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Road freight transport is one of the sectors with the highest greenhouse gas emissions and fuel consumption in the logistics
industry. In recent years, due to the increase in carbon dioxide emissions, several companies have considered reducing them in
their daily logistics operations by means of better routing management. Green vehicle routing problems (GVRPs) constitute a
growing problem direction within the interplay of vehicle routing problems and environmental sustainability that aims to provide
effective routes while considering environmental concerns. +ese NP-hard problems are one of the most studied ones in green
logistics, and due to their difficulty, there are many different heuristic and hybrid techniques to solve them under the need of
having high-quality solutions within reasonable computational time. Given the role and importance of these methods, this review
aims at providing a comprehensive overview of them while reviewing their defining strategies and components. In addition, we
analyze characteristics and problem components related to how emissions are being considered. Lastly, we map and analyze the
benchmarks proposed so far for the different GVRP variants considering emissions.

1. Introduction

+e fast development of the logistics industry has encouraged
an increase in the sharing of logistics resources as well as in the
reduction of energy consumption in freight transport. Al-
though transportation companies are relevant drivers of eco-
nomic growth, these are one of the leading causes of carbon
dioxide emissions [1].+e transportation of goods impairs local
air quality, produces noise and vibration, and contributes
significantly to global warming [2].+is circumstance has been
widely studied in green logistics, which considers the efficient
use of resources within the logistics activities and the modi-
fication of distribution strategies that minimize the use of
energy, reduce waste, and properly manage its treatment [3].
Moreover, for public and private entities, achieving a sus-
tainable transport scheme based on planning eco-friendly and
respectful transport with the environment is a growing con-
cern. Given this, the resolution of the GVRPs has attracted

increasing interest from researchers, resulting in a wide range
of mathematical models, computational methods, and algo-
rithms for transport solutions with the aim of reducing en-
vironmental and social impacts within logistic operations.

Most research efforts for tackling GVRPs have been
concentrated on studying and implementing heuristics and
hybrid methods to provide the best trade-off among ro-
bustness, accuracy, computational speed, and flexibility. +e
GVRPs enclose large and complex optimization problems
related to freight transportation and environmental pollu-
tion. +ese problems cannot be solved to optimality for
realistic instance sizes within reasonable computational
time. In this regard, approximate algorithms, for example,
heuristics and metaheuristics, are a solid alternative to solve
this type of problems. +eir main motivation is to provide
fast and robust methods for hard problems [4]. +e hy-
bridization of these algorithms promotes exploiting their
complementary advantages through the combination of
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their algorithmic strategies. Choosing a suitable combina-
tion of algorithmic concepts can be the key to achieving top
performance in solving many hard optimization problems
[5]. As a result, the study of these methods has presented a
considerable increase in the number of research works
carried out especially in the last five years (see Figure 1).

+e increased number of the applications around GVRPs
is highlighted in various surveys, see for example, the reviews
by Asghari and Mirzapour Al-e-hashem [6], Moghdani et al.
[7], Erdelić and Carić [8], and the book chapter by Macrina
et al. [9]. +ese reviews are focused on the problem domain
and generally describe the solution approaches, but none of
them analyzes nor details the basic features and components
of the algorithms used to solve the GVRPs. On the other hand,
to the best of our knowledge, there is no literature review that
studies the emissions in GVRPs and an in-depth analysis of
the heuristics and hybrid methods used.

Based on the previous discussion, in this paper, we
present a review of heuristic and hybrid methods for solving
GVRPs that consider emissions. +e contributions of this
work are outlined as follows:

(i) An extensive systematic literature review analyzing
and discussing the different GVRP variants
addressing emissions and how those emissions have
been considered. +is analysis provides the main
characteristics related to compositions of the re-
strictions, objectives, emission models, and types of
emissions, among others.

(ii) A comprehensive study of heuristics’ main features
and heuristics hybridizations developed for solving
the GVRP and related variants. To shed the added
value, we highlight the leading strategies and
methodologies employed in each solution method,
for example, initial solution procedures, the structure
of neighborhoods in a heuristic scheme, and oper-
ators used in evolutionary approaches, among others.

(iii) A detailed description of the benchmark instances is
proposed in the related literature and used to assess
the algorithms’ performance.

+e remainder of this paper is organized as follows.
Section 2 reviews and examines the related works. Section 3,
describes the methodology used to carry out this research.
Section 4 provides a review of the heuristics and hybrid
algorithms for GVRPs. Sections 5 and 6 provide a detailed
analysis of the essential characteristics of emissions in
GVRPs, as well as the basic strategies used as part of heu-
ristics and hybrid methods in GVRPs studies, respectively.
Section 7 exposes the benchmarks used to address this type
of problems. Finally, Section 8 presents the conclusions of
this work and future research directions. Last, we provide a
glossary of abbreviations used in this article.

2. Related Work

+is section is devoted to analyzing and contextualizing our
review in light of available state-of-the-art works on GVRPs.
For each work, we consider their existing focus and

contribution as well as their fundamental aspects of interest
in the context of green vehicle routing.

Erdelić and Carić [8] surveyed variants and solution
approaches for the electric vehicle routing problem (E-
VRP). It covered an updated literature review up to 2019
about all VRP variants that take into account a fleet of
electric vehicles and their characteristics (e.g., partial re-
charges, mixed fleets, and hybrid vehicles) and also its main
components and structural parts (e.g., charging stations,
state of charge, and charging schedule). +e review pro-
vided descriptions of the E-VRP solving methods divided
into several parts, for example, exact and software pro-
cedures, heuristics, and constructive and improvements
heuristics, among others. Nevertheless, the review of op-
timization methods did not consider the functionality of
intern strategies and mechanisms inside heuristics and
hybrid methods. Deleted

Kucukoglu et al. [10] presented a review study of
E-VRPs, where they described different E-VRP variants. +e
goal of their review was to give an up-to-date literature
review and offers future research directions. Also, mathe-
matical models, solution approaches, and benchmarks were
discussed. According to that review, it provided additional
62 papers not previously analyzed in the E-VRP literature.
Nevertheless, due to the scope the review, there is no deep
analysis concerning the internal process of each optimiza-
tion method.

Macrina et al. [9] focused on building an up-to-date
classification and discussing solution approaches for GVRP
variants. +e authors identified two main classifications for
GVRPs (e.g., GVRP with conventional vehicles and GVRP
with alternative fuel vehicles). +e first classification has five
subcategories (e.g., time-dependent PRP, multi-objective
PRP, heterogeneous fleet PRP, and location PRP) and the
second one presents six categories (e.g., GVRP with alter-
native fuel vehicles and GVRP with EVs, and with locations,
GVRP with HEVs, mixed-fleet GVRP, GVRP with EVs, and
nonlinear charging function). Moreover, they classified the
main characteristics at a problem level (e.g., time windows,
time dependency, fleet composition, and others). In addi-
tion, they presented a classification for each existing algo-
rithm. +ey only proposed descriptions of each analyzed
work but did not study the main strategies or operations of
the heuristic and hybrid solution methods.

+e review of Asghari and Mirzapour Al-e-hashem [6]
presented a systematic literature review (SLR) with a clas-
sification scheme and subcategories based on GVRP variants
and focused on internal combustion engine vehicles
(ICEVs), alternative fuel vehicles (AFVs), and hybrid electric
vehicles (HEVs). +e article proposed a conceptual frame-
work to characterize the literature and a comprehensive
taxonomy for GVRPs with the aim of classifying solution
approaches, objective functions, and types of engines. For
each problem variant, the main characteristics of the
problem were described (e.g., problem formulation, appli-
cation areas, and others). +e paper investigated a large
number of works, proposed a considerable number of
classifications, and showed summaries of solution ap-
proaches but did not analyze the solution approaches in-
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depth, the different ways of hybridization nor their
methodologies.

Moghdani et al. [7] presented an SLR based on several
research questions about the main variants of GVRPs,
methodological resolution approaches, objective functions,
and emerging challenges. +e authors reviewed each article
and showed summaries and statistics based on each prob-
lem’s particularities as well as on solution methods. Al-
though a search query is not provided, the number of works
is reasonable considering similar state-of-the-art reviews.
Furthermore, they provided a general classification of dif-
ferent solution techniques without specifications about the
inner strategies of each one (e.g., heuristic and
metaheuristics).

Marrekchi et al. [11] presented an SLR on GVRPs as well
as on green arc routing problems (GARPs). +e papers
collected were classified into two sections: one-level opti-
mization problems and multilevel optimization problems.
+ey presented a classification based on characteristics re-
lated to the type of problem (e.g., stochastic and deter-
ministic), type of operations (e.g., pickup and/or delivery),
the type of objective function (e.g., single-objective or multi-
objective), type of vehicles (e,g., homogeneous or hetero-
geneous), constraints (e.g., time windows or time depen-
dency) and decision variables (e.g., speed and load). For each
paper, the authors described the objective to be achieved as
well as the proposed solution method.

Ghorbani et al. [12] focused on classifying and discussing
environmentally friendly VRPs (EF-VRPs) based on dif-
ferent types (e.g., alternative fuel VRP, electric VRP, and
hybrid VRP). For each type, the authors showed typical
tabular information related to VRP features and constraints
(e.g., fleet size and travel time) and alternative-fuel vehicles
with an emphasis on technical constraints (e.g., refueling,
load, speed, and others). Moreover, they analyzed the so-
lution methods by discussing exact and heuristic algorithms
designed for the EF-VRPs.+e study involved the analysis of
the methods, but did not consider some specifications re-
lated to how those methods or their inner strategies have
been applied to solve EF-VRPs.

From the point of view on the last stage in the delivery
process of goods, the survey of Patella et al. [13] presented
an SLR about green vehicles in the last-mile logistics

distribution. In doing so, they used search queries related
to emerging research domains such as autonomous-green
vehicles, drones, and last-mile and urban logistics. +e
review followed three main criteria for the classification of
the papers: (i) operation research problems, (ii) policy
focusing on governance, planning, regulations, others,
and (iii) sustainability by considering environmental and
economic aspects. In their review, solution methods or
benchmarks were analyzed.

As seen from the previous discussion, this review
paper contributes and distinguishes itself from other
reviews in the following: (i) recent works are now
reviewed, this also involves including recent research on
electric vehicles and hydrogen vehicles taking into ac-
count emissions; (ii) the hybrid solution approaches (e.g.,
heuristics, metaheuristics, and hybridization approaches
for GVRPs) are analyzed in detail concerning their
components and strategies for solving GVRPs considering
emissions; and (iii) the way emissions are considered in
each work is reviewed, and a diverse benchmark is used to
evaluate algorithms mapped.

3. Review Methodology

+is review was performed as a systematic literature review
(SLR). According to Cook et al. [14], SLRs are clear infor-
mation gathering procedures enabling the reproduction of
results. One of the initial steps in SLRs is the definition of
research questions. +ese are the focal points that guide the
phases of analysis and investigation. In our research work,
the following research questions were defined:

(i) RQ1: What are the most used heuristics and hybrid
methods to solve GVRPs considering emissions?

(ii) RQ2: How emissions have been considered in
GVRPs?

(iii) RQ3: How heuristics and hybrid methods have been
applied to solve the studied GVRPs?

(iv) RQ4: What are the basic strategies used as part of
heuristics and hybrid methods?

(v) RQ5: What benchmarks have been proposed for
GVRPs with emissions?
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Figure 1: Illustration of the number of publications in Scopus andWeb of Science per year.+e resulting publications are based on research
papers that address GVRPs considering emissions using heuristics and hybrid methods.
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In the time of electronic databases and bursts of technical
publications, a determining aspect when collecting and
reviewing the literature is the definition of the keywords to
be used in the information search process. +e keywords
selected for collecting works are based on the problem
domain, application, and optimization methodology. +e
following box shows the query string used for databases
searches:

TITLE-ABS-KEY (((‘emission∗’ OR ‘CO2’ OR ‘gas’ OR
‘pollution’ OR ‘decarbonization’ OR ‘greenhouse’ OR
‘contamination’) AND (‘green VRP’ OR ‘green vehicle
routing’ OR ‘GVRP’ OR ‘G-VRP’ OR ‘VRP’ OR ‘vehicle
routing’) AND (‘heuristic∗’ OR ‘metaheuristic∗’ OR
‘meta-heuristic∗’ OR ‘hyper-heuristic∗’ OR ‘hyper-
heuristic∗’ OR ‘matheuristic∗’ OR ‘math-heuristic∗’
OR ‘hybridheuristic∗’ OR ‘hybrid-heuristic∗’)))

+e methodology used for selecting papers is based on
the preferred reporting items for systematic reviews and
meta-analyses (PRISMA, Page et al. [15]). It establishes an
evidence-based minimum set of items for reporting SLRs
using databases and registers. For that purpose, in this
work, we use Scopus and Web of Science as research and
educational databases. +e identification and selection
procedure is divided into three stages as shown in
Figure 2.

In the identification stage, we identified the relevant
papers using the previously defined search query.+e result
of that search was 446 papers from journals, conferences,
and book chapters. After the search, we removed 130
duplicated studies from different sources (Elsevier,
Springer, Wiley, INFORMS, etc.), 121 records were ex-
cluded by analyzing the title and abstract, and the other 6
works due to not being in English. +e outcome of stage 1
was 189 papers. In the screening stage, the papers were
chosen after reviewing their introduction and conclusions
regarding the main contribution. Out of this stage, 136
papers were chosen. For the final stage, 136 papers were
studied with regard to their full texts although some of
them have been removed. Finally, a selection of 89 papers
has been considered for this review. Figure 3 shows the
amount of research related to emission-related GVRPs
carried out per year in the main journals. Only journals
with at least two published works are listed.

4. Review of the Algorithms for
GVRPs considering Emissions

+is section presents a description of the problem and al-
gorithms used to solve GVRPs considering emissions. To
conduct the analysis, we cluster the research works
according to the classification of the addressed problem. In
each subsection, an initial short description of the corre-
sponding problem is provided. After that, we describe the
investigations conducted related to that problem variant.
+eir overall description is complemented with the analysis
of their emissionmodels and solution approaches in detail in
Sections 5 and 6, respectively.

