parking station. On the other hand, in terms of
the accessibility of conventional public transport stations,
the maximum tolerance level for walking distance is
mostly 500m. *at is to say, the majority of users prefer to
walk for POI (point of interest) facility within 500m ra-
dius. More importantly, the end riding point is usually at a
little distance from the final destination as a result of the
constraints of various factors such as bike-sharing

Matter
Bandwidth r Kernal k

Study Area R Location

Figure 1: *e demonstration of KDA principle.

Journal of Advanced Transportation 3



stations. Taken together, this distance often cannot be
greater than 500m; otherwise, it will exceed the user’s
walking tolerance level. *erefore, it is relatively rea-
sonable and realistic to set the buffer radius of the analysis
area at 500m.” (Sun C, Quan W. Evaluation of Bus Ac-
cessibility Based on Hotspot Detection and Matter-Ele-
ment Analysis[J]. IEEE Access, 2020, PP(99):1–1). In fact,
hotspot-based analysis areas are deployed for spatial
constraints of association rule mining, which improve the
efficiency of modeling.

2.2. Exploring Riding Characteristics Using Association Rules.
As an essential algorithm in machine learning, association
rule mining (ARM) is first proposed for market basket
analysis (MBA). For example, the rule of “{onions, potatoes}
⇒ {burger}” in the market may indicate that if a customer
buys onions and potatoes at the same time, then the cus-
tomer is likely to buy hamburgers meat as well [32]. *is
information can be used to guide marketing activities, such
as commodity pricing and commodity delivery. In this
paper, the analysis areas are similar to different market
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Figure 2: *e flowchart of hotspot detection.
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baskets, bike-sharing users are similar to customers, and POI
facilities are similar to commodities, as shown in Figure 5.
*erefore, we aim to establish the subordinate rules between
bike-sharing demand and POI facilities and between POI
facilities by modeling riding characteristics in hot areas.

2.2.1. Basic Definition. I � i1, i2, . . . , in􏼈 􏼉 is defined as item-
sets of spatial riding characteristics of bike-sharing users
(SRCBU), ii is defined as items of SRCBU,
Db � t1, t2, . . . , tn􏼈 􏼉 is defined as database for analyzing
SRCBU, and tk is regarded as transaction for presenting
characteristics. A transaction is a collection of items; i.e., a
transaction is a subset of I, tk ∈ I [33]. Each transaction is
identified with a unique transaction ID. *e SRCBU can be
defined as follows:

X⇒Y, X, Y⊆I. (4)

Each SRCBU consists of two different item-sets, where X
is called premise or left-hand side (POI) and Y is called
conclusion or right-hand side (POI or travel demand of
bike-sharing).

2.2.2. Important Conceptions. In order to select interesting
SRCBU from the set of all possible rules, various significance
and interest constraints are employed, the best known of
which are support and confidence of SRCBU [34].

(1) Support. Support is used to represent the occurrence
frequency of SRCBU in the database. For item-set X in
database Db, its support is defined as the ratio of the number
of transactions t containing item-set X to the number of all
transactions T, as shown in the following equation:

supp(X) �
| t ∈ T; X⊆t{ }|

|T|
. (5)

(2) Confidence Coefficient. Confidence is introduced to
measure the credibility of a SRCBU. For SRCBU X⇒Y, the
confidence is defined as the ratio of the number of trans-
actions in the database of SRCBU that contain both X and Y
to the number of transactions that contain X. *erefore,
confidence of a SRCBU can be regarded as conditional
probability, as shown in the following equation:

conf(X⇒Y) �
supp(X∪Y)

supp(X)
. (6)

(3) Lift. A lift of SRCBU is defined as follows:

lift(X⇒Y) �
conf(X⇒Y)

supp(Y)
�

supp(X∪Y)

supp(X) × supp(Y)
. (7)

(4) Conviction. *e conviction of a SRCBU is as follows:

conv(X⇒Y) �
1 − supp(Y)

1 − conf(X⇒Y)
. (8)

*e conviction of SRCBU denotes the probability that X
occurs but Y does not; i.e., the probability that the prediction
of rule is wrong.

2.2.3. Association Rule Processing. An association rule be-
tween different POIs or between POIs and bike-sharing
demand can only be considered interesting and key if it
satisfies a minimum support threshold and a minimum
confidence threshold. Association rule generation for
SRCBU is split into two separate steps [35, 36].

(i) Locate all frequent item-sets of SRCBU from the
database using the minimum support threshold.

