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In recent years, the full-touch human–machine interaction (HMI) mode has gained popularity in the automotive market.
However, little research has been conducted on how this interaction mode affects drivers’ glance behavior and lateral control
ability. In this study, we evaluated the visual engagement and driving performance of 30 participants while driving two vehicles
equipped with either the full-touch interaction mode (FTIM) or the conventional interaction mode (CIM) provided by the
original equipment manufacturer (OEM). We found that both air conditioning–related tasks required more visual engagement,
longer task completion time, and worse lateral vehicle control under FTIM. Furthermore, the gray correlation analysis
demonstrated that FTIM exhibited slightly different disadvantages in the two secondary tasks. In the temperature adjustment
task, the correlations of glance behavior and lateral control ability between the two interactive modes were 0.688 and 0.680,
respectively. In the airflow adjustment task, the correlations of glance behavior and lateral control ability between the two
interactive modes were 0.659 and 0.668, respectively. In addition, this study revealed that driving speed had significant effects
on glance behavior and lateral driving performance in both interaction modes. As speed increased, self-adjusting glance
behavior was evident in performing the secondary task; however, this behavior could not compensate for the deterioration in
lateral driving performance caused by the increased speed. The findings will help improve drivers’ perception of FTIM and
provide theoretical guidance for the design development of HMI mode.

1. Introduction

Human–machine interface (HMI) is an important carrier
for human–vehicle information interaction. Using HMI,
drivers can interact with the vehicle’s air conditioning sys-
tem, infotainment system, and driver assistance system.
With the development of the Internet, the full-touch HMI
mode has been sweeping the automotive industry and gain-
ing popularity among younger drivers. The full-touch HMI
mode refers to the interactive mode that has a large HMI
display size and no physical buttons, and all operations are
concentrated on the HMI display (e.g., Tesla Model S, Model
3). FTIM allowed completing tasks with the HMI display,
whereas conventional interactive mode (CIM) completed

tasks with buttons or knobs. In practical terms, full-touch
interactive mode (FTIM) offers some advantages over CIM,
such as the integration of full-touch HMI with in-vehicle
entertainment systems to create more intelligent ways to
engage. FTIM, however, also has inherent flaws. First, the
HMI display cannot give the driver the same sense of feed-
back as conventional physical buttons or knobs, which is
not conducive to operation solely by manual memory. Sec-
ond, the completion of many tasks in touch screens requires
entry into multiple levels of submenus, which may increase
the complexity of the driver’s task completion. In addition,
the driver may unconsciously devote more attention to the
display when performing secondary tasks on the HMI, con-
sidering the impact of the brightness on the distribution of
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attention during driving [1]. Therefore, it is worth exploring
whether FTIM increases the visual demand of secondary
tasks compared with the CIM.

Driving is a complex task that integrates the cognitive,
visual, and manual resources of a driver. According to the
multiresource model theory [2, 3], conflicts emerge in
resource allocation when a driver performs multiple tasks
that occupy the same dimensional resources at the same
time, which affects task completion performance. The visual
channel is the main resource channel occupied by the driv-
ing task. Thus, if a driver simultaneously performs a second-
ary task that occupies more visual resources, it competes
with the driving task for the visual channel, thus affecting
driving safety. A traffic accident occurred in 2020 with a
Tesla Model 3 embedded with a full-touch HMI system; a
German owner was involved in a traffic accident while per-
forming a wiper operation in a secondary menu on the
HMI display, because the vehicle was not equipped with a
physical toggle to adjust wiper frequency. This example
demonstrates the necessity of exploring whether performing
typical secondary tasks in full-touch HMI mode impair the
driver’s behavior.