4.1. Green Vehicle Routing Problems. +e green vehicle
routing field addresses the negative environmental impact
due to the use of vehicles in their routing operations. +is
research direction considers the use of AFVs, that is, electric
vehicles, natural gas vehicles, and fuel cell electric vehicles,
among others, as well as other management strategies to
reduce efficiently the emissions. Compared to ICEVs, AFVs
work on sustainable energy such as electricity and hydrogen.
In this context, the doctoral thesis of Palmer [16] was one of
the first studies to take into account environmental aspects
in VRPs, such as traffic congestion and vehicle speeds to
produce a CO2 emissions grid. Following the same envi-
ronmental purpose, the work of Erdoğan and Miller-Hooks
[17] formally introduced the GVRP as a problem. +eir aim
for proposing the GVRP was to address vehicle routing
problems to overcome the difficulties arising from the
limited number of refueling stations and the short range of
AFVs. +e formulation of their problem is based on min-
imizing the distances traveled by vehicles and, thus, indi-
rectly reducing emissions. In the work of de Oliveira da
Costa et al. [18], they addressed the GVRP with the objective
of minimizing CO2 emissions from VRP routes of a set of
light-duty diesel delivery vehicles. To solve that problem,
they proposed a Clarke and Wright (C&W, Clarke and
Wright [19]) saving heuristic as a construction heuristic for
creating initial routes that allow their merge when an im-
provement of cost savings can be obtained by combining
routes with capacity constraints. Moreover, they proposed a
genetic algorithm (GA) with the addition of 3-opt neigh-
borhood moves as a mutation operator. Omidvar and
Tavakkoli-Moghaddam [20] presented simulated annealing
(SA) and GA algorithms to address vehicle transportation
and routing model for AFVs (e.g., electric, biofuels, hybrid
vehicles, and others) that minimizes energy and fuel con-
sumption. Wei et al. [21] proposed a nondominated sorted
genetic algorithm II (NSGA-II) algorithm for the green
demand-responsive airport shuttle services (DRASS) with
time-varying speeds. +is problem consists of assigning a set
of AFVs located in different depots, where each of them
must visit each demand location in a defined time and
transport them to the airport. +eir NSGA-II-based ap-
proach is two-phased, where the first stage is oriented to
assign demand locations and depots to various AFVs and the
departure time of each AFV. In the second stage, an A∗

algorithm is used as part of NSGA-II to create each path of
the AFV, which includes leaving the depot, visiting the
demand locations, and returning to the airport.

Dewi and Utama [22] proposed a hybrid whale opti-
mization algorithm (HWOA) to minimize distribution costs
that consider fuel consumption, carbon emissions, and
vehicle usage costs in GVRP. +e HWOA integrates WOA,
tabu search (TS), and a local search (LS) improvement
method. WOA is an algorithm that mimics the behavior of
humpback whales when hunting prey (see Mirjalili and
Lewis [23]). +e study by Yavuz and Çapar [24] presented
the mixed-fleet green vehicle routing problem (MGVRP)
considering the impact of introducing AFVs on fleet op-
erations composed of gasoline and diesel vehicles (GDVs).
+ey presented a variable neighborhood search (VNS)
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heuristic to solve the problem for a single objective and an
adapted version of the VNS to bi-objective optimization.
Soysal et al. [25] proposed a DP-based heuristic (DPH)
algorithm to optimize transport emissions in the GVRP.+e
algorithm DPH computes routes for each vehicle in turn;
that is, there is only one active vehicle whose route is
computed at a given time. +is allows the algorithm to keep
track of vehicle utilization and time.

In several logistic contexts, the procurement of per-
ishable materials and goods is determined as a pivotal

prerequisite for economic and environmental develop-
ment.+e perishable goods must be delivered to consumers
as early as possible given their limited lifespan. +e work of
Talouki et al. [26] modeled the dynamic green vehicle
routing problem (DGVRP) for controlling and organizing
the transportation of perishable products to minimize total
cost and carbon emissions, and maximize customers sat-
isfaction. In doing so, they proposed and applied multi-
objective solving methods (e.g., Pareto front and ϵ-con-
straint). Additionally, the authors presented a heuristic

0 1 2 3 4 5 6 7 8 9
Number of papers

European Journal of Operational Research
Computers & Operations Research

Applied So� Computing
Journal of Cleaner Production

Transp. Research Part D
Annals of Operations Research

Computers & Industrial Engineering
Sustainability

Energy Systems
Environmental Science and Pollution Research

Journal of Advanced Transportation
Mathematical Problems in Engineering

RAIRO Operations Research
Transp. Research Part E

Jo
ur

na
ls

Figure 3: Number of papers published in (main) journals (note that the journals with more than two articles are shown).

Records screened: (=189)

Reports assessed for eligibility: (=136)

Id
en

tifi
ca

tio
n

Studies included in review (= 89)

Records excluded by introduction
and conclusions (53)
Records excluded (=53)

Reports excluded based on
full texts (47)
Records excluded (=47)

Sc
re

en
in

g
In

clu
de

d

Identification of studies via databases and registers

Records removed before screening:
- Duplicate records removed (130)
- Records excluded by title and
abstract (121)
- Record excluded by language (6)

Records excluded (=257)

Records identified from:
Databases
- Web of Science (228)
www.webofscience.com
- Scopus (218)
www.scopus.com

Registers (= 446)

Figure 2: Screening and selection stages using the PRISMA flow diagram. +is diagram shows the different stages that are part of the
methodology proposed to carry out this survey.

Journal of Advanced Transportation 5



solution to the proposed model with an augmented
ϵ-constraint exploratory method to relax the binary
variables.

Camacho-Vallejo et al. [27] considered a problem where
two companies had to interact in an environmentally hi-
erarchical way within a supply chain. In that context, one of
the two companies had the role of purchasing and dis-
tributing various goods through a selected subset of cus-
tomers, while the other company was in charge of
manufacturing the goods demanded by selected customers.
For the distribution of goods, both companies considered
that the routes are designed to satisfy the chosen subset of
customers to maximize profit while reducing carbon
emissions. +is problem was modeled as a two-level pro-
gramming problem with two upper-level objectives and a
single lower-level objective. +e upper level is associated
with the distributor, while the lower level is associated with
the manufacturer. To solve that problem, a nested bi-ob-
jective tabu search (NBOTS) algorithm was applied to ap-
proximate the Pareto front of the problem.

Joint distribution implies that several logistics compa-
nies share transportation resources and customers, and the
work is performed under unified planning and scheduling.
Liu et al. [28] introduced the joint distribution-green vehicle
routing problem (JD-GVRP) considering carbon emissions
in the joint distribution vehicle routing problem in cold
chain logistics. For addressing this problem, they proposed
the SA approach.

4.2. Inventory Routing-Related Problems. +e inventory
routing problem (IRP) is a logistics problem that arises from
the combination of routing, inventory, and replenishment
scheduling decisions [29]. Concerning GVRPs, the work of
Alkaabneh et al. [30] introduced the perishable inventory
routing problem (PIRP) and considered the estimation of
fuel costs and emissions. To solve this problem, they pro-
posed a benders decomposition algorithm and a two-phase
approach. +e first phase is based on the relaxation treat-
ment of the original PIRP model. +e second phase uses the
set of feasible solutions found at the end of the previous
phase in the construction phase of the greedy randomized
adaptive search procedure (GRASP) algorithm for providing
a high-quality solution.

4.3. Location Routing-Related Problems. +e location rout-
ing problem (LRP) is a well-known combinatorial optimi-
zation problem in many applications in which locating
facilities and vehicle routing are two connected options. To
jointly handle location and routing decisions, the LRP
combines these two types of decisions. Dukkanci et al. [31]
presented two heuristic techniques based on the speed
optimization algorithm (SOA) and iterated local search (ILS)
to tackle the green location routing problem (GLRP), where
the operational cost depends on both the traveled distance
and the load of the vehicle. Both techniques decomposed the
GLRP into subproblems, i.e., the cumulative LRP (CumLRP)
and the speed optimization problem (SOP) and solved each
hierarchically. +e placement of the depots and the routes of

the vehicles were established after the CumLRP was solved.
A C&W was used to construct the initial solution for the
SOA method to find optimal vehicle speeds. Next, the ILS
based on removal and insertion operations between tours
was applied.

Leng et al. [32] presented the regional low-carbon LRP
with reality constraint conditions (RLCLRPRCC), where
customers and depots are located in zones with different
speed limits. +is problem aims at optimizing the total cost
by including vehicle renting cost, depot opening cost, fuel
consumption cost, CO2 emission cost, and penalty cost. To
solve it, the authors proposed a hyperheuristic approach
(HH) that includes two levels (i.e., low and high). At the
lower level, a set of heuristics is considered to deal with the
scheduling part and, at the high level, a selection strategy
based on a common mechanism and a self-adaptive ac-
ceptance criterion is used to select a promising heuristic and
maintain the diversity of the selection. Leng et al. [33]
considered the location routing problem-based low-carbon
cold chain (LRPLCCC) considering simultaneous pickup and
delivery with heterogeneous fleet and hard time windows.+e
authors presented a decomposition method within a multi-
objective hyperheuristic framework (MOHH/D). +at
framework comprises two parts: (i) low-level heuristic (LLH)
that uses a large neighborhood defined by several operators
(e.g., 2-opt and swap) and (ii) high-level heuristic (HLH)
composed of three selection strategies to improve the per-
formance of MOHH/D (e.g., choice function, random simple,
and fitness rate rank-based multiarmed bandit).

4.4. Multi-depot Routing-Related Problems. +e multi-depot
vehicle routing problem (MDVRP) extends the classical
VRP, where a fleet of vehicles serves customers from several
depots and returns to the same depot. Several investigations
address the green version of the multi-depot vehicle routing
problem (MDVRP), that is, MD-GVRP. +is variant is
relevant for practical and real-life logistics supply chain
scenarios that usually require the utilization of multiple
depots to carry out its logistics operations while also taking
into account environmental aspects.

+e authors of Pérez-Bernabeu et al. [34] presented a
multi-depot VRP variant for horizontal cooperation in road
transportation (HC-MDVRP) and argued that this practice is
essential for reducing delivery costs and carbon emissions. +e
authors presented an ILS method for providing high-quality
solutions in a collaborative scenario. Jabir et al. [35] proposed
three mathematical formulations for the multi-depot green
VRP (MD-GVRP), which aims to minimize the objectives in
terms of economic and emission costs while also being inte-
grated with equal priorities. To solve the MD-GVRP, they
proposed a hybrid metaheuristic method that combines ant
colony optimization (ACO) with a coupled VNS. +e solution
provided by the ACO algorithm is later refined by the VNS
after a complete route is constructed. Kaabachi et al. [36]
presented another ACO approach in this case for the MD-
GVRP with time windows (MDGVRP-TW).

Wang et al. [37] presented a hybrid heuristic that in-
tegrates the C&W (termed as CWSHA), the sweep algorithm
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(SwA), and a multi-objective particle swarm optimization
algorithm (MOPSO) for the MD-GVRP optimization. First,
the CWSHA and SwA generate the initial population, and
then the MOPSO is employed for local search. +en, the
C&W, as part of CWSHA, builds the entire network’s
distance matrix and generates a vehicle route by linking
customers to the depot. +e integration of these methods
seeks to improve solution search in general and the quality of
nondominated solutions produced by the hybrid method.

+e work of Fernández et al. [38] used the matheuristic
version of the partial optimization metaheuristic under
special intensification conditions (POPMUSIC, Lalla-Ruiz,
and Voß [39]) framework for solving the MD-GVRP with
pickups and deliveries (MDGVRP-PD). POPMUSIC is able
to solve large-scale scenarios by decomposing them into
subsets of parts. Subsets of parts are bundled and used to
create subproblems, which are then solved by means of a
mathematical programming approach.

4.5. Multi-trip Routing-Related Problems. +e multi-trip
VRP (MTVRP) differs from the classical VRP by allowing
vehicles to perform multiple trips. Lyu and He [41] presented
a two-phase hybrid metaheuristic approach (TSHM) for
solving the MTVRP which involves prioritizing customers
and transporting incompatible goods (MTHVRP-PCIC).
MTHVRP-PCIC aims to find a set of routes that result in
minimal costs, including fixed costs, travel costs, and carbon
emission costs.+e internal mechanism of the TSHM is based
on an improved version of GRASP to generate initial feasible
solutions. In an improvement phase, a hybrid GA is used to
improve the initial population, where mutation and crossover
operators are applied to the population in each iteration.

4.6. Multi-echelon Distribution-Related Problems.
Multi-echelon VRP distribution problems (NE-VRPs)
consider more than a single layer of intermediate depots or
satellites, where the delivery to customers is made from these
depot locations. Li et al. [42] proposed a two-phase approach
that uses the C&W for generating initial solutions and a best
improvement local search phase to solve the time-con-
strained VRP with two echelons in linehaul delivery systems
(2E-TVRP) considering CO2 emissions. +e improvement
phase consists of a neighborhood-based inter-route termed
as cross-exchange neighborhood. Liu and Liao [43]
addressed the two-echelon collaborative waste collection
VRP (2E-CWCVRP) through a three-phase strategy. +is
strategy uses the k-means clustering method plus a hybrid
heuristic combining a C&W and an adaptive large neigh-
borhood search (ALNS, Shaw [44]). Moreover, this ap-
proach uses the roulette wheel (RW, Lipowski and Lipowska
[45]) mechanism that relies on the selection of destruction
and repair operators. Similarly, Anderluh et al. [46] used the
RW and large neighborhood search (LNS) approaches to
optimize a multi-objective VRP for two-echelon VRP with
vehicle synchronization (2E-VRPSyn) considering eco-
nomic and environmental aspects. +e solution of 2E-
VRPSyn consists of creating routes, assigning customers to
echelons, and inserting the required synchronized meetings

between vehicles from various echelons. Moreover,
Mühlbauer and Fontaine [47] tackled the two-echelon
capacitated VRP with swap containers (2E-CVRPSC) by
introducing a parallelized LNS (PLNS) approach enhanced
by a heuristic and using two traditional neighborhoods, 2-
opt neighborhood (intra-route) and 2-opt∗ neighborhood
(inter-route). +is heuristic creates an initial feasible solu-
tion by inserting the active satellites in a tour, taking into
account the least expensive position, respectively, in de-
creasing distance from the depot.