(ii) Rules are generated from these frequent item-sets of
SRCBU using minimum confidence thresholds. Al-
though the phase of generating rules is straightfor-
ward, finding the frequent item-set of SRCBU
requires more effort as it involves searching for the
set of all possible items of SRCBU. *e size of the
item-set is a powerful set of I, which is 2n−1 (ex-
cluding the meaningless empty set). Frequent item-
sets have two very fundamental properties.

Property 1. All nonempty subsets of a frequent item-set of
SRCBU are also frequent.

Property 2. All supersets of an infrequent set of SRCBU are
infrequent.

r

Hotspot Analysis area

longitude

latitude

longitude

latitude

Figure 4: *e representation for establishing spatial riding characteristic analysis area.
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As shown in Figure 6, the color denotes the number of
transactions containing SRCBU item-set and the SRCBU
item-set at a lower level can contain at most the minimum
number of SRCBU items of all its parents, e.g., {SRCBU item
1, 2} has at most min (SRCBU item 1, SRCBU item 2) items.
Based on this law, many efficient algorithms (e.g., Apriori,
FP-Growth) make all the frequent item-sets of SRCBU
available. *e Apriori algorithm first generates frequent 1-
item-set L1 for SRCBU, and then combines two item-sets of
SRCBU which only contain one different item in L1 to
generate frequent 2-item-set L2.*e process is repeated until
some value of r makes Lr null. *e objective dominating
Apriori is to get the largest frequent SRCBU item-set in a
transactional dataset and use the same with a predetermined
minimum confidence threshold to generate strong associ-
ation rules between different POIs and between POIs and
bike-sharing demand. Additionally, one fundamental fea-
ture of Apriori is that all nonempty subsets of a frequent
item-set of SRCBU must also be frequent item-sets of
SRCBU. *us, the Apriori algorithm is processed as follows:
① finding all frequent item-sets of SRCBU (support must be
greater than or equal to the given minimum support
threshold for SRCBU herein); ② generating strong asso-
ciation rules between different POIs and between POIs and
bike-sharing demand. From process①, it is known that the
items-sets of SRCBU that do not exceed a predetermined
minimum support threshold have been removed, and if
these remaining rules again satisfy a predetermined mini-
mum confidence threshold for SRCBU, then a strong as-
sociation rule between different POIs and between POIs and
bike-sharing demand would be presented.

3. Results

3.1. Dataset. *is paper selects Beijing as a case study,
obtaining open-access bike-sharing travel records as the
research data (https://www.biendata.xyz/competition/
mobike/data/). *e main fields on the dataset are orderid,
bikeid, etc. (as shown in Table 1).

In view of some errors and inconsistent formats, we need
to preprocess the data. *e preprocessing procedure of data
is as follows:

(1) Coordinate transformation. Coordinate system
transformation refers to the transformation of space
points in different coordinate forms under the same
Earth ellipsoid. *e original location data of shared
bikes is in Geohash format, which is converted into
geodetic coordinate system (WGS84) according to
research needs.

(2) Data cleaning. In the original data of shared bikes,
the equipment cannot send GPS data back, or the
returned GPS data is in error due to GPS equipment
failure, GPS signal shielding, and other factors.
*erefore, these noise data should be cleared away
before use. In the operation, totaling of types of
errors was found, as shown in Table 2.

(3) OD extraction. In fact, after the coordinate trans-
formation, each piece of data has two latitude and
longitude pieces of information, which are the
corresponding origin and destination of each bike-
sharing travel. We just need to distinguish the lat-
itude and longitude of the origins from those of the
destinations using the segmentation tool.

longitude

latitude
Hotspot area Market basket

POI facility Commodity
Bike-sharing

user Customer

Figure 5: Model for riding characteristics similar to market basket analysis.

SRCBU item

SRCBU item 1 SRCBU item 2

SRCBU item 1.2

SRCBU item 1

SRCBU item 1,3 SRCBU item 2,3

SRCBU item 1,2,3

Figure 6: *e property of frequent item-sets of SRCBU.
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*en, we employ a crawler tool to obtain all the POI data
of Beijing with the help of Amap (https://www.amap.com/.).
*e preprocessing for POI data is the same for bike-sharing
data as described above. Further, all the POI data are in-
troduced and divided into 13 categories to analyze the spatial
riding characteristics including dining facilities and land-
scapes, as shown in Table 3.