1.1. Research on the Impact of Secondary Tasks on Resource
Demands and Driving Performance. Current researchers
have classified three types of distractions: cognitive distrac-
tions, visual distractions, and motion distractions [4–6].
Whether in full-touch interaction mode or conventional
button-based interaction mode, the driver is primarily
involved in visual–manual distraction when performing
HMI secondary tasks [7]. Of all distraction types, however,
visual–manual distraction poses the greatest driving risk,
and the driver’s lane-keeping ability is subject to the additive
effect of visual and manual distractions [8]. Therefore, the
objective evaluation metrics of in-vehicle interaction pat-
terns mainly include multiresource demand and driving per-
formance. Multiresource demands mainly refer to visual
demands and motion demands. Visual demand can be char-
acterized by such metrics as number of glance (NoG), per-
centage of glance (PoG), mean single glance duration
(MSGD), and percentage of glance exceeding 2.0 s [9–11].
In order to limit the visual demands on the driver required
by the HMI system, NHTSA issued manual-distraction
guidelines for in-vehicle electronic devices in 2013 [12].
The guidelines include the following four items: when the
driver performs in-vehicle secondary tasks, (1) the total
glance duration should not exceed 12 s. (2) The MSGD
should be less than or equal to 2 s. (3) The percentage of
glance exceeding 2 s should not exceed the total number of
in-vehicle gaze. (4) The percentage of gaze exceeding 2 s
should not exceed 15% of the total number of glances in
the vehicle. While the NHTSA guidelines provide a solid
starting point for the field of distraction testing, the guide-
lines have also been subject to many criticisms. Firstly, the
guidance is based on simulator tests and lacks ecological
validity [13]. Secondly, the test does not take into account
the visual demands of different driving scenarios and their
effects on glance [14]. Due to the limitations of the NHTSA
guidelines and the fact that they are not mandatory, they are

not widely used among original equipment manufacturers.
However, many scholars have explored the visual demands
of the secondary task using the above NHTSA glance
parameters.

Motion demands include task completion time (TCT) as
well as the duration of time hands are off the steering wheel.
A large number of driving simulator-based experiments
have been conducted to show that as a secondary task takes
up more visual resources and as TCT increases, lateral driv-
ing performance will be worse, and the risk of lane departure
will increase significantly [15–17].

The characterization of driving behavior is of great value
in multiple research fields such as driving risk assessment,
driving style recognition, and autonomous vehicle develop-
ment [18]. Driver behavior tends to be assessed in terms of
longitudinal and lateral driving performance. In the current
research on the effects of driver distraction on driving
behavior, the most studied topic is the longitudinal driving
performance of drivers. Researchers have not only investi-
gated the detrimental effects of driving distractions on longi-
tudinal driving performance [19–21] but also modeled
drivers’ longitudinal driving behavior [22, 23]. For example,
to make the ADAS system more aware of driver behavior,
Zou et al. [23] predicted vehicle acceleration based on a
machine learning model that takes full account of driver het-
erogeneity, making the model more application-oriented.
Comparatively, there are fewer studies on lateral driving
performance in the current research, especially those
exploring different interaction modes on lateral driving per-
formance on different roads. Lateral driving performance
refers to the driver’s ability to control the vehicle laterally
and can be measured by steering wheel metrics and vehicle
motion metrics. Standard deviation of steering wheel angle
(SDSWA) has a significant effect on vehicle trajectory, and
a larger steering wheel standard deviation is detrimental to
vehicle lane-keeping [24, 25]. In previous studies, standard
deviation of lateral position (SDLP) was found to be signif-
icantly different during secondary tasks compared with
baseline driving; thus, lane lateral position standard devia-
tion has been widely used to measure lane-keeping ability
[26, 27]. Time to lane crossing (TLC), which is widely used
in the field of lane departure warning, refers to the mini-
mum time necessary to reach any lane line position if the
vehicle continues to operate in its current state. TLC is
the most direct parameter used to measure the risk of vehi-
cle departure [28, 29].

1.2. Impact of Different Interaction Modes. In recent years,
the FTIM design has gradually replaced the conventional
physical button interaction mode as the primary vehicle
interaction mode design. Based on FTIM, researchers have
explored the effects of voice interaction mode (as a comple-
ment to FTIM), aerial gestures, touch gestures, and touch
screen position on resource requirements and driving per-
formance but have ignored the comparative study of CIM
versus FTIM. It has been suggested that even the combina-
tion of voice and touchscreen still takes longer to complete
a task than CIM [30]. Subsequently, Zeng [31] studied the
impact of conventional button-based interaction modes,
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voice interaction modes, and touch screen interaction modes
on driving safety from the perspective of driving safety and
found that CIM had the least impact on driving safety, and
that the touchscreen interaction mode had the greatest
impact on driving safety. Moreover, a number of studies
have noted that touchscreen interaction modes without non-
visual feedback have worse task performance than tradi-
tional physical button interaction modes [32, 33].

These studies have considered only the effects of differ-
ent interaction modes on driving performance in a single
driving environment and have not considered the effects
on glance behavior or the effects of speed. In addition, the
majority of current investigations on secondary tasks have
been conducted on driving simulators, which can effectively
control variables as well as ensure participant safety. It is dif-
ficult, however, for drivers to drive a simulator with the
immersion of a real traffic environment and thus exhibit
visual behaviors [11] as well as driving performances [34,
35] that are not fully consistent with real driving perfor-
mance. Furthermore, most of the current research on the
impact of FTIM on driving performance is not based on
product-level HMI, which lacks ecological validity [13].