Jie et al. [48] considered a two-echelon capacitated
electric vehicle routing problem with battery swapping
stations (2E-EVRP-BSS). +ey presented an economic
analysis to assess the effect on emissions' reduction. For
solving it, they applied a hybrid algorithm (called CG-ALNS)
based on the integration of the column generation algorithm
(CGA) and ALNS.+e CGA solves the relaxed problem, and
after applying a heuristic, the procedure provides a feasible
solution to the optimization problem. First, the CG-ALNS
starts by providing a solution to the second echelon, and
with that, they solve the first echelon. +en, in the second
echelon, the goods are delivered from the satellites to the
customers considering them as depots and solving a multi-
depot EV distribution routing problem (MDEVRP) by
means of an ALNS. CG-ALNS can be classified as a relax-
ation-based approach because it provides a feasible solution
to the problem from the optimal solution of the relaxed
problem.

Validi et al. [49] faced a sustainable three-echelon dis-
tribution network by proposing a mathematical formulation
that aims at optimizing the routing throughout the trans-
portation network while minimizing carbon emissions and
transportation operating costs. +e authors presented three
metaheuristic approaches to address this problem, that is,
the multi-objective genetic algorithm of type II (MOGA-II),
the MOPSO, and the NSGA-II.

4.7. Period Vehicle Routing-Related Problems. +e period
vehicle routing problem (PVRP) optimizes vehicles’ routes
where the planning horizon is extended to a number of days
or periods. +e research of López-Sánchez et al. [50] dealt
with the bi-objective periodic vehicle routing problem with
service choice (Bi-PVRP-SC). +is problem aims to mini-
mize total emissions and maximize the service quality by
optimizing a set of vehicle routes for each day of a planning
horizon for a fleet of vehicles that starts and ends at a single
depot. Customers have to be visited as a minimum of a
predetermined number of trips during the planning horizon.
+e authors proposed a two-phase algorithm consisting of a
multi-start multi-objective local search (MSMLS) algorithm.
+e first phase of MSMLS consists of generating feasible
solutions. +e second phase attempts to approximate the
Pareto front by improving those solutions through local
searches using multiple neighborhoods.

4.8. Pollution-Routing-Related Problems. +e pollution-
routing problem (PRP) is an extension of the classical VRP
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with time windows (VRPTW) which involves environ-
mental costs, such as fuel consumption costs and greenhouse
gas (GHG) emissions, as well as operating costs [1]. Demir
et al. [51] proposed a two-phase approach based on ALNS
and SOA for the PRP.+e authors used the C&Wmethod to
generate initial solutions and the SOA to achieve an optimal
driving speed. In a later study, Demir et al. [52] introduced
the bi-objective PRP to simultaneously reduce fuel con-
sumption and travel time. As a solution method, they de-
veloped a bi-objective adaptation of their previous two-
phase approach and compared four a posteriori methods,
including the weighting method, the weighting method with
normalization, the ϵ-constraint method, and a new hybrid
method based on the scalarization of the two objective
functions. +e work of Kramer et al. [53] presented a one-
shot matheuristic approach for the PRP called ILS-SP-SOA
that combines an ILS embedding integer linear program-
ming (ILP) algorithm to solve a set with a set-partitioning
(SP) formulation and an SOA for the PRP. Also, two par-
ticular cases of the PRP were studied: the fuel consumption
VRP (FCVRP) and the energy minimizing VRP (EMVRP).

Koç et al. [54] introduced a fleet size and mix PRP
(FSMPRP) as a new PRP variant and proposed a hybrid
evolutionary algorithm (HEA++). +e HEA++ is a het-
erogeneous ALNS (HALNS) metaheuristic, where a tour-
nament selection mechanism is used to select survivors to
determine which individuals are excluded and which remain
in the next generation. Koç et al. [55] presented an approach
using a geographic information system (GIS)-based on a TS
heuristic to solve a variant of PRP, which considers the
impact of routing on CO2 emissions on real instances of a
real grocery retail chain. Other metaheuristic techniques for
PRPs can be found in the exploration of the practical version
of PRP (PPRP) [56], time-dependent PRP (TD-PRP)
[57, 58], and sustainable traveling purchaser problem with
speed optimization (STPPS) [59], an extension of the single-
product traveling purchaser problem model and the PRP.

Kumar et al. [60] presented a multi-objective model for
multivehicle PPRP with a time windows (MMPPRP-TW),
where the location and inventory decisions are taken into
account and solved by a multi-objective self-learning PSO
(MOSLPSO) and an NSGA-II. Costa et al. [61] investigated
the bi-objective PRP in the context of green logistics with a
focus on reducing CO2 emissions and driver salaries. +e
authors developed a multi-objective approach based on the
two-phase local search heuristic. Using the two-phase
method, they provided an approximation to the Pareto front,
where the first phase was for solving a set of weighted sum
PRPs and the second phase consisted in applying a Pareto LS
procedure. +e work of Kargari Esfand Abad et al. [62]
presented three multi-objective metaheuristic algorithms
which are NSGA-II, a nondominated ranking genetic al-
gorithm (NRGA), and a MOPSO to address a pickup and
delivery PRP variant considering integration and consoli-
dation shipments in cross-docking. +e NSGA-II imple-
mentation generates a certain number of parent solutions on
each iteration. +ey applied a tournament selection method
to select suitable parents. Also, to generate a new population,
they used genetic operators, i.e., mutation, and crossover on

parent solutions. +e population was sorted regarding the
nondomination scheme of individuals, i.e., a rank-based
selection method is used to assign a rank to each individual.
Lastly, NRGA differs from NSGA-II in the chromosome
selection mechanism.

Fang et al. [63] introduced and modeled the PRP with
reverse logistics and simultaneous pickups and deliveries
(PRPSPD) with the aim of reducing carbon emissions under
different carbon prices. +e authors used a matheuristic
algorithm classified as a heuristic branching according to the
taxonomy of Archetti and Speranza [40]. +is algorithm is
based on a branch-and-cut (B&C) algorithm. +e B&C
separates candidate sets for branching is a form of imple-
mentation of the heuristic methods described by Lysgaard
et al. [64]. Furthermore, to generate the initial solution, the
authors applied C&W and a guided VND (GVND) as the
improvement algorithm.

4.9. Electric Vehicles-Related Problems. Several factors in-
fluence the increase in the use of EVs, such as government
incentives to reduce GHGs or the possibility of using these
vehicles with lower acquisition costs due to government
subsidies. +e driving range limitations of electric vehicles
combined with drivers’ tendency to overestimate distances is
a trending problem in the use of EVs. In this context, there
are several investigations studying the use of fleets of het-
erogeneous vehicles, including EVs, that proposed trade-off
analysis considering the environmental costs associated with
the use of vehicles.

Eskandarpour et al. [65] presented a bi-objective model
to minimize total costs and CO2 emissions in a fleet of
heterogeneous vehicles with multiple loading capacities and
driving ranges (HeVRPMD). +e fleet comprises EVs,
ICEVs, and plug-in hybrid electric vehicles (PHEVs). In the
HeVRPMD, the driving range of electric vehicles is limited
because of their battery capacity. To solve this problem, they
developed an enhanced variant of the multidirectional LS
(EMDLS) to approximate the Pareto front.+e EMDLS is an
enhanced version of the improved multidirectional LS in-
troduced by Lian et al. [66]. Due to battery driving range
limitation, Yang and Sun [67] investigated how to simul-
taneously optimize battery swap stations (BSSs) and the
routing plan of a fleet of EVs. It deals with range and ef-
ficiency analysis for reducing vehicle emissions when EVs
are used in the logistics area. To cope with this problem, the
authors presented a four-phase heuristic (named SIGALNS)
and a two-phase TS-modified C&W (TS-MCWS). In the first
phase of SIGALNS, a modified SwA algorithm generated an
initial routing plan that leads to the BSSs location sub-
problem, which is then solved in the second phase using an
iterated greedy heuristic. In the third phase, the vehicle
routes resulting from the location subproblem are deter-
mined by applying an ALNS with several new neighborhood
structures. Even further, at the end of SIGALNS, the solution
is enhanced by the fourth phase split procedure. Finally, as
for TS-MCWS, the TS algorithm searches for the most
appropriate location strategy, and the C&W method makes
the routing decision based on this location solution.
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Raeesi and Zografos [68] introduced the E-VRPTWwith
recharging stations and synchronized mobile battery
swapping (EVRPTW-RS-SMBS). +is problem involves
increasing the driving range of EVs by coordinating the
intra-route recharging at an intermediate RS. With this, it is
possible to reduce operational costs, total amount of well-to-
wheel CO2 emitted, the range of anxiety, and synchronize
the battery exchange services between routes carried out by
battery swapping vans (BSV) in a pre-established time. +e
range of anxiety occurs when an EV driver feels that the
battery charge is low and the usual recharging stations are
unavailable. +e authors proposed a path-based formulation
on a multigraph (MG) representation for this problem, and
further developed an efficient dynamic programming (DP)
based heuristic algorithm. +ey replaced the core DP in the
DP-based intensified large neighborhood search (DP-ILNS)
algorithm and finally the complete algorithm (MG-DP-
ILNS). Arroyo et al. [69] presented the green vehicle routing
problem with multiple technologies and partial recharges
(GVRP-MTPR) that takes into account optimizing the cost
savings by using partial recharges. +e multiple technologies
refer to the several forms of battery recharge, which can be
done using different technologies (e.g., charging points for
EVs, CHAdeMO fast charging method, wireless charging
systems, and others).+e research focused on the impact of a
possible carbon pricing policy that would affect energy costs
and subsidies on the purchase price. +e results showed that
carbon pricing is little effective when having a low daily
traveled distance. Its effectiveness increases as mileage in-
creases. To solve the problem, the authors used the 48A
heuristic algorithm (see Felipe et al. [70]) that consists of a
greedy constructive phase to generate an initial solution and,
after a local search algorithm, to improve the initial solution.

Yu et al. [71] addressed the green mixed-fleet VRP with
realistic energy consumption and partial recharges
(GMFVRPREC-PR) [74]. +e authors presented an ALNS
heuristic with a DP algorithm integrated within it to solve it.
+e DP determines an optimal recharging station sequence
to visit for the EVs. Macrina et al. [72] proposed a math-
ematical model and a constructive heuristic based on Sol-
omon’s sequential insertion heuristic (SIH, Solomon [73])
for the GVRP with a mixed fleet, partial battery charging,
and time windows (GMFVRP-PRTW). +e mathematical
formulation presented an objective function based on the
minimization of the sum of several costs (i.e., recharging,
routing, and activation of commercial electric vehicles), and
included a restriction that limited the pollution emissions.
Due to the heterogeneous fleet characteristics, the authors
established two customer groups served by EVs and ICEVs.
+e constructive heuristic used to solve this problem con-
sists of two distinct parts. +e first part aims to define the
routes used to serve the customers with the ICEVs, while the
second part creates the routes for the customers served by
the EVs.

+e closed-loop inventory routing problem (CIRP, [74]) is
a variant of the IRP, where the execution of the vendor-
managed inventory policy requires a vendor to deal with an
integrated problem consisting of its own forward and backward
routing decisions and inventory decisions of customers.

Regarding environmental considerations, Soysal et al. [74]
investigated on the CIRP with realistic energy estimations with
the aim to provide economic and environmental benefits. +e
authors proposed a rolling horizon technique based on a fix-
and-optimize approach (F&O) for solving the CIRP under a
mixed fleet of electric and conventional vehicles, where a
vendor-managed inventory system is run and there is also a
mixed fleet of EVs and ICEVs. As for the heuristic algorithm,
F&O divides the planning horizon into sub-periods. +e
method modifies the lower and upper bound values of the 0–1
variables for each of the sub-periods. +e lower and upper
bound values for the fixing sub-periods are set to best-known
variable values.+e lower and upper limits are set to 0 and 1 in
the optimizing sub-periods to allow the model to choose the
values of the binary variables based on the fixed variable values.

4.10. Pickups and Deliveries Related Problems. +e pickup
and delivery VRP (PDVRP) involves conducting a set of
pickup and delivery orders between pairs of locations.
Fatemi-Anaraki et al. [75] presented a clustered version of
the bi-objective green delivery and pickup problem. +e
authors used k-means for assigning customers to distinct
clusters, and after that, a vehicle is randomly allocated to
each cluster. Once that assignment is done, the GA algo-
rithm is applied to each cluster to find a near-optimal so-
lution. +e solution of this stage is provided to the initial
population of the NSGA-II to find the Pareto optimal so-
lutions for the bi-objective model proposed. Olgun et al. [76]
proposed the GVRP with simultaneous pickup and delivery
(G-VRPSPD), and a hyperheuristic (HH-ILS) based on the
integration of ILS and variable neighborhood descent
(VND). +e ILS is used as a high-level algorithm in the HH-
ILS algorithm. +e solutions are perturbed at the beginning
of each iteration by applying a certain number of neigh-
borhood structures. A local search technique is used to
improve the perturbed solution: inter-route and intra-route
neighborhood structures. Srijaroon et al. [77] used a self-
adaptive learning particle swarm optimization (SAL-PSO)
for solving the GVRP with mixed and simultaneous pickup
and delivery problems, time windows, and road types (G-
VRPMSPDTW-RT). +e SAL-PSO can achieve the mini-
mum transport costs (including fuel consumption) among
the personal best values of all the particles to be an overall
best value and proceed to the next iteration of the opti-
mization process until the stop criteria are known. In ad-
dition, the authors introduced a PSO parameter adjustment
with a combination of adaptive inertia weight and accel-
eration coefficient mechanisms.