*e number of POIs within each analysis area is a
continuous variable, but the Apriori association rule algo-
rithm cannot deal with continuous numerical variables.
*erefore, to adjust the format of data as required by
modeling, nonhierarchical clustering algorithm (also called
K-Means) is applied to discretize the data and cluster the
attributes of each interest point into five categories. *e
principle of K-Means is to divide the data into pre-
determined class on a basis of a minimum error function and
take distance as a similarity evaluation standard.*is feature
means that the closer the distance between two objects, the
greater the similarity will be. For example, the discretization
result of the dining facilities is shown in Table 4. A1 rep-
resents the minimum quantity, and A5 represents the
maximum quantity, which is also valid for other POI
facilities.

3.2. Analysis Location and Area. *e KDA algorithm-based
origin-destination data are employed to obtain the density
field of bike-sharing travel, as shown in Figure 7(a). *rough
tools in ArcGIS, we recognize all hotspots with tools in
ArcGIS and clustering method described in Section 2.1, as
shown in Figure 7(b). Subsequently, with all the travel
hotspots (analysis points) of bike-sharing as the center,

analysis areas are built as the buffer zone with a search radius
of 500m and exported to the geographical database, as
shown in Figure 8. To discretize the raster value within each
analysis area is also the premise of Apriori association rule
algorithm.We use the method that processes the POI data to
classify the raster values into five levels under which there
are five demand scenarios. R1 is the highest level (Level 1),
corresponding to the maximum demand of bike-sharing
travel; on the contrary, R5 is the lowest level (Level 5),
corresponding to the minimum demand of bike-sharing
travel. In fact, R1–R5 simply indicate the demand scenarios
from high to low; in other words, we define the group with
the larger raster value in the clustering results as the high
demand scenario R1, and so on. Essentially, R1–R5 are not
different from A1–A5, B1–B5, etc. It is only that in this
paper, for convenience of representation in GIS, R1 denotes
the high values while the others, A1, B1, etc., denote the low
values.

3.3.6eFittingResults ofARM. *emodel mainly consists of
input, algorithm processing, and output. *e input part
includes the POI data, bike-sharing demand data, and
modeling parameters.*e processing part of algorithm is the
Apriori, while the output part is the association rules be-
tween different POIs and between POIs and bike-sharing
demand. We make the modeling a reality by first setting the
minimum support and confidence of bike-sharing modeling
parameters. Next, we input modeling data of POIs and then
analyze them by the Apriori association rule algorithm
conditional on the minimum support and confidence levels.
In the application of association rules, there is absence of

Table 1: *e description of bike-sharing data.

Name of fields *e description of fields
orderid *e order reference
bikeid *e vehicle number
start_time *e initial time of the order
start_location_x *e longitude of the starting position of the order
start_location_y *e latitude of the starting position of the order
end_time *e ending time of the order
end_location_x *e longitude of the ending position of the order
end_location_y *e latitude of the ending position of the order

Table 2: Data cleaning.

*e type of data to
process Form Processing method

GPS records are not in
Beijing Location records are abnormal Delete

GPS records are
missing Some data do not record the origin and destination Complete the data according to the same bikes that have

been used twice in a row, or delete them if not
Time records are
missing Some records have no corresponding time field Delete

*e time interval is too
short Users ride for a short time, only a few seconds Delete

Some records are
coded incorrectly

*e encoding of some records is inconsistent with
the encoding format of other data Correct the code and re-read
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unified theory relative to the selection of relevant parame-
ters, and the selection usually depends on different actual
cases.

*e model has been fitted twice. For the first time, with
POI as X and bike-sharing demand level as Y, the model
employs origin data to demonstrate spatial characteristics
for bike-sharing users’ origins, namely, Model 1. R1, R2, R3,
R4, and R5 represent Level 1 to Level 5 travel demand. For

the second time, with POI as X and POI as Y, the model
employs destination data to demonstrate spatial charac-
teristics for bike-sharing users’ destinations, namely, Model
2. By considering the initial sample size and the distribution
characteristics of bike-sharing origin-destination data, we
adjust the threshold value according to the parameter
characteristics. After continuous manual debugging, the
minimum support is selected to be 0.3 and 0.01, and the

Table 3: *e description of POI data.