1.3. Objectives and Approach. The main objective of this
study was to qualitatively and quantitatively investigate the
differences in drivers’ glance behavior and lateral control
ability when performing interactive tasks using CIM and
FTIM, as well as the effect of driving speed. To better reflect
the realistic glance and driving behavior of the driver while
performing the secondary task, we selected vehicles embedded
with product-level HMIs provided by original vehicle equip-
ment manufacturers for real-world road testing in this study.

Air conditioning–related tasks, wiper–related tasks,
music volume adjustment tasks, etc. are all very frequent
interactive tasks in the driver’s daily driving process. These
tasks are usually performed by knobs or buttons in the
CIM, while in the FTIM, they are performed by the HMI
display. Therefore, it is necessary to investigate the drivers’
visual behavior and the lateral control behavior when per-
forming these interaction tasks in the two interactive modes.
The air conditioning task is not only a task directly related to
vehicle comfort, but in many cases, it is also a task related to
driving safety. For example, in winter, due to the difference
in temperature between the inside and outside of the vehicle,
fog easily appears on the front windshield, making it impos-
sible for the driver to read the road and thus affecting driv-
ing safety. If the driver adjusts air volume and blow
towards the front windshield, the problem can be solved.
In this study, we chose the air conditioning–related tasks
(adjusting the air conditioning temperature and adjusting
the air volume), which are the most frequently and classi-
cally operated, to investigate the differences between the
two different interaction modes.

The participants drove the two test vehicles at different
driving speeds while following the instructions of the exper-
imenter to complete the secondary tasks related to air condi-
tioning. We collected the glance behavior parameters,
operating behavior parameters, and vehicle lateral motion
parameters during the test.

2. Method

2.1. Participants. Thirty volunteers, including 12 profes-
sional drivers (M = 45:8 years, SD = 3:94 years) and 18 non-
professional drivers (M = 34:3 years, SD = 2:28 years), were
recruited through online advertising in this experiment. Pro-
fessional drivers had more than 10 years of driving experi-
ence and more than 1,000,000 km of driving distance, and
nonprofessional drivers had 3–5 years of driving experience
and 100,000–300,000 km of driving distance. All drivers had
a legal driving license and no traffic accidents in the past
three years. These drivers all had normal or corrected nor-
mal vision and were in good health. In addition, none of
them had any experience driving the two test vehicles. Each
participant was given 500 RMB as compensation for their
time after the experiment. This experiment obtained the
approval of the ethics committee of the University.

2.2. Vehicle Equipment. Our market research on the interac-
tion design of air conditioning–related tasks revealed a high
level of driver acceptance of the 2020 Audi A4L, and this car
is embedded with the CIM that combines a touch screen
with physical buttons. Meanwhile, we surveyed several of
the top-selling vehicles in China with full-touch HMI design
mode and found that air conditioning–related secondary
tasks are in a two-step menu. Considering their high market
share of 2020 BYD Qin in China, the 2020 Audi A4L and
2020 BYD Qin were selected as the test vehicles to explore
the changes of FTIM on driver glance behavior and vehicle
control behavior. The Audi A4L embedded the CIM, and
the BYD Qin embedded the FTIM. The HMIs of the two
vehicles were shown in Figure 1. When participants drove
the Audi, the air conditioning–related operations were per-
formed in the conventional mode (knob or button), and in
the BYD, the operations were performed through the HMI
display.

Each experimental vehicle was equipped with three video
cameras (installation location shown in Figure 2) and one
vehicle data collector. Video cameras (MiVue 786, sampling
frequency: 30 HZ) were intended to capture vehicle lateral
position, participant’s interaction with the vehicle steering
wheel and the center console, and the eye movement. The
vehicle data collector (Langren, H6 Pro) had an output fre-
quency of 4 HZ, which met the experimental needs. The data
collector was connected to the vehicle OBD interface and
could capture the CAN bus data of the vehicle for speed
and steering wheel parameters. Before the formal test, the
lateral position of the vehicle was calibrated. All the instru-
ments in the experiment could record the commands given
by the experimenter.

2.3. Driving Route. As shown in Figure 3, a low-speed road
and a highway were chosen as the test routes to investigate
the effects of CIM and FTIM on driver glance behavior
and lateral control ability at