Asghari and Mirzapour Al-e-hashem [78] developed a
bi-objective model for the green delivery-pickup problem
for home hemodialysis machines (HHMs). +e authors
showed for the first time how incorporating the idea of item
sharing into the business model of a private home-care
service has a significant positive impact on the environment.
+ey differ from the conventional PDVRP by allowing the
system to provide HHMs either from the company’s central
depot or from individual owners. To evaluate the envi-
ronmental and economic properties of the proposed model,
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the authors developed a metaheuristic based on self-learning
NSGA-II for medium and large-scale scenarios. Moreover,
their approach considers adjusting the set of crossing and
mutation probabilities in response to changes in the value of
the fitness function after operations in the next iteration.

Solano et al. [79] addressed a VRP variant with simul-
taneous pickup and delivery and time windows
(VRPSPDTW) involving the pickup and delivery of beer
bottles to multiple customer locations with early and late
deadlines and predetermined pickup and delivery require-
ments. For solving this problem, they used an integration of
a TS and a greedy algorithm. First, based on the nearest
neighbor criteria, the greedy algorithm generates an initial
solution to seek out the different customers using a time grid
as a guide. After that, the TS is used to improve the initial
solution by expanding the exploration space until a better
solution is found that reduces the total distance traveled.

Majidi et al. [80] proposed a fuzzy green vehicle routing
problem with simultaneous pickup and delivery and time
windows (F-GVRPSPDTW) where the optimization model
considers uncertainty in both pickup and delivery re-
quirements. To solve this problem, the authors provided a
fuzzy algorithm that deals with uncertainty and an ALNS.
+is approach uses the comprehensive modal emissions
model (CMEM, Barth et al. [81]) to calculate fuel con-
sumption and CO2 emissions. Lu and Huang [82] developed
a distance-based ALNS (DALNS) to solve the green pickup
and delivery problem with time windows (Green-PDPTW)
to reduce carbon dioxide emissions associated with product
transportation. Inside their ALNS, the SA method decides
whether to apply the destruction or repair heuristic. +e
authors introduced the concept of order pool when creating
the original solution; that is, the elements of each pool are
determined by the distance and time windows of all
customers.

4.11. VRP with Backhauls-Related Problems. +e VRP with
backhauls (VRPB) comprises two sets of customers, such
as linehaul and backhaul customers. +e linehaul cus-
tomers require a certain quantity of goods to be delivered,
while the backhaul customers require pickup services.
Each vehicle must serve both sets of customers so that
linehaul customers must be visited in outbound trips
before the backhaul customers are visited for the pickup
service in its inbound trip to the depot [83]. VRPB is part
of the pickup and delivery problem with time windows
(PDPTW), where pickup and delivery activities can be
performed on the same route. +e research of Zhao et al.
[84] faced the two-dimensional multi-depot CVRP with
backhauls (2L-MDCVRPB). +e problem’s objective
function seeks to minimize the total carbon emissions. To
solve it, the authors proposed a quantum-behaved PSO
(QPSO) and an exploration heuristic LS algorithm
(EHLSA).

4.12. Scheduling-Related Problems. +e vehicle routing and
scheduling problem (VRSP) refers to the case where

customers have specific service time requirements (e.g.,
precedence relationships, arrival times, and others). +e
green vehicle routing and scheduling problem (GVRSP)
extends the VRSP with the aim to minimize emissions in
logistics systems through better scheduling deliveries/
pickups by a fleet of vehicles. Xiao and Konak [85] intro-
duced the GVRSP, which takes into account general time-
dependent traffic circumstances with the primary goal of
reducing CO2 emissions and delays. In addition, the authors
proposed a new formulation of the GVRSP where a vehicle is
allowed to travel an arc in multiple periods. To solve this
problem, the authors proposed an SA algorithm where the
continuous variables of the model were determined using a
simple heuristic procedure that provides near-optimal
schedules for a given set of routes and approximate
schedules. Later, the same authors [86] expanded the
GVRSP by considering heterogeneous fleet and the effect of
vehicle weights on emissions. +at research refers to the
heterogeneous green vehicle routing and scheduling prob-
lem (HGVRSP) and considers the features such as vehicle
types, CO2 emissions, load, and fuel capacities. To address
large-scale instances of this problem, the authors applied a
combination between a partial-MILP optimization and it-
erative neighborhood search (INS) called P-MIP-INS. +is
approach seeks to fix a set of decision variables and use the
partial-MILP to optimize a subset of the binary variables
from theMILPmodel during the search process.+e work of
Gang et al. [87] presented a GVRSP of free picking up and
delivering customers for airline ticketing companies that
have to pick-up customers and bring them to the airport,
with the goal of reducing carbon emissions and operational
costs.+e authors proposed a hybrid heuristic-metaheuristic
approach that integrates a single heuristic to generate the
initial solution for the TS algorithm.+e authors of Alizadeh
Foroutan et al. [88] addressed the GVRSP by considering a
heterogeneous fleet, reverse logistics in the form of returned
goods pickup, the cost of totalCO2 emissions, weighted costs
for early arrivals, and tardiness costs. +ey proposed two
metaheuristics, that is, SA and GA, to solve this problem.
Several operators were implemented to generate new so-
lutions for the GA offspring (e.g., crossover, mutation, and
others) and a swap operator is implemented for the SA.

In the work of Liao [89], the author proposed a math-
ematical model and hybrid metaheuristic (GA-tabu) based
on GA and TS for solving the online VRP with real-time
demands that takes into account real-time requirements and
minimizes costs related to economics and CO2 emissions. It
is based on a two-stage method that includes offline route
planning and online route updates. In the first phase (offline
phase), the initial routes for dispatching a fleet are deter-
mined based on known demands. In the second phase
(online phase), the initial routes are then reoptimized using a
GA to account for new demands and real-time traffic data to
solve the mathematical model. In addition, the demand lists
are regularly updated using a tabu list.

Sousa Matos et al. [90] investigated the GVRSP with
split delivery (GVRSP-Split) to reduce emissions in lo-
gistics systems by improving the scheduling of deliveries
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from a fleet of vehicles. To deal with the GVRSP-Split, they
provided a hybrid multi-start method (MS-ILS-SC) that
combines the ILS heuristic with random VND (RVND)
location search as the initial phase and an exact set
covering (SC) model as the intensification phase. Zhou
et al. [91] presented a decision support system to assist the
implementation of a green real-life field scheduling
problem. +is system uses two instantaneous emissions
models, for example, methodology for calculating trans-
port emissions and energy consumption (MEET, Hick-
man et al. [92]) and national atmospheric emissions
inventory (NAEI, NAEI [93]) used in the literature, which
can predict the emissions in each second. For solving these
scheduling problems, they applied the TS algorithm with
random neighborhood generators and VND and reduced
variable neighborhood search (RVNS). Finally, Jiang et al.
[94] faced a green transportation planning problem with
multiple vehicles and one-cargo (MVOC). +e authors
presented a metaheuristic approach for solving this
problem through the Pareto-based multi-objective
method TS (MOTS), where local improvements are
sought to generate promising neighbor individuals.

4.13.TimeWindows-RelatedProblems. In the VRP with time
windows (VRPTW), service to each customer involves
pickup and/or delivery of goods within a specified time
windows [73]. +ese can be defined as hard or soft windows
depending on the application. In the hard time windows
case, a vehicle must serve customers exactly within a
specific time interval. If the vehicle arrives earlier than the
time window, it has to wait. Late arrivals at customer lo-
cations are not allowed. In the soft time windows case,
violating the time window constraints is allowed at the cost
of some penalty. +e work of Molina et al. [95] proposed a
mathematical model to solve the heterogeneous fleet VRP
with time windows (HVRP-TW) and the C&W algorithm
for solving the same problem within time windows re-
strictions (HVRP). +e fleet of vehicles in HVRP is
characterized by different capacities, costs, and emission
factors. +e authors also considered hard time windows.
Furthermore, they formulated a multi-objective eco-effi-
ciency model to minimize the total internal cost, CO2
emissions, and air pollutant emissions. Maden et al. [96]
presented a heuristic algorithm named LANTIME to solve
the VRPTW using time-varying data with the aim to reduce
the total travel time. In their problem, the time it takes for a
vehicle to travel on any road in the network varies as a
function of travel time. +ese variations are caused by
congestion, which is typically the greatest during the
morning and evening rush hours. +e authors provided an
estimation of the CO2 emissions from a distance traveled.
LANTIME generates the initial solution using the parallel
insertion algorithm [97], which builds routes in parallel
and uses a generalized regret measure, total unrouted
customers, to select the next candidate for insertion. Rezaei
et al. [98] addressed the green VRP with time windows (G-
VRPTW) considering the heterogeneous fleet of vehicles
and the hard time windows constraint. +ey used GA and a

population-based SA (PBSA) algorithm to solve this var-
iant. +e PBSA uses the population’s capacity to find
different parts of the search space, thus hedging against bad
decisions in the initial solution and increasing the diversity
of solutions.

Masmoudi et al. [99] presented three variants of the
artificial bee colony (ABC) for solving the heterogeneous
fleet VRP with synchronized visits (HF-VRPS). To model
this problem, the authors presented a mathematical model
based on CMEM, proposing a variation related to the cal-
culation of the fuel consumption rate for AFVs by con-
sidering bio-diesel instead of diesel. On the other side, the
metaheuristic variants of ABC are the hybrid ABC algorithm
with demon (ABC-DA), the hybrid ABC algorithm with
acceptance of old bachelor acceptance (ABC-OBA), and the
hybrid ABC algorithm with record-to-record travel (ABC-
RRT). Zhao et al. [100] proposed an evolutionary algorithm
based on an improved multi-objective ACO (ACOMO) for
solving a cold chain logistics path optimization problem
which consists of the optimization of customer satisfaction
while reducing costs and carbon emissions during the
distribution process. +e authors used the concept of soft
time windows by establishing a penalty cost for early or late
arrivals times to improve customer satisfaction. To solve this
problem, they used the evolutionary approach to improve
customer satisfaction in distribution service, with higher
demands on the organization and coordination of cold chain
companies. Islam and Gajpal [101] presented an ACO and
VNS hybridization algorithm to solve a mixed fleet of lo-
gistics problems conventional vehicles and green vehicles
with carbon emission cap in the supply network. +e
implementation of ACO defines trail intensity as the in-
tensity ants travel between the visit of one customer to
another. Moreover, the VNS is integrated into the ACO
algorithm as an LS to handle the premature convergence of
ACO and obtain an improved solution quality of the al-
gorithm. In reference [102], the authors presented another
variant of ACO to solve the home health care (HHC)
problem with synchronized visits and carbon emissions. +e
carbon emissions of each route are calculated using a DP
algorithm.

Sanchez et al. [103] presented a formulation for
G-VRPTWwith the CO2 footprint aspect as a constraint and
a scatter search (SS) for solving it. +e SS algorithm has been
analyzed from the perspective of game theory to evaluate the
stability of the coalition after pooling resources. In addition,
resource pooling is considered to evaluate carbon emissions
in terms of economic benefits. Ren et al. [104] investigated
the bi-objective mixed-energy green VRP with time win-
dows (B-MFGVRPTW), where the mixed-energy fleet
comprises a set of vehicles using mixed energy. To determine
the Pareto front of the model, an improved VNS with a
selection mechanism is provided. During the iterative phase,
the selection mechanism can ensure that there is a diversity
of solutions and that the process is not stuck in a local
optimum. Fernández et al. [105] addressed the cumulative
VRP with hard (CumVRP-hTW) and soft time window
(CumVRP-sTW) constraints. +e main objective of
CumVRP is to minimize the cumulative cost, which

Journal of Advanced Transportation 11



considers the distance and weight over a traveled arc and can
be proportional to the emissions of greenhouse gases. To
address this problem, the authors presented a decompo-
sition matheuristic approach based on the cluster first-
route second by integrating a mathematical formulation
and a GRASP algorithm. In each step of the approach, a
feasible solution (a set of routes) is constructed using
GRASP. +en, the solution is optimized using an MILP
optimizer.

+ere are other works with applications of heuristics to
solve GVRPs, such as ALNS for multicompartment vehicles
for city logistics and G-VRPTW [107, 108], GA for the effect
of governmental time window policy on the routing plan-
ning decisions of cold chain distribution companies [109],
fuzzy hierarchical clustering method and GA for the cus-
tomer-oriented routing problem with consideration of the
environment [110], and a TS and VNS for VRP in the home
health care sector called VRPTW with synchronization,
precedence, and fuel consumption constraints (VRPTW-
SPFC) [111].

4.14. Time-Dependent-Related Problems. +e time-depen-
dent VRP (TD-VRP) considers the travel times between any
pair of nodes, that is, customers and depots, depending on
the distance between the nodes or the time of the day (e.g.,
rush hours, weather conditions, and urban congestion).
Also, time windows restrictions for serving customers and
the maximum allowed duration of each route (i.e., driver
workday) can also be specified. In reference [112], the au-
thors presented the green stochastic time-dependent
capacitated vehicle routing problem (GSTDCVRP), which is
a variant of TD-CVRP with stochastic vehicle speeds on arcs
that incorporates environmental concerns like energy usage
and CO2 emissions while planning delivery decisions. +ey
proposed the approximate DP (ADP) based heuristic al-
gorithm for solving that problem because the classical DP
method cannot be calculated for optimal routes of the
problem instances studied with stochastic considerations.
+e DP uses the full-backup concept to compute the exactly
expected returns of each action for each state in each stage.
+e ADP uses a sample-backup which is an advantage when
using simulation for obtaining a return of a single action
taken to update the value function estimation of a single
state.+e same authors in Soysal and Çimen [113] addressed
the GSTDCVRP using weighted random sampling to form
the restricted list in restricted DP (RDP). +eir approach
chooses H + S partial tours, which are then enlarged in the
following step, which uses weighted random sampling to
select S partial tours.

Hooshmand and MirHassani [114] presented the
TDGVRP-AF, which is the union between the original
GVRP proposed by Erdoğan and Miller-Hooks [17] and the
TD-VRP. +is problem consists of designing routes for
AFVs in congested urban areas. At the same time, they
considered refueling decisions to reduce CO2 emissions,
taking into account time-dependent travel speeds, limited
fuel range, and load restrictions. To solve this problem, they
applied a two-phase algorithm based on a GRASP with path-

relinking strategy and SA. Zulvia et al. [115] presented a
G-VRPTW and time dependency to address scenarios
considering perishable products. +e solution to this
problem consists of optimizing multiple objectives such as
operational cost, deterioration cost, and CO2 emissions. To
solve this multi-objective problem, the authors employed a
many-objective gradient evolution (MOGE) algorithm,
which explores the search space by using several operators
capable of handling continuous variables (e.g., vector
updating, jumping, and refreshing).