Name Symbol Description
Dining facilities A Restaurants, snack bars, canteens, etc.
Landscape B *e Great Wall, Old Summer Palace, etc.
Public facilities C Public toilets, newsstands, emergency shelters, etc.
Company enterprise D Lear Group, 58 Tongcheng, GAC Toyota, etc.
Transport facilities E Railway stations, airports, etc.
Education facilities F Schools, universities, training institutions, etc.
Financial insurance facilities G Banks, insurance centers, investment agencies, etc.
Hotels H Dabao Apartment, Seven Day Hotel, etc.
Living facilities I Cemeteries, baths, health clinics, barber shops, etc.
Sports facilities J Soccer fields, basketball courts, video game studios, etc.
Medical facilities K Hospitals, health service stations, pharmacies, etc.
Government departments L People’s Congress, mutual committees, police stations, etc.
Residences M Agricultural Community, Bright City, Rongxin Building, Silicon Valley, etc.

Table 4: *e discrete number of dining facilities.

Range marker Range Number
A1 0–3 6060
A2 3–108.5980 1366
A3 108.5980–262.5235 490
A4 262.5235–641.7826 156
A5 >641.7826 17

Density FieldValue
0-460576
460576-1688777
1688777-3224030
3224030-5219857
5219857-7983311
7983311-12435543
12435543-20265329
20265329-39148930

(a) (b)

Figure 7: Demonstration density field and hotspots.
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minimum confidence is selected to be 0.5 and 0.4, respec-
tively, in the two fitting models. On the one hand, this is
already the smallest threshold that can be adjusted and any
smaller value would lose practical significance. On the other
hand, it is only at this threshold that we can uncover the
riding characteristics of bike-sharing users corresponding to
the high-level analysis zones such as R4. *e partial fitting
results of the first model are shown in Table 5, while the
partial fitting results of the second model are shown in
Table 6.

*e most important conclusions are drawn from the
fitting results. For example, “A3, J3 ->R3” has a maximum
support of 2.09% and a maximum confidence level of
51.52%. *is result means that when dining facilities are at
Level 3 and sports facilities are at Level 3, the probability of
the demand for bike-sharing in the area being at Level 3 is
51.52%. *is interpretation method is also suitable for the
other cases.

Table 5 shows partial association rules between different
POI facilities in the analysis area corresponding to Level 3
demand. For example, “B1, D2 ->G2” can reach maximum
support of 34.99% and maximum confidence of 79.12%.
Within the analysis area of Level 3 demand, when landscapes
are at Level 1 and companies/enterprises are at Level 2, the
probability of the financial insurance facilities being at Level
2 is 79.12%. *e probability of this happening is as high as
34.99%. *is result means that when POI facilities and bike-
sharing demand meet the corresponding requirements,
users will likely ride to financial facilities after visiting
landscapes and companies/enterprises at the confidence
level of 79.12%.*e occurrence rate of this kind of associated
visit is 34.99%.*is interpretationmethod is also suitable for
the other cases.

3.4. Further Interpretation Based on Statistic Index. Under
the spatial constraints, there are significant differences in the
association rules at different demand levels, no matter
whether the bike-sharing demand or the POI itself is taken as

the result mark Y. *is indicates the relevance of bike-
sharing demand to different spatial riding characteristics.
*ere is a significant difference between the POI association
results corresponding to high and low demand, which may
be related to spatial aggregation and dispersion effects. For
example, when the bike-sharing demand is regarded as the
outcome marker Y, the association rules between Level 1
demand and POI facilities cannot be mined, indicating that
POI facilities cannot identify the analysis area with Level 1
demand. *e only association rule obtained for R2 is “I2, J3
->R2 (1.00%, 50%)”. *e probability of Level 2 for demand
is 50% in the area with Level 2 for living facilities and Level 3
for medical facilities. *is incidence rate only accounts for
1.00%. In other words, when the two facilities satisfy the
above requirements, the zone is more likely to be at the
second-level bike-sharing demand. By contrast, 12 associ-
ation rules belong to Level 2 bike-sharing demand, the most
significant of which is “E4, I4 ->R3 (1.03%, 76.15%)”. *e
combination of transport facilities and living facilities has a
great impact on the third-level bike-sharing demand, with a
76.15% probability of the analysis area falling into Level 3
demand when transport facilities and living facilities meet
the requirements of Level 3 and Level 4, and an incidence
rate of 1.0261%. *ere are more than a few dozens of as-
sociation rules obtained from both Level 4 and Level 5
demand. Still, as for Level 4 analysis area, the support and
confidence corresponding to the rules are significantly lower
than those for Level 5 analysis area. For example, the highest
confidence in Level 4 analysis area is “A2, G2 ->R4 (6.24%,
47.73%)”, while the highest confidence in Level 5 analysis
area is over 96%, including “B1, H1 ->R5 (72.67%, 96.12%)”
and “G1, K1 ->R5 (71.91%, 97.27%)”. Based on this, it is
possible to obtain a probability of 47.73% that the bike-
sharing demand in the analysis area falls into Level 4 when
dining facilities and financial insurance facilities all fall into
Level 2. However, when landscapes, hotels, and medical
facilities belong to Level 1, the probability of bike-sharing
demand belonging to Level 5 is higher than 71.91%. Further,
the frequency of various POI facilities within each hotspot
analysis area has been calculated, as shown in Table 7.

It can be seen from Table 7 that under different demand
scenarios, dining facilities (8), landscapes (7), financial in-
surance facilities (10), hotels (5), and so on have the highest
frequency. However, some POI facilities (public facilities
and living facilities) only appear once or twice, which
suggests that the impact of these facilities on bike-sharing
demand is low for the corresponding support and confi-
dence. When the POIs are deployed as the outcome
marker Y, the relatively significant partial association rules
and frequency statistics for POI combinations are shown in
Table 8.

According to Table 8, landscapes and financial facilities
frequently appear as the antecedents or consequences of the
association rule simultaneously as high as 12 times. *is
result indicates that within all analysis areas, the frequency of
simultaneously visiting financial facilities and landscapes
hits high level, although there are differences at the different
demand levels. *is frequency is followed by a combination
between landscapes and companies/enterprises, and

Legend
hotspot_Buffer1
hotspot1

Figure 8: Examples of bike-sharing analysis areas (hotspot_buffer).
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Table 6: Fitting results for the bike-sharing association rule Model 2 (X➡Y).

X Y
Rule number Range mark 1 Range mark 2 Result mark Support degree Confidence coefficient
1 B1 D2 G2 34.9911% 79.1165%
2 H2 - B1 45.4707% 78.0488%
. . .. . . . . .. . . . . .. . .. . . .. . . . . .. . . . . .. . .

n A3 - J3 30.0178% 71.6102%

Table 7: *e statistics of rules from Model 1.

Demand
scenarios *e most significant rules *e most essential POI (frequency is in parentheses)

R1 - -
R2 I2, J3 ->R2 (1.0014%, 50%) I2 (1), J3 (1)

R3

J3 ->R3 (3.301%, 46.354%); A3 ->R3 (2.918%,
48.163%)

A3 (3), B1 (1), C3 (1), E4 (3), F2 (1), G3 (2), H3 (1), I4 (1), J3 (4), K3
(1), L3 (1), M3 (2)

B1, K3 ->R3 (2.213%, 44.307%); A3, J3->R3
(2.089%, 51.524%)

E4, L3 ->R3 (1.001%, 49.390%); E4, H3->R3
(1.001%, 49.390%)

C3, M3->R3 (1.00%, 40.5%); A3, G3, J3->R3
(1.013%, 55.405%)

E4, I4->R3 (1.026%, 76.147%); A3, G3, J3 ->R3
(1.014%, 55.405%)

R4

G2->R4 (8.023%, 43.324%); A2 ->R4 (7.158%,
42.387%)

A2 (3), B1 (1), D2 (4), F2 (1), G2 (5), H2 (2)

D2, G2->R4 (7.108%, 45.169%); A2, D2 ->R4
(6.342%, 43.771%)

B1, G2->R4 (6.293%, 42.488%); K2->R4 (6.268%,
41.728%)

A2, G2->R4 (6.243%, 47.732%); D2, H2->R4
(6.1565%, 41.3965%)

D2, F2->R4 (6.144%, 40.605%) G2, H2 ->R4
(6.144%, 45.764%)

R5

B1->R5 (77.661%, 82.680%) G1->R5 (73.9028%,
96.3261%)

A1 (2), B1 (5), G1 (3), H1 (2), K1 (3)

B1, G1->R5 (73.198%, 96.433%); H1 ->R5
(73.186%, 96.057%)

K1->R5 (73.1611%, 96.8893%); A1 ->R5
(72.704%, 97.046%)

B1, H1->R5 (72.667%, 96.124%); B1, K1->R5
(72.555%, 96.928%)

A1, B1->R5 (72.222%, 97.075%); G1, K1->R5
(71.913%, 97.274%)

Table 5: Fitting results for the bike-sharing association rule Model 1 (X➡Y).