Liu et al. [116] studied the minimal-carbon-footprint
time-dependent heterogeneous fleet VRP with alternative
paths (MTHVRPP). +is problem simultaneously considers
different vehicle types and alternative path choices to in-
crease its applicability in practical situations. +e authors
developed a GA to address this problem, which starts with a
population of chromosomes and evaluates this population.
+en, selection, crossover, mutation, capacity check, alter-
native path selection, and evaluation are repeated until the
termination conditions are met. +e termination criteria
consist of two options: first, to set the maximum number of
generations, and second, to set the maximum number of
unimproved generations (if the best fitness value has not
improved in the last several generations, the evolutionary
process is stopped).

Küçükoğlu et al. [117] dealt with the green VRP with
time windows (G-VRPTW). +e goal of this work is to
construct vehicle routes with time windows that minimize
distance traveled, total fuel consumption, and CO2 emis-
sions.+e authors considered applying a penalty cost when a
vehicle arrives at a customer after its time window upper
bound (soft time windows case) and even if the load at the
depot exceeds the load of the vehicle. For solving it, an
adapted SA to the storage structure is used to solve this
problem.

4.15. Waste Collection-Related Problems. +e waste collec-
tion vehicle routing problem (WCVRP) considers taking
back waste from the collection points and transporting the
collected waste to a specific landfill. +is is a reverse logistics
problem as well as a crucial waste management logistics
operation [118]. +e authors of Qiao et al. [119] addressed
municipal solid waste (MSW) for the sustainable manage-
ment of municipal solid waste collection. +eir goal was to
balance the workload of each disposal facility to reduce fuel
consumption and improve social equity. +ey presented a
two-phase algorithm involving PSO and TS. +e results
showed that the PSO algorithm usually got stuck into the
local optimum when looking for an initial solution, but
through TS, that could be improved while also reducing the
probability of premature convergence.

Wei et al. [120] investigated the WCVRP with a realistic
midway disposal pattern (MDP) for minimizing total carbon
emission cost. To solve this problem, they developed a
hybrid ABC approach (called HABC-MDT) based on the
ABC algorithm and a midway disposal trip selection heu-
ristic. Also, to achieve a good performance, the HABC in-
tegrates an enhanced ABC (EABC) and a VND algorithm.
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To generate the initial population, they used neighborhood
operators selected in random ways (e.g., random swap,
random insertion, and others). +en, through the roulette
wheel method, the best solutions were updated to produce
the new population. Finally, the VND was used as an LS
improvement of the current population by intensifying
candidate solutions.

Another recent problem related to the WCVRP is the
recovery and collection of electronic and electrical
equipment waste. Malekkhouyan et al. [121] introduced the
integrated multistage vehicle routing and mixed-model
robotic disassembly sequence scheduling problem on an
e-waste management system. +e problem objective is to
minimize total costs of collocation and transportation, total
pollution of CO2 emissions by vehicles, the carbon foot-
print by robots, and the total cost of disassembling
products simultaneously. For solving this problem, they
proposed a bio-inspired swarm algorithm called the
grasshopper optimization algorithm (GOA) [122] that
simulates the group behavior of grasshoppers for getting
hold of food.

Molina et al. [123] introduced the eco-efficient WCVRP
(Eco-WCVRP) by designing waste collection routes with a
single landfill using eco-efficiency as a performance indi-
cator. In this problem, there are a limited number of het-
erogeneous vehicles departing from a single depot. Eco-
WCVRP considers carbon emissions, nitrogen oxides
(NOx), nonmethane volatile organic compounds
(NMVOC), and particulate matter (PM) emissions, which
are of particular concern in urban areas. To solve this
problem, they proposed a variable neighborhood tabu search
(VNTS). +e approach consists of the VNS algorithm ex-
tended by the TS as a local search procedure. To generate the
initial solutions, a semiparallel insertion heuristic is used,
which creates a subtour for each available vehicle at each
iteration.+us, the algorithm starts with an empty route and
collection points are iteratively inserted until none can be
inserted in the route due to capacity constraints.

4.16. Prize-Collecting Vehicle Routing Problems. +e prize-
collecting vehicle routing problem (PCVRP) is an extension
of the prize-collecting traveling salesman problem (PCTSP)
proposed by Balas [124]. In the PCVRP, customers do not
need to be visited, but a prize can be collected from each
customer when they are visited. +is problem aims to
maximize the sum of prizes collected from visited nodes while
minimizing the fixed cost (e.g., vehicle utilization) and var-
iable cost (e.g., fuel consumption). Trachanatzi et al. [125]
presented the first work to formally study a variant of the
PCVRP called environmental PCVRP (E-PCVRP), where the
cost minimization objective, that is, total distance traveled, is
replaced by a load-distance function to minimize CO2
emissions. To solve this problem, the authors proposed a
teaching-learning-based optimization (TLBO) algorithm.
TLBO is a population-based heuristic optimization algorithm.
As a part of the TLBO approach, the authors integrated a
heuristic encoding/decoding technique to map the solution in
a continuous domain, that is, Cartesian space, and converted

to the original structure after using the learning mechanisms
which take Euclidean distance into account.

4.17. Hydrogen Vehicles in Routing Problems. Hydrogen
vehicles (HVs) are novel and different generation of electric
vehicles. +eir operations are based mainly on a chemical
reaction between hydrogen and oxygen inside the batteries
to generate electrical power. According to Islam et al. [126],
the HVs show better autonomy than EVs (e.g., driving range
and short refueling time). Despite this, the driving range and
refueling time of HVs are identical to ICEVs, and HVs are an
alternative that contribute to reducing carbon emissions and
improve environmental sustainability over ICEVs. Also, the
same authors introduced the mixed-fleet based green
clustered logistics problem (MFGCLP) that considers both
hydrogen and conventional vehicles. Moreover, they pro-
posed a hybrid approach based on PSO and a neighborhood
search to solve this problem. +e neighborhood search
includes several well-known local searches (e.g., 2-opt, ex-
change, and others) at both the cluster and customer level.
Each local search operation at a cluster level is started with
an additional penalty function concerning three constraints,
that is, vehicle capacity, time windows, and carbon emission
constraints.

5. Analysis of Emissions in GVRPs

+is section analyzes the GVRP works related to emissions
models and restrictions applied either within the mathe-
matical models and/or solution approaches. +is way, Ta-
ble 1 reports how the emissions have been considered.
Column 1 shows the corresponding reference, column 2
shows the type of emissions addressed in each work. Column
3 reports the place of calculating the emissions for each
research. Column 4 indicates the fuel consumption model.
Column 5 provides the classification of the objectives or
fitness function used. Finally, columns 6, 7, and 8 present
defining problem features, such as types of time restrictions,
fleet composition, and the consideration of variable speed
and load over each traveled arc.

To support the summarized works outlined in Section 4,
we described those essential characteristics for the GVRPs
considering emissions. Many of these works take into ac-
count the carbon dioxide (CO2) emissions in road trans-
portation. +e CO2 emissions are produced when
hydrocarbon fuels (i.e., coal, oil, diesel, and gasoline) are
burned. Another type of GHG emissions is nitrogen oxide or
NOx, produced when the fuel is combusted in the engine in
the presence of air.

Regarding the composition of the restrictions and ob-
jectives pursued in the solution approaches, we found the
specific parts where the calculation of emissions takes place.
In doing so, we classified these parts as (i) internal and (ii)
external. +e internal part refers to when the emission
calculation is considered in the problem definition, for
example, part of the objective function and part of re-
strictions.+e external part considers the calculation outside
the solution approaches, mostly found in the experimental
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sections of the investigations, for example, determining the
emissions of a given solution after the optimization process.

To calculate the fuel consumption, there are several fuel
consumption models. According to the investigation of
Demir et al. [127], the fuel consumption models can be
classified as factor models, macroscopic models, and mi-
croscopic models:

(i) Factor models. +ese models are based on fuel
consumption rate (e.g., liters per kilometers or
gallons per miles). Using this type of model, the CO2
emissions can be estimated using the fuel con-
sumption approach, that is, e � fuel consumption
×heating value× emission factor, where the
heating value represents the heat content of fuels,
and the traveled distance approach, that is,
e � traveled distance × emission factor. +e emis-
sion factor can be expressed in kg CO2 e/liter, (see
DEFRA [128]; Veidenheimer [129]).

(ii) Macroscopic models. +is type of model uses av-
erage network parameters (e.g., variety of trips each
with a different average speed) to estimate network
emission rates, for example, MEET by Hickman
et al. [92] and a computer program to calculate
emissions from road transport (COPERT) by
Kouridis et al. [130].

(iii) Microscopic models. +is type of model estimates
the instantaneous vehicle fuel consumption and
emission rates at a more detailed level. It is used to
predict traffic emissions more accurately because it
is based on instantaneous vehicle kinematic vari-
ables (e.g., speed, acceleration, and others). One of
the most commonly used microscopic models for
solving GVRPs is the CMEM [81, 131], where, in
order to generate accurate estimations, it is neces-
sary to provide specific parameters of the vehicles
(e.g., engine friction coefficient, air density, vehicle
engine speed, and others).

Concerning other features considered in the works, the
types of objective (and fitness) functions can be classified as
single-objective or multi-objective. About the composition of
the fleet, there are investigations based on homogeneous fleets
and heterogeneous fleets. As part of the models, there are
many characteristics related to time restrictions that became
widely used in the investigations on GVRPs because con-
sideration of travel times, traffic congestion, and delivery
times are frequent factors involved in emissions. Others as-
pects relate to works where speeds are variable and the load of
vehicles on each arc influences the fuel consumption.

With regards to emission aspects, we note that only one
investigation does not study the emission of CO2 while NOx

is only studied in 4.49% of the investigations collected. In
82.02% of the cases, the calculation of emissions is explicit
either in the mathematical model or in the algorithm, so it is
considered internal. Regarding the fuel consumption
models, the factor model is the mostly used one for about
49.44% followed by the microscopic model for about 35.96%
of the investigations. On the other hand, when analyzing the

specific characteristics of the problem, the single-objective
functions represent about 69.66%. For its part, the use of
time windows is the most used time restriction for about
60.67% followed by the limitations on the duration of the
route with 37.08%. Most of the fleets (64.04%) are made up
of homogeneous fleets. Finally, the special considerations
related to speed and load were found for about 52.81% and
66.29% of the investigations studied in this work.

6. Strategies and Components Used in the
Solution Approaches

+is section presents and analyzes the main strategies and
components of the solution methods found in the related
literature. We cluster the approaches according to six es-
sential aspects, that is, initial solution, neighborhood, local
search method, genetic operators, selection method, and
methodologies. +e solution methods are classified con-
sidering the classification of Talbi [4] for single and hybrid
metaheuristics. For single metaheuristics, the classifica-
tions are single-solution based metaheuristics (SMH),
population-based metaheuristics (PMH), metaheuristics
for multi-objective optimization (MH-MO), and hyper-
heuristics (HH). Regarding hybrid metaheuristics, we
consider metaheuristics-heuristics (MH-H), meta-
heuristics-metaheuristics (MH-MH), metaheuristics with
mathematical programming (MATH), and hybrid meta-
heuristics for multi-objective optimization (HMH-MO).

Table 2 reports those aspects as well as their components
that will be below described. Column 1 indicates each ref-
erence and the proposed method. +e referral to the method
follows the format<method (classification)> which allows
knowing the method used and the most suitable classifi-
cation in the literature. Subsequently, columns 2, 3, and 4
indicate for each work the used initial solution procedures,
how neighborhoods are structured in a heuristic scheme,
and the local search criteria of neighbor selection. Column 5
provides the operators used in evolutionary approaches, and
column 6 presents the selection heuristic methods found.
Finally, column 7 shows the methodologies employed to
conduct the search of solutions.

In the initial solution column, we consider how starting
solutions are generated as these might have a relevant in-
fluence on the quality of the best solution found as well as the
speed to reach it. +is review considers that the initial so-
lutions are generated using four main methods. +e C&W
method is based on the merging of routes, while their
combination causes a saving or reduction of the pursued
objective. Greedy methods [132] are based on the selection
of the element that best represents the immediate quality in
each case. Heuristics that take into account the character-
istics of the problem and, finally, random generation.

+e improvement algorithms and local search com-
monly start from an initial solution and explore the
neighborhood to find the best solution. To generate the
neighborhood, these algorithms apply well-defined neigh-
borhood operators. Considering the reviewed papers, we
classify the works based on five neighborhoods generated by
different operators:
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Table 2: Main strategies used in the heuristic methods for the GVRPs.
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Table 2: Continued.
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(i) Cross-exchange. It eliminates a series of consecutive
nodes of a route and inserts these nodes into an-
other route and vice versa.

(ii) Exchange or swap. It exchanges two vertices of the
solution.

(iii) 2-opt∗. It removes arcs from two routes and replaces
these with two arcs connecting the routes.

(iv) Or-opt. It replaces three arcs with three new arcs,
that is, moving the sequence of three vertices. In
some neighborhood-based local search algorithms,
it is necessary to specify how the next move to be
executed should be selected.

(v) 2-opt. It replaces two arcs with two new arcs to
reconnect the route. +e large neighborhood is
based on destroying and repairing operators, and
the first partially disintegrates the solution and the
second rebuilds it.

From the reviewed works, the main methods are the first
and best improvement methods. +e best improvement
selects one from the set of possible moves that produce the
best improvement. On the other hand, the first improvement
selects the first movement that produces an improvement. In
evolutionary algorithms, genetic operators are used for
generating the population of solutions for the next gener-
ations. +e most commonly used types of genetic operators
are mutation and crossover. Mutation operators are com-
monly used to maintain population diversity and are based
on a defined chromosome change. Crossover operators, on
the other hand, are based on the creation of a pair of in-
dividuals that combine the characteristics of their parents
(pairs of individuals).