X Y
Rule number Range mark 1 Range mark 2 Result mark Support degree Confidence coefficient
1 I2 J3 R2 1.0014% 50%
2 A3 J3 R3 2.0893% 51.5244%
3 D2 G2 R4 7.1084% 45.1689%
. . .. . . . . .. . . . . .. . .. . . .. . . . . .. . . . . .. . .

n B1 H1 R5 72.6666% 96.1243%
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between companies/enterprises and financial facilities. A
frequency value exceeding 11 provides a high probability of
users visiting these POI combinations simultaneously. By
contrast, the frequency of combinations between compa-
nies/enterprises and living facilities and between public
facilities and living facilities is only 1, which means that the
probability of bike-sharing users simultaneously visiting
these POI facilities is low. More obviously, some combi-
nations will never appear at all, with a frequency of only 0. It
is impossible for users to access these facilities of POI at the
same time.

4. Conclusion and Discussion

*is paper implemented modeling spatial riding charac-
teristics of bike-sharing users under five demand scenarios
based on the hotspot detection and the association rule
mining, which has established the subordinate rules between
bike-sharing demand and POIs and between POIs. As far as
origin characteristics of riding are concerned, it is most
important to investigate the bike-sharing demand level from
different POI types.*e analysis area with Level 1 demand is
more complex and cannot be directly investigated from the
type combinations of POI facilities.*is situation is reflected
in the fact that no corresponding association rules can be

found out when Level 1 demand is deployed as a result
marker. However, Level 2 analysis area has a certain degree
of differentiation. For example, when living facilities are at
Level 2 and sports facilities are at Level 3, the probability that
the bike-sharing demand is at Level 2 is higher. *erefore,
when these facilities in an area meet the requirement as
mentioned above at the same time, it is necessary to increase
the dispatching number and to approach the two facilities as
close as possible. By contrast, as for the analysis area with
Level 3 demand, more factors are associated with the bike-
sharing demand. More importantly, most range markers of
POI facilities corresponding to Level 3 analysis area are at
Level 3, with only the transport facilities being at Level 4.
*is means that if most POIs are at Level 3 and the transport
facilities are at Level 4, then the bike-sharing demand is
likely to be at Level 3, which is a medium demand level.
However, Level 4 demand for bike-sharing travel is closely
related to dining facilities, landscapes, companies/enter-
prises, educational facilities, financial insurance facilities,
and hotels. In particular, the financial insurance facilities are
most closely related to companies/enterprises. When these
POI facilities in an area are at Level 2, especially when fi-
nancial insurance facilities and companies/enterprises are
present simultaneously, it is more likely that the bike-
sharing demand is at Level 4, which is a lower demand level.

Table 8: *e statistics of rules from Model 2.

Demand scenarios *e most significant rules

*e most obvious POI
combination

(frequency is in
parentheses)

R1

B1->G2 (56.6667%, 70.8333%); G2->B1 (56.6667%, 85%)
B1->D2 (53.3333%, 66.6667%); D2 ->B1 (53.3333%, 84.2105%)
B1 ->H2 (53.3333%, 66.6667%); H2 ->B1 (53.3333%, 84.2105%)

D2 ->G2 (50%, 78.9474%); G2 ->D2 (50%, 75%)
G2 ->H2 (50%, 75%); H2->G2 (50%, 78.9474%)

B1, G2->D2 (43.333%, 76.471%); D2, G2 ->B1 (43.333%, 86.667%)

R2

B1-> I2 (62.8415%, 85.1852%); I2 ->B1 (62.8415%, 70.5521%) B and G (12)
H2 -> I2 (49.7268%, 91.9192%); I2 ->H2 (49.7268%, 55.8282%) B and D (11)
G2 -> I2 (46.4481%, 90.4255%); I2 ->G2 (46.4481%, 52.1472%) D and G (11)
J3 -> I2 (44.2623%, 98.7805%); D2 -> I2 (43.7158%, 93.0233%) B and H (7)

K3 -> I2 (43.1694%, 100%); C3 -> I2 (42.0765%, 100%) G and K (4)
B1, H2-> I2 (37.1585%,89.4737%); B1, I2->H2 (37.1585%, 59.130%) H and I (4)

R3

D2 ->G2 (46.3588%, 79.0909%); G2 ->D2 (46.3588%, 81.3084%) B and I (3)
B1 ->H2 (45.4707%, 60.0939%); H2 ->B1 (45.4707%, 78.0488%) D and H (2)
B1 ->D2 (44.2274%, 58.4507%); D2 ->B1 (44.2274%, 75.4545%) A and D (2)
B1 ->G2 (43.5169%, 57.5117%); G2 ->B1 (43.5169%, 76.324%) A and G (2)

D2 ->H2 (39.7869%, 67.8788%); H2 ->D2 (39.7869%, 68.2927%) A and B (2)
B1, D2->G2 (34.991%, 79.117%); B1, G2->D2 (34.991%, 80.408%) G and H (2)

R4

D2->G2 (62.7045%, 85.1852%); G2->D2 (62.7045%, 88.5978%) B and K (2)
B1->D2 (57.7972%, 72.5034%); D2 ->B1 (57.7972%, 78.5185%) G and I (2)

A2->D2 (55.9433%, 88.601%); D2 ->A2 (55.9433%, 76%) D and I (1)
B1->G2 (55.5071%, 69.6306%); G2 ->B1 (55.5071%, 78.4284%) C and I (1)
A2->G2 (55.0709%, 87.2193%); G2 ->A2 (55.0709%, 77.812%) J and I (1)

B1, D2->G2 (49.5093%, 85.660%); B1, G2->D2 (49.509%, 89.195%) K and I (1)

R5

B1->G1 (92.5735%, 94.2534%); G1->B1 (92.5735%, 99.0465%)
B1->H1 (91.9012%, 93.5689%); H1->B1 (91.9012%, 99.2905%)
B1->K1 (91.7605%, 93.4257%); K1 ->B1 (91.7605%, 99.172%)
A1->B1 (91.3383%, 99.3368%); B1 ->A1 (91.3383%, 92.9959%)
G1->K1 (90.9475%, 97.3068%); K1->G1 (90.9475%, 98.2933%)

B1, G1->K1 (90.338%, 97.5850%); B1, K1->G1 (90.338%, 98.450%)

Journal of Advanced Transportation 11



*e POIs closely related to Level 5 demand for bike-sharing
travel are dining facilities, landscapes, financial insurance
facilities, hotels, and medical facilities. When these POI
facilities are at Level 5 in an area, especially when landscapes,
financial insurance facilities, and hotels tend to zero si-
multaneously, it is more likely that the bike-sharing demand
is at Level 5, with almost no demand. Overall, the POI fa-
cilities that have the greatest impact on the bike-sharing trip-
generation are financial insurance facilities, which play a
large role in determining the demand level for bike-sharing.
We infer that white-collar workers from financial insurance
facilities seem to prefer bike-sharing for their off-duty
commute, which is an important finding as it helps to better
serve these “environmentalists.” Secondly, the influence of
dining facilities and landscape is also greater, in terms of
multiple rules of bike-sharing travel. *e rules of dining
facilities are easy to understand. After all, the bike-sharing
can be employed to help burn calories, and therefore it
becomes the first choice for users after consuming abundant
food. For landscapes, rules may be related to mood or traffic
jam nearby. After enjoying the landscapes, one may not care
about the size of the return journey time. More importantly,
Beijing is a fast-paced city, where most working people only
have weekends to see the landscapes and to have fun. People
gathering around scenic spots on weekends can lead to
increased traffic congestion, which is the place where bike-
sharing travel has obvious advantage. However, there is not
enough evidence that public facilities and government de-
partments have a strong effect on bike-sharing demand,
given certain support and confidence requirements. *is
shows that travelers leaving public facilities (such as public
toilets) and government officials at work may have little
interest in riding shared bicycles. *e former mainly do not
go further and have lower travel demand, while the latter
pays more attention to time.

As for characteristics of riding destination, multiple POI
facilities are strongly correlated, which helps to better deploy
bike-sharing parking and optimize land use structure in a
region. Most notably, landscapes are closely related to fi-
nancial insurance facilities. Within Level 1 analysis area,
when the landscapes belong to Level 1 and the financial
insurance facilities belong to Level 2, there is the 70.83%
probability of cyclists visiting the landscapes and then vis-
iting the financial insurance facilities, or 85% probability of
visiting the financial insurance facilities and then visiting the
landscapes. Even within Level 3 analysis area, the support for
both rules comes to 43.52%, still with a confidence level
greater than 40%. *is is an interesting discovery because
two seemingly contradictory individuals are connected.
*erefore, it is reasonable to believe that the above-men-
tioned facilities in an area are more attractive to bike-sharing
users when they meet the corresponding requirements.
Similarly, the combinations between landscapes and com-
panies/enterprises and between companies/enterprises and
financial insurance facilities are found 11 times more fre-
quently as either the antecedents or consequences of the
association rule simultaneously. For example, within the
first-level R1 analysis area, there is “B1, G2 ->D2 (43.33%,
76.47%) or D2, G2 ->B1 (43.33%, 86.67%)”. Within an area