Four selection methods are identified from the col-
lected literature, particularly in the context of population-
based algorithms. +e roulette wheel assigns each indi-
vidual a selection probability proportional to its relative
fitness. +is algorithm is closely related to rank-based and
stochastic universal sampling. +e former is based on the
rank of each individual rather than the quality of the
individual in question. In the second one, the selection
points are stochastically distributed in the roulette. +e
tournament selection considers selecting k individuals
randomly and then the element with the best quality is
chosen.

Considering the taxonomy proposed by Archetti and
Speranza [40] and based on the algorithms studied in this
work, we classify the works into eight solution
methodologies.

(i) Two-phase and three-phase. It covers algorithms
based on decomposing the problem into two/three
phases and solving them separately. In the classi-
fication of two-phase approaches, the approaches
classified as cluster first-route second are not
included.

(ii) Rolling horizon. +e basis of this methodology is
the resolution of a subproblem corresponding to a

short period, which serves as the basis for updating
the information of the following subproblem.

(iii) Relaxation-based. It provides a feasible solution to a
problem from the solution of the relaxed problem

(iv) Partial optimization. It employs one or more MILP
models to solve one part of the problem while
keeping all the decisions related to the remaining
parts fixed.

(v) One-shot. It proposes a feasible solution to a
problem provided by a heuristic. After that, this
solution is improved by a MILP model, which is
applied exactly once.

(vi) Heuristic branching. It employs branching algo-
rithms to increase the convergence of the solution
method by branching heuristically. +ese aim to
prune various nodes of the search tree to converge
to a solution quickly.

(vii) Cluster first-route second. It divides the problem
into two main decisions, that is, the assignment of
customers to vehicles and the order of how cus-
tomers are visited in each route.

When analyzing the main strategies and components
of the algorithms, we note that approximately 46.07% of
works use randomness to generate initial solutions and
34.83% is based on the use of specific heuristics. In this
sense, the least used algorithm to generate the initial
population is C&W with a 15.73% utilization, and Greedy
is used in 19.10% of the investigations. Regarding the
neighborhood generation operators, the most represen-
tative in the literature is the exchange and 2-opt operators,
used in 35.96% and 25.84% of the works, respectively. +e
next most commonly used neighborhood is a large
neighborhood generated by different types of operators
for about 21.35%.+e rest of the neighborhood generation
operators do not appear in more than 15% of the in-
vestigations. Among the population operators, the mu-
tation and crossover operators are used with similar
percentages, presenting a difference of only 3.37%. On the
other hand, among the local search methods, the best
improvement is observed to be the most popular one with
37.08% utilization compared to the 17.98% corresponding
to the first improvement approach. Regarding selection
methods, the roulette wheel present in 20.22% of the
investigations is the mostly used method. Finally, the two-
phase approach present in 26.97% of the investigations is
the most widely used methodology in the algorithms
described in the literature. In this sense, the wide use of
this methodology can be found connected with the nature
of the related problems. +e rest of the selection methods
and methodologies are not present in more than 8% of the
investigations.

In order to analyze which algorithms are most com-
monly used to solve green routing problems, Figure 4 shows
the techniques that were used in at least five investigations
specifying the number of times it was used to solve each type
of problem. TS is the most commonly used technique,
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presented in approximately 15.73% of the investigations. In
addition, TS is frequently used to solve problems related to
VRSPs, and this problem classification represents approxi-
mately 21.43% of investigations where TS is used. +e next
most commonly used algorithm is ALNS with a 13.48%
representation and is used in 33.33% of the cases to solve
problems related to PRPs.+e other algorithms used inmore
than 10% of the investigations are GA and SA, with 11.24%
and 10.11%, respectively.

Figure 5 shows the main methods for solving the related
GVRPs in the last five years. In the figure, we show those
methods that have been used in at least five research works
(i.e., ACO, ALNS, GA, ILS, NSGA-II, and TS).+e y-axis on
the right side of the figure represents the cumulative number
of works. In contrast, the bars and the y-axis on the left side
of the figure represent the number of works in which these
algorithms were applied each year.

+e figure shows that the use of TS in the last years is
representative, experiencing an increase of 60% during the
last year. +is behavior is not reflected in the ALNS and GA,
which have shown stable growth since 2017. +is is followed
by ACO and NSGA-II. ACO shows a stable growth during
the analyzed period, while NSGA-II shows a growth of more
than 50% of investigations in 2021, and behaviors are also
represented by ILS. On the other hand, if we analyze the use
of the above algorithms as a whole, their use in 2021 is at least
21.57% higher than in previous years.

Figure 6 shows the distribution of methods in per-
centages. +e main four used methods for solving GVRPs
are SMH, PMH, MH-MH, and H. As can be observed, the
methods classified as H, SMH, and PMH are the most
commonly used ones given that these are often employed
for generating initial solutions or improving them (see
Table 2).

+e population-based methods PMH are used by
22.11%. In this category, the use of GAs and especially the
well-known NSGA-II can be highlighted as most relevant.
+e hybridization of metaheuristic algorithms MH-MH is
used by 12.63% of investigations. In addition, we note that
the other methods are less used, accounting for a total
percentage of 25.26%.

7. Benchmark Instances

In the related GVRP literature, several works propose
benchmarks based on real-world data as well as artificially
created instances. Given that GVRP belongs to the family of
VRPs, there are also sets of instances initially generated for
VRP and later used in GVRPs. Table 3 shows each known
benchmark and the works proposing such benchmarks as
well as those works using them. +e first column corre-
sponds to the investigations where a set of benchmarks were
introduced. Subsequently, columns 2 and 3 indicate if the
benchmarks used on each investigation are based on real-
world data and/or artificially generated. Finally, the last
column shows those research works that use the corre-
sponding benchmark set. In addition, the source URL
(https://github.com/affernan/vrpdataset) to obtain several of
them is provided.

+e benchmarks provided by Christofides and Eilon
[150] and Christofides et al. [148] are some of the oldest but
most widely used VRP instances. +ese are used in nu-
merous GVRPs, such as PRP in Kramer et al. [53], PPRP in
Suzuki [56], and WCP-MDP in Wei et al. [120], among
others. +e instances proposed by Christofides et al. [148]
present 14 generated instances for the CVRP from the lit-
erature and on some structured problems. In their proposed
instances, the number of customers ranges from 50 to 199
and have single depots. Features such as maximum allowable
time or unloading time are also included.

Another well-known set of instances is the one proposed
by Eilon et al. [149] for the PDVRP. In that work, the authors
proposed two sets of instances for single-depot problems,
one composed of 20 and the other of 50 customers. Both sets
consider Cartesian coordinates and, just for the 20-customer
set, there are four cases representing different demands,
namely, the demands vary in dependency of each case, that
is, case 1 presents demands equal to 1 unit, case 2 between 1
and 10 units, case 3 between 1 and 100, and case 4 from 1 to
1000. López-Sánchez et al. [50] used these instances for the
Bi-PVRP-SC. Gaskell [151] presented six cases of study for
the CVRP. +e first case considers 36 customers in a matrix
point of 50 × 50 miles square area and a simple depot located
in a default position, and there is no load restriction. +e
second case is taken from the research presented by Clarke
andWright [19]. +e remaining four cases consider between
21 and 32 customers and include the maximum load and
miles for the vehicles, mileage allowance for routes, and
locations coordinates and demands for each customer.+ese
four cases are used by Dewi and Utama [22] for the GVRP.

Augerat [145] proposed the Augerat instances with three
sets of instances. Set A and B consider random locations for
customers and the depot. In addition, in Set B, the customers
are clustered by the region. On the other hand, Set P is made
with modified instances existing in the literature [149, 150].
Some investigations used this set for experimental purposes
such as E-PCVRP in Trachanatzi et al. [125] and HeVRPMD
in Eskandarpour et al. [65].

Taillard [147] proposed 13 instances in his benchmark
for CVRP with a range of customers from 75 to 385. +is set
is based on the fourteen instances reported in Christofides
et al. [148]. In addition, the author introduced a new real
instance with 385 customers based on the canton of Vaud in
Switzerland. +ese instances are used in the research con-
ducted by Yang and Sun [67] to test the approach for BSS-
EV-LRP and byMolina et al. [123] to solve the Eco-WCVRP.
Golden et al. [143] introduced 20 large-scale VRPs (LSVRPs)
set of instances with customers ranging between 200 and
483. +ese instances present a particular configuration re-
lated to the locations of customers; for example, the cus-
tomers are located in concentric circles around the depot, or
concentric squares with the depot in a corner, or in con-
centric squares around the depot. Some authors used these
benchmark instances in their research, that is, Kramer et al.
[53] for FCVRP and EMVRP; Yang and Sun [67] created a
large-size set with 20 instances with up to 480 customers to
test the BSS-EV-LRP and considered that all node locations
are candidate battery swap stations.
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+e instances known as Solomon instances proposed
by Solomon [73] for the VRPTW are popular VRP
benchmark that have been also used in GVRPs, for ex-
ample, G-VRPTW, PRP, and LRPLCCC. +is benchmark
consists of a set of 56 problem instances divided into six
different categories with 100 customers per instance and
so-called C1, C2, R1, R2, RC1, and RC2. Based on the
Solomon benchmark, Gehring and Homberger [141]
proposed six groups of instances for VRPTW. +e first
group consists of the same 56 instances of Solomon. +e
remaining 5 groups, named G02, G04, G06, G08, and
G010, consider 200, 400, 600, 800, and 1000 customers,
respectively.+e benchmark proposed by Li and Lim [139]
is based on those instances for the PDPTW. In this case,
the set of problem instances, named LC1, LC2, LR1, LR2,

LRC1, and LRC2, are based only on the set of instances
categorized as C1. +is adapted set of instances have a
range of customers between 25, 50, and 100. +e customer
locations are randomly paired to compose the pickup and
delivery customers, adding two new columns that estab-
lish the corresponding partner customer. Furthermore,
arithmetic signs are added to the demands, classifying the
customers with negative demand as delivery customers and
positive demands as pickup customers. +e research of Lu
and Huang [82] used the set of 100 customers of this
benchmark for the Green-PDPTW.+e work of Küçükoğlu
et al. [117] also used this instance set for the G-VRPTW.
Chen and Shi [133] proposed a set of instances for
MCVRPTW based on the Solomon’s benchmark with
groups of instances with 25, 50, and 100 customers. +e
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SMH 29.47%

PMH 22.11%

MH-MH 12.63%
H 10.53%

MH-H 8.42%

MATH 7.37%

MH-MO 5.26%

HH 3.16%
HMH-MO 1.05%

Figure 6: Distribution of proposed solution methods for GVRPs. +e pie chart displays the percentage of use of each method among the
reviewed articles.

Table 3: Benchmarks used for the GVRPs.

Benchmark source Based on real-
world data

Artificially
generated Research works using this benchmark

Fatemi-Anaraki et al. [75] •
Bio-bjective green delivery and pickup problem, Fatemi-Anaraki et al.

[75]
Raeesi and Zografos [68] • EVRPTW-RS-SMBS, Raeesi and Zografos [68]
Anderluh et al. [46] • • 2E-VRPSyn, Anderluh et al. [46]
Camacho-Vallejo et al. [27] • Green logistics biobjective bilevel problem, Camacho-Vallejo et al. [27]
Cheaitou et al. [59] • STPPS, Cheaitou et al. [59]
Fernández et al. [38] • MDGVRP-PD, Fernández et al. [38]
Islam et al. [126] • MFGCLP, Islam et al. [126]

Islam and Gajpal [101] •
Mixed-fleet logistics distribution problem under CO2 emission cap, Islam

and Gajpal [101]
Jiang et al. [94] • MVOC, Jiang et al. [94]
Luo et al. [102] • HHC with synchronized visits and carbon emissions, Luo et al. [102]
Lyu and He [41] • MTHVRP-PCIC, Lyu and He [41]
Malekkhouyan et al. [121] • WCVRP, Malekkhouyan et al. [121]
Solano et al. [79] • VRPSPDTW, Solano et al. [79]
Srijaroon et al. [77] • G-VRPMSPDTW-RT, Srijaroon et al. [77]
Talouki et al. [26] • DGVRP, Talouki et al. [26]
Trachanatzi et al. [125] • E-PCVRP, Trachanatzi et al. [125]
Validi et al. [49] • +ree-echelon distribution network, Validi et al. [49]
Alizadeh Foroutan et al. [88] • GVRSP, Alizadeh Foroutan et al. [88]
Alkaabneh et al. [30] • PIRP, Alkaabneh et al. [30]
Asghari and Mirzapour Al-
e-hashem [78] •

Green delivery-pickup problem for HHMs, Asghari and Mirzapour Al-e-
hashem [78]

Arroyo et al. [69] • GVRP-MTPR, Arroyo et al. [69]
Eshtehadi et al. [107] • • G-VRPTW, Eshtehadi et al. [107]
Leng et al. [33] • LRPLCCC, Leng et al. [33]
Liu et al. [28] • JD-GVRP, Liu et al. [28]
Wei et al. [21] • Green DRASS with time-varying speeds, Wei et al. [21]
Zhang et al. [109] • • VRPTW in cold chain distribution, Zhang et al. [109]
Zhao et al. [84] • 2L-MDCVRPB, Zhao et al. [84]
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Table 3: Continued.

Benchmark source Based on real-
world data

Artificially
generated Research works using this benchmark

Zulvia et al. [115] •
G-VRPTW and time dependency for perishable products, Zulvia et al.

[115]
Eshtehadi et al. [133] • G-VRPTW, Eshtehadi et al. [107]
Eskandarpour et al. [65] • HeVRPMD, Eskandarpour et al. [65]
Hooshmand and
MirHassani [114] • TDGVRP-AF, Hooshmand and MirHassani [114]

Koc et al.[55] • Variant of PRP, Koç et al. [55]

Meng et al. [110] •
Customer-oriented routing problem with environment consideration,

Meng et al. [110]
Molina et al. [123] • Eco-WCVRP, Molina et al. [123]
Rezaei et al. [98] • G-VRPTW, Rezaei et al. [98]
Wang et al. [37] • MD-GVRP, Wang et al. [37]
de Oliveira da Costa et al.
[18] • GVRP, de Oliveira da Costa et al. [18]

Kargari Esfand Abad et al.
[62] •

Pickup and delivery PRP variant considering integration and
consolidation shipments in cross-docking, Kargari Esfand Abad et al.

[62]
Leng et al. [32] • RLCLRPRCC, Leng et al. [32]
Masmoudi et al. [99] • HF-VRPS, Masmoudi et al. [99]
Sousa Matos et al. [90] • GVRSP-split, Sousa Matos et al. [90]
Fang et al. [63] • PRPSPD, Fang et al. [63]
Guo and Liu [58] • TD-PRP, Guo and Liu [58]
Jabir et al. [35] • MD-GVRP, Jabir et al. [35]
Kaabachi et al. [36] • GMDVRPTW, Kaabachi et al. [36]
Liao [89] • Online VRP considers real-time demands, Liao [89]
Yavuz and Çapar [24] • • MGVRP, Yavuz and Çapar [24]
Zhou et al. [91] • Green real-life field scheduling problem, Zhou et al. [91]

Gang et al. [87] •
GVRSP of free picking up and delivering customers for airlines ticketing

company, Gang et al. [87]
Li et al. [42] • • 2E-TVRP, Li et al. [42]
Goeke and Schneider, [134] • GMFVRPREC-PR, Yu et al. [71]

Kramer et al. [53] •
Biobjective PRP, Costa et al. [61]; TD-PRP, Franceschetti et al. [57]; PRP,

FCVRP, EMVRP, Kramer et al. [53]
Xiao and Konak [85] • GVRSP, Xiao and Konak [85]
Demir et al. [52] • BiPRP, Demir et al. [52]
Liu et al. [116] • MTHVRPP, Liu et al. [116]
Molina et al. [95] • HVRP-TW, Molina et al. [95]

Schneider et al. [135] •
EVRPTW-RS-SMBS, Raeesi and Zografos [68]; GMFVRP-PRTW,

Macrina et al. [72]

Demir et al. [51] •

CIRP under a mixed fleet of electric and conventional vehicles, Soysal
et al. [74]; GVRP, Soysal et al. [25]; CumVRP-TW, Fernández et al. [105];

GLRP, Dukkanci et al. [31]; Biobjective PRP, Costa et al. [61];
GSTDCVRP, Çimen and Soysal [113]; TD-PRP, Franceschetti et al. [57];
F-GVRPSPDTW, Majidi et al. [80]; GSTDCVRP, Soysal and Çimen

[113]; MMPPRP-TW, Kumar et al. [60]; GVRSP, Xiao and Konak [86];
PRP, FCVRP, EMVRP, Kramer et al. [53]; BiPRP, Demir et al. [52];

FSMPRP, Koç et al. [54]; PRP, Demir et al. [51]
Omidvar and Tavakkoli-
Moghaddam [20] •

Congestion in VRP with AFVs, Omidvar and Tavakkoli-Moghaddam
[20]

Perboli et al. [136] • 2E-CVRPSC, Mühlbauer and Fontaine [47]; 2E-EVRP-BSS, Jie et al. [48]
Maden et al. [96] • VRPTW using time-varying data, Maden et al. [96]
Bredstrom et al.[137] • VRPTW-SPFC, Ettazi et al. [111]; HF-VRPS, Masmoudi et al. [99]
Iori et al. [138] • 2L-MDCVRPB, Zhao et al. [84]
Li and Lim [139] • Green-PDPTW, Lu and Huang [82]
Dethloff et al. [140] • G-VRPSPD, Olgun et al. [76]
Gehring and Homberger
[141] • G-VRPTW, Yu et al. [108]; G-VRPTW, Küçükoğlu et al. [117]

Salhi and Nagy [142] • G-VRPSPD, Olgun et al. [76]
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investigation of Eshtehadi et al. [107] used this benchmark
to test their approach for solving G-VRPTW. Schneider
et al. [135] introduced benchmark instances for E-VRPTW
through a set of 36 small and 56 large instances based on
Solomon ones (see GMFVRP-PRTW inMacrina et al. [72]).
Each instance comprises 21 charging stations, and 5, 10,
and 15 customers for small instances and 100 customers
for large instances. To guarantee the feasibility of the
instances, the original time windows were modified. +e
battery capacity is set to the maximum between the charge
needed to travel 60% of the average route length of the
best-known solution to the corresponding VRPTW in-
stance and twice the amount of battery charge required to
travel the longest arc between a customer and a station.
Based on Schneider et al. [135], Raeesi and Zografos
[68] presented a set of instances for E-VRPTW with
recharging stations and synchronized mobile battery
swapping (EVRPTW-RS-SMBS). In order to increase the
complexity of instances, instead of using the time win-
dows presented by Schneider et al. [135], the authors
proposed to modify the time windows presented by
Solomon [73].

Another proposed instance set related to time windows
was presented by Bredström and Rönnqvist [137] for
VRPTWSyn. +is set is used in a simulation context of the
home-care staff scheduling problem with synchronized
visits. +e authors proposed five small-size instances (20
customers) and five real-size instances (between 50 and 80
customers). +is set is classified into five groups depending
on the duration of time windows: no time windows re-
strictions (A), ranging from fixed (F), small (S), medium
(M), and large (L). +is set is used in the research

conducted by Ettazi et al. [111] to test the approaches for
VRPTW-SPFC, and by Masmoudi et al. [99], to solve the
HF-VRPS.

In order to address simultaneous pickup and delivery
demands in the GVRP context, two set of instances are used
by Olgun et al. [76] to solve the G-VRPSPD. +e first set of
instances is based on those proposed by Salhi and Nagy
[142], which are based on Christofides et al. [148] instances
and proposed a set of 28 instances for the VRPSPD with
customers between 50 and 199, using the same coordinate
sets and demand matrices. +e first 14 instances are known
as CMTX, while CMTY is used to denote the remaining
ones, which are generated based on CMTX by exchanging
the delivery and pickup demands for customers. +e second
set is based on the instances of Dethloff [140] with 40 cases
involving 50 customers. Two distinct geographic scenarios
(SCA and CON) are investigated for this collection. +e
coordinates of the customers are evenly dispersed
throughout the interval between 0 and 100 in the scenario
SCA, whereas, in CON, half of the customers are dispersed
in the same way as in the SCA scenario, but the coordinates
of the other half are in the range between 100/3 and 200/3.

Regarding the existing benchmark for PVRP, Chao-
Golden-Wasil [146] presented a set of 19 instances (e.g.,
López-Sánchez et al. [50] for Bi-PVRP-SC). +e locations of
the customers and depot in this set take the form of a
windmill (1–10) or a Star of David (11–19) with planning
periods of 4 and 6 days, respectively. In addition, there are
three types of customers for each form depending on the
number and frequency of visits required. Referring to the
instances generated for MDVRP, the most frequently used
one is that which is cited by Cordeau et al. [144] named as

Table 3: Continued.

Benchmark source Based on real-
world data

Artificially
generated Research works using this benchmark

Golden et al. [143] •
HeVRPMD, Eskandarpour et al. [65]; PPRP, Suzuki [56]; PRP, FCVRP,

EMVRP, Kramer et al. [53]; BSS–EV–LRP, Yang and Sun [67]

Cordeau et al. [144] •
2E-CWCVRP, Liu and Liao [43]; MSW, Qiao et al. [119]; HC-MDVRP,

Pérez-Bernabeu et al. [34]

Augerat et al. [145] •
E-PCVRP, [125]; HeVRPMD, Eskandarpour et al. [65]; WCP-MDP, Wei

et al. [120]; BSS–EV–LRP, Yang and Sun [67]
Chao et al. [146] • Bi-PVRP-SC, López-Sánchez et al. [50]
Taillard [147] • • Eco-WCVRP, Molina et al. [123]; BSS–EV–LRP, Yang and Sun [67]

Solomon [73] •

2E-VRPSyn, Anderluh et al. [46]; mixed-fleet logistics distribution
problem under CO2 emission cap, Islam and Gajpal [101]; HHC with
synchronized visits and carbon emissions, Luo et al. [102]; MTHVRP-
PCIC, Lyu and He [41]; B-MFGVRPTW, Ren et al. [104]; G-VRPTW, Yu
et al. [108]; cold chain logistics path optimization, Zhao et al. [100]; G-
VRPTW, Sanchez et al. [103]; PRP, FCVRP, EMVRP, Kramer et al. [53];
G-VRPTW, Küçükoğlu et al. [117]; PRP, Demir et al. [51]; congestion in

VRP with AFVs, Omidvar and Tavakkoli-Moghaddam [20]

Christofides et al. [148] •

E-PCVRP, Trachanatzi et al. [125]; HeVRPMD, Eskandarpour et al. [65];
GVRP, de Oliveira da Costa et al. [18]; PPRP, Suzuki [56]; PRP, FCVRP,

EMVRP, Kramer et al. [53]
Eilon et al. [149] • Bi-PVRP-SC, López-Sánchez et al. [50]

Christofides and Eilon [150] •

GVRP, Dewi and Utama [22]; 2E-CVRPSC, Mühlbauer and Fontaine
[47]; E-PCVRP, Trachanatzi et al. [125]; WCP-MDP, Wei et al. [120];

GVRP, de Oliveira da Costa et al. [18]
Gaskell [151] • GVRP, Dewi and Utama [22]
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Cordeau instances. +e authors presented a set of 23 in-
stances based on the sets from Christofides et al. [148]
(instances 1–7), Gillett and Johnson [152] (instances 8–11),
and Chao et al. [146] (12–23). +ere are many investigations
on greenmultidepot VRP that used this set of instances, such
as MD-GVRP in Wang et al. [37] and GMDVRPTW in
Kaabachi et al. [36].

On the other hand, Iori et al. [138] presented a set of
instances for the 2L-CVRP that has been used by several
investigations on GVRP, such as cold chain logistics path
optimization in Zhao et al. [100] and the 2L-MDCVRPB in
Zhao et al. [84]. +ese instances are based on the CVRP
instances [153, 154], using the same capacity of the vehicles
and the coordinates and weights for customers. +e 2L-
CVRP benchmark is divided into five classes of instances.
+e first class consists of assigning each customer a single
item having both sizes equal to 1 and by setting the width
and height equal to the total number of customers. +e
remaining classes are generated by using an adaptation to a
two-dimensional bin packing problem following a heuristic
procedure proposed by Martello et al. [155]. Perboli et al.
[136] introduced four sets of instances for the 2E-CVRP.
+ese sets contain up to 50 customers and one depot. +e
first three sets are based on Christofides and Eilon [150]
(denoted as E-n13-k4, E-n22-k4, E-n33-k4, and E-n51-k5).
+e fourth set is from the work of Crainic et al. [156] and
consists of randomly produced examples that replicate
customer and satellite distributions typical of city logistics
distribution. See the investigations proposed by Mühlbauer
and Fontaine [47] about 2E-CVRPSC and Jie et al. [48] for
2E-EVRP-BSS, which used this set of instances in green
multiechelon distributions contexts.

Recently, based on several cities from the United
Kingdom with requirements associated with time intervals
and service times, Demir et al. [51] proposed the PRPLIB.
+is library consists of nine sets of 20 instances with a

number of customers between 10 and 200. PRPLIB is one of
the most commonly used benchmarks in the literature (e.g.,
TD-PRP in Franceschetti et al. [57]; FSMPRP in Koç et al.
[54]; PRP in Kramer et al. [53]) and has served as the basis
for the creation of new sets of instances. For instance,
Kramer et al. [53] modified the PRPLIB to create two ad-
ditional sets called tighter time windows (e.g., BiPRP in
Costa et al. [61]; TD-PRP in Franceschetti et al. [57]). On the
other hand, Goeke and Schneider [134] adjusted the PRPLIB
for the E-VRPTW with a mixed fleet (see GMFVRPREC-PR
in Yu et al. [71]).

tFrom the proposed benchmark sets, 54.81% were based
on artificially generated instances used, while the rest con-
sidered real-world data. In order to analyze the use of pro-
posed instance sets, Figure 7 shows how the proposed
benchmarks have been used in terms of the number of works.
As can be seen, many studies focused on the instances
proposed by Demir et al. [51] (24.59%). Also, the set proposed
by Solomon [73] besides being commonly used in VRPs
problems is also relevant in GVRPs (19.67%). +e instances
proposed by Christofides and Eilon [150] and Christofides
et al. [148] are part of the first instances presented in the
literature for CVRP and have beenmoderately used in GVRPs
(with 8.20% each). +is behavior is also observed for the
instances proposed by Augerat [145] and Golden et al. [143];
which are only used in 6.56% of the investigations studied.
+e remaining instances present usage percentages below 5%,
and the sum of them represents 26.24%. It is worth noting that
their low usage can be due to the fact that these instances
consider specific characteristics from their corresponding
problems (see the previous Table 3).

8. Conclusions

+is article presented a systematic literature review of the
heuristic and hybrid techniques for solving GVRPs

Demir et al. [51] 24.59%

Solomon [73] 19.67%

Christofides et al. [148] 8.20%

Christofides and Eilon [150] 8.20%

Golden et al. [143] 6.56%Augerat [145] 6.56%

Kramer et al. [53] 4.92%

Cordeau et al. [144] 4.92%

Schneider et al. [135] 3.28%

Perboli et al. [136] 3.28%

Bredström and Rönnqvist [137] 3.28%

Gehring and Homberger [141] 3.28%

Taillard [147] 3.28%

Figure 7: Pie chart of the different benchmarks used for GVRPs. +e pie chart visualizes the utilization percentage of each benchmark
instances for the reviewed papers.
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considering emissions following the PRISMA methodology.
Based on it, we identified 446 papers that after screening
concerning their scope, contribution, and topic resulted in
89 papers. For each work, we identified and analyzed the
GVRP variant, emission model, and main strategies and
components within the proposed solution methods. Lastly,
we scoped the problem instances proposed in the literature
to assess the proposed algorithms.