with Level 1 landscapes, Level 2 companies/enterprises, and
Level 2 financial insurance facilities, the probability of cy-
clists visiting companies/enterprises after visiting landscapes
and financial insurance facilities is 43.33%. *e probability
of this occurrence is 76.471%. Instead, the probability of
cyclists visiting landscapes after visiting companies/enter-
prises and financial insurance facilities is 43.33%. *e
probability of this occurrence is over 80%, with a value of
86.67%.*e next strongest connection is between landscapes
and hotels, which exists seven times and ranks fourth.
Within Level 1 analysis area, when landscapes belong to
Level 1 and hotels belong to Level 2, the probability of
cyclists visiting hotels after visiting landscapes is 66.67%.*e
probability of this situation occurring is 53.33%. On the
contrary, the probability of cyclists visiting landscapes after
visiting hotels is 84.21%. *erefore, the coexistence of these
two facilities is conducive to attracting bike-sharing users
and improving usage frequencies even for short distances.
*e frequency of coexistence of financial insurance facilities
and medical facilities or of hotels and living facilities is four
times, demonstrating a strong correlation between them.
However, the frequency of coexistence of living facilities and
sports facilities or of living facilities and medical facilities is
only 1, which shows that these POI facilities have little
correlation with other facilities. More importantly, many
POI facilities have nothing to do with other facilities. For
example, the frequency of coexistence of landscapes and
public facilities is 0. *ere is no evidence that their com-
binations have contributed to the attraction of bike-sharing
users.

*is study implements an analysis of spatial riding
characteristics from the perspective of demand differences
based on hotspot detection and association rule mining,
which demonstrate the subordinate rules between bike-
sharing demand and POI as well as between POIs. In
general, the superiority of this study, compared to other
riding characteristics models, and its importance in bike-
sharing dispatch or urban infrastructure plan are as follows.
① Being more reliable and practicable. Most of the existing
researches only present some strict and definite character-
istics and seldom demonstrate the confidence level at which
the POI facilities can be accessed simultaneously as the travel
demand changes. Confidence level is the degree to which
traffic managers rely on the effectiveness of bike-sharing
stations and scheduling quantities, and it is essentially a
rationality test of urban structure from the perspective of
users. Based on this, we can adjust the layout of POI facilities
according to the travel demand that the system need to meet,
so as to improve the attractiveness of bike-sharing travel and
reduce environmental pollution. ② Being more directed.
Most studies have been concentrated on the cross-spatio-
temporal riding characteristics of bike-sharing users, but
analysis for single small-scale POI structure is relatively
little. *e hot areas enable us to establish spatial constraints
according to demand of bike-sharing travel. Compared with
other methods, the characteristic method applied to areas
with large trip-generation and trip-attraction can enable us
to understand the most important intrinsic connection
between different facilities. Similar to the basket analysis in
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Figure 5, we just need to grasp the relationships between the
most important items in customers’ shopping baskets, but
not all of them. More significantly, the spatial constraints of
hot area greatly reduce the data amount and improve the
fitting efficiency of algorithm. ③ Low difficulty. We just
require origin-destination and POI data within each analysis
area and never have to spend a great deal of money on
complex spatial-temporal information, which would be
accomplished by simple programs and geographical soft-
ware. On the one hand, we need no micro-data manipu-
lation like map matching, just regular data quality
improvement. Compared to other complex algorithms such
as deep learning interactive model and so on, the Apriori
employed never calls for a specially designed solving process
and has a low threshold for refitting in other zones with
different environments. As mentioned above, the solution
speed herein is very fast, so efficiency is also an advantage of
this study. However, there are still some points needing
further discussion: ① *e riding characteristics of bike-
sharing users are only discussed within each hotspot analysis
area. Compared with spatial geographic models and re-
gression methods, this study lacks discussion on the cor-
relation between different analysis areas.②Wemainly focus
on the riding characteristics of bike-sharing users but ignore
the relations with other modes of transportation, such as
subway and bus that have been developed fast in many cities.
③*e bike-sharing origin-destination data for one week are
deployed to model association rules and to analyze riding
characteristics, which lacks consideration of other objective
elements, such as weather and sudden events.
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