From the selected literature, we observed that most of
the works explicitly calculate emissions within the
mathematical model or algorithm, whereas the factor
models are the main fuel consumption model used. Also,
we found predominant characteristics in the addressed
GVRPs, for instance, single-objective, homogeneous
fleets, and restrictions, associated with time windows.
Regarding the leading strategies and components in the
proposed solution methods, we found that using ran-
domness to generate the initial solution is the most fre-
quent approach. Moreover, we also observed several
widely used aspects, such as the use of exchange and 2-opt
as neighborhood generation operators, best improvement
as a local search method, the roulette wheel as a selection
method, and the two-phase approach as the methodology.
On the other hand, the most commonly used type of
approach is single-solution-based metaheuristics, while
the most commonly used techniques are the tabu search
and adaptive large neighborhood search. Concerning the
benchmarks, we reported that although the generation of
own instance sets is the predominant approach, a rep-
resentative percentage of the investigations were based on
real data and on the well-known PRPLIB instances based
on real locations.

Considering the reviewed literature, we provide some
open challenges and future research directions in the realm
of GVRPs:

(i) According to Moons et al. [157], most studies on
VRPs only aim for a single objective, mainly focusing
on operational cost minimization or service level
maximization. However, the use of multiple objec-
tives in GVRPs becomes relevant given the need to
also consider transport costs (e.g., distances and
driver wages) or service-oriented objectives (e.g.,
waiting time) jointly with environmental indicators
(e.g., emissions and fuel consumption). For instance,
Wang et al. [37] employed a shared transportation
fleet and minimized a multi-objective function based
on distances, vehicles utilization, and carbon emis-
sions. Validi et al. [49] considered concurrent
minimization of total cost and total carbon emission
in a three-echelon LRP context. Besides those works,
our findings show few works tackling GVRPs as a
multi-objective problem or with multi-objective-
based heuristics (see MH-MO, HMH-MO percent-
ages indicators in Figure 6). +us, addressing this
multi-objective perspective into GVRPs provides an
interesting and relevant line of research

(ii) As indicated in Blum and Roli [158] and Mart́ı et al.
[159], the influence of initial solutions on approximate

algorithms’ performance might have a meaningful
impact on solutions quality. +us, developing tailored
solution generation methods and incorporating in-
herent characteristics related to the problem to gen-
erate the initial solution might lead to better solutions.
For instance, in GVRPs, the authors of reference [160]
generated initial solutions for the CumVRP by
extending the Clarke andWright to include the load to
generate the initial solution. Moreover, in the work of
Majidi et al. [80], they indicated the importance of
initial solutions when solving the F-GVRPSPDTW. In
doing so, they proposed a parallel insertion-based
construction heuristic considering the load-carrying by
vehicles as a criterion of insertion. In addition, Fan
et al. [161] showed that the quality of initial solutions
can be improved by spatio-temporal clustering of
customers

(iii) Our review shows several works related to the het-
erogeneous fleet by considering the dimension of
vehicles, types of fuels, and loading capacity. In this
sense, incorporatingAFVs based on hydrogen vehicles
can improve the pollutant indicators thank to their
driving range and refueling times, among other rel-
evant aspects of this technology [126]. Further studies
can be oriented on incorporating this type of vehicle in
AFSs, for example, by estimating the emissions pro-
duced in the energy generation process and the
charging time influence on emissions

(iv) Another observation extracted from this review is
that most of the investigations only consider carbon
emission estimations; however, other types of
greenhouse gas emissions (e.g., methane, nitrous
oxide and hydrofluorocarbons, among others) are
needed to be considered. In addition, factor-based
models are the most commonly used emissions
model; nevertheless, the use of macroscopic and
microscopic emission models provide accurate
emission estimations [127]. Hence, using macro-
scopic and microscopic models stands as a relevant
research direction in GVRP applications.

Acronyms

2E-CVRP: Two-echelon capacitated vehicle routing
problem

2E-CVRPSC: Two-echelon capacitated vehicle routing
problem with swap containers

2E-CWCVRP: Two-echelon collaborative waste
collection vehicle routing problem

2E-EVRP-BSS: Two-echelon capacitated electric vehicle
routing problem with battery swapping
stations

2E-TVRP: Two-echelon time-constrained vehicle
routing problem

2eVRPSyn: Two-echelon vehicle routing problem with
vehicle synchronization

2L-CVRP: Capacitated vehicle routing problem with
two-dimensional loading constraints

30 Journal of Advanced Transportation



2L-MDCVRPB: Two-dimensional multidepot capacitated
vehicle routing problem with backhauls

ABC: Artificial bee colony
ABC-DA: Artificial bee colony with demon
ABC-OBA: Artificial bee colony with acceptance of old

bachelor acceptance
ABC-RRT: Artificial bee colony with record-to-record

travel
ACO: Ant colony optimization
ACOMO: Ant colony algorithm with a

multiobjective heuristic
ADP: Approximate dynamic programming
AFV: Alternative fuel vehicles
ALNS: Adaptive large neighborhood search
B-
MFGVRPTW:

Biobjective mixed-energy green vehicle
routing problem with time windows

Bi-PVRP-SC: Biobjective periodic vehicle routing
problem with service choice

B&C: Branch-and-cut
BSS: Battery swap station
BSV: Battery swapping vans
C&W: Clarke and Wright savings algorithm
CGA: Column generation algorithm
CIRP: Closed-loop inventory routing problem
CMEM: Comprehensive modal emissions model
CO2: Carbon dioxide
COPERT: Computer programme to calculate

emissions from road transport
CumLRP: Cumulative location routing problem
CumVRP-
hTW:

Cumulative vehicle routing problem with
hard time windows

CumVRP-sTW: Cumulative vehicle routing problem with
soft time windows

CVRP: Capacitated vehicle routing problem
DALNS: Distance-based adaptive large

neighborhood search
DGVRP: Dynamic green vehicle routing problem
DP: Dynamic programming
DPH: Dynamic programming-based heuristic
DRASS: Demand-responsive airport shuttle

services
EABC: Enhanced artificial bee colony
Eco-WCVRP: Eco-efficient waste collection vehicle

routing problem
EF-VRP: Environmentally friendly vehicle routing

problem
EHLSA: Exploration heuristic local search

algorithm
EMDLS: Enhanced variant of multidirectional local

search
EMVRP: Energy minimizing vehicle routing

problem
E-PCVRP: Environmental prize-collecting vehicle

routing problem
EV: Electric vehicle
E-VRP: Electric vehicle routing problem
E-VRPTW: Electric vehicle routing problem with time

windows

EVRPTW-RS-
SMBS:

Electric vehicle routing problem with time
windows with recharging station and
synchronized mobile battery swapping

F&O: Fix and optimize
FCVRP: Fuel consumption vehicle routing

problem
F-
GVRPSPDTW:

Fuzzy green vehicle routing problem with
simultaneous pickup and delivery and
time windows

FSMPRP: Fleet mix pollution-routing problem
Fuzzy HC: Fuzzy hierarchical clustering
G-
VRPMSPDTW-
RT:

Green vehicle routing problem with mixed
and simultaneous pickup and delivery
problem, time windows, and road types

G-VRPSPD: Green vehicle routing problem with
simultaneous pickup and delivery

G-VRPTW: Green vehicle routing problem with time
windows

GA: Genetic algorithm
GARP: Green arc routing problem
GDV: Gasoline and diesel vehicles
GE: Gradient evolution
GHG: Greenhouse gas emissions
GIS: Geographic information system
GLRP: Green location routing problem
GMFVRP-
PRTW:

Greenmixed-fleet vehicle routing problem
with partial battery charging and time
windows

GMFVRPREC-
PR:

Greenmixed-fleet vehicle routing problem
with realistic energy consumption and
partial recharges

GOA: Grasshopper optimization algorithm
GRASP: Greedy randomized adaptive search

procedure
Green-
PDPTW:

Green pickup and delivery problem with
time windows

GSTDCVRP: Green stochastic time-dependent
capacitated vehicle routing problem

GVND: Guided variable neighborhood descent
GVRP: Green vehicle routing problem
GVRP-MTPR: Green vehicle routing problem with

multiple technologies and partial
recharges

GVRSP: Green vehicle routing and scheduling
problem

GVRSP-split: Green vehicle routing and scheduling
problem with split delivery

HABC: Hybrid artificial bee colony
HALNS: Heterogeneous adaptive large

neighborhood search
HC-MDVRP: Multidepot vehicle routing problem

variant for horizontal cooperation in road
transportation

HEA: Hybrid evolutionary algorithm
HEV: Hybrid electric vehicle
HeVRPMD: Heterogeneous vehicle routing problem

with multiple loading capacities and
driving ranges
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HF-VRPS: Heterogeneous fleet vehicle routing
problem with synchronized visits

HGVRSP: Heterogeneous green vehicle routing and
scheduling problem

HH: Hyperheuristic
HHC: Home health care
HHM: Home hemodialysis machine
HLH: High-level heuristic
HMH-MO: Hybrid metaheuristics for multiobjective

optimization
HVRP: Heterogeneous fleet vehicle routing

problem
HVRP-TW: Heterogeneous fleet vehicle routing

problem with time windows
HV: Hydrogen vehicle
HWOA: Hybrid whale optimization algorithm
ICEV: Internal combustion engine vehicle
ILNS: Intensified large neighborhood search
ILP: Integer linear programming
ILS: Iterated local search
INS: Iterated neighborhood search
IRP: Inventory routing problem
JD-GVRP: Joint distribution-green vehicle routing

problem
LLH: Low-level heuristic
LNS: Large neighborhood search
LRP: Location routing problem
LRPLCCC: Location routing problem-based low-

carbon cold chain
LS: Local search
MATH: Metaheuristics with mathematical

programming
MCVRPTW: Multicompartment vehicle routing

problem with time window
MDEVRP: Multidepot electric vehicle distribution

routing problem
MD-GVRP: Multidepot green vehicle routing problem
MDGVRP-PD: Multidepot green vehicle routing problem

with pickups and deliveries
MDGVRP-TW: Multidepot green vehicle routing problem

with time windows
MDVRP: Multidepot vehicle routing problem
MEET: Methodology for calculating transport

emissions and energy consumption
MG: Multigraph
MH-H: Metaheuristics-heuristics
MH-MH: Metaheuristics-metaheuristics
MH-MO: Metaheuristics for multiobjective

optimization
MDP: Midway disposal pattern
MDT: Midway disposal trip
MGVRP: Mixed-fleet green vehicle routing problem
MILP: Mixed-integer linear programming
MFGCLP: Mixed-fleet based green clustered logistics

problem
MMPPRP-TW: Multivehicle production and pollution-

routing problem with a time windows
MOGA-II: Multiobjective genetic algorithm II

MOGE: Many-objective gradient evolution
MOHH: Multiobjective hyperheuristic
MOPSO: Multiobjective particle swarm

optimization
MOSLPSO: Multiobjective self-learning particle

swarm optimization
MOTS: Multiobjective tabu search
MS: Multistart
MSMLS: Multistart multiobjective local search
MSW: Municipal solid waste
MTHVRP-
PCIC:

Multitrip heterogeneous vehicle routing
problem with prioritized customers and
incompatible cargoes

MTHVRPP: Minimal-carbon-footprint time-
dependent heterogeneous fleet vehicle
routing problem with alternative paths

MTVRP: Multitrip vehicle routing problem
MVOC: Multiple vehicles and one-cargo
NAEI: National atmospheric emissions inventory
NBOTS: Nested biobjective tabu search
NE-VRPs: Multiechelon vehicle routing problems

distribution problems
NOx: Nitrogen oxides
NMVOC: Nonmethane volatile organic compounds
NRGA: Nondominated ranking genetic algorithm
NSGA-II: Nondominated sorted genetic algorithm II
PLNS: Parallelized large neighborhood search
PBSA: Population-based simulated annealing
PCTSP: Prize-collecting traveling salesman

problem
PCVRP: Prize-collecting vehicle routing problem
PDPTW: Pickup and delivery problem with time

windows
PDVRP: Pickup and delivery vehicle routing

problem
PHEV: Plug-in hybrid electric vehicle
PIRP: Perishable inventory routing problem
PM: Particulate matter
PMH: Population-based metaheuristics
POPMUSIC: Partial optimization metaheuristic under

special intensification conditions
PPRP: Practical pollution-routing problem
PRP: Pollution-routing problem
PRPSPD: Pollution-routing problem with reverse

logistics and simultaneous pickups and
deliveries

PSO: Particle swarm optimization
PVRP: Period vehicle routing problem
QPSO: Quantum-behaved particle swarm

optimization
RDP: Restricted dynamic programming
RLCLRPRCC: Regional low-carbon location routing

problem with reality constraint conditions
RS: Recharging station
RVND: Random variable neighborhood descent
RVNS: Reduced variable neighborhood search
RW: Roulette wheel
SA: Simulated annealing
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SAL-PSO: Self-adaptive learning particle swarm
optimization

SC: Set covering
SIH: Sequential insertion heuristic
SLPSO: Self-learning particle swarm optimization
SLR: Systematic literature review
SMBS: Synchronized mobile battery swapping
SMH: Single-solution based metaheuristics
SOA: Speed optimization algorithm
SOP: Speed optimization problem
SP: Set-partitioning method
SS: Scatter search
STPPS: Sustainable traveling purchaser problem

with speed optimization
SwA: Sweep algorithm
TD-CVRP: Time-dependent capacitated vehicle

routing problem
TD-PRP: Time-dependent pollution-routing

problem
TD-VRP: Time-dependent vehicle routing problem
TLBO: Teaching-learning-based optimization
TS: Tabu search
VND: Variable neighborhood descent
VNS: Variable neighborhood search
VRP: Vehicle routing problem
VRPB: Vehicle routing problem with backhauls
VRPSPDTW: Vehicle routing problem with

simultaneous pickup and delivery and
time windows

VRPTW: Vehicle routing problem with time
windows

VRPTW-SPFC: Vehicle routing problem with time
windows, synchronization, precedence
and fuel consumption constraints

VRPTWSyn: Vehicle routing problem with time
windows and synchronization constraints

VRSP: Vehicle routing and scheduling problem
WCVRP: Waste collection vehicle routing problem
WOA: Whale optimization algorithm.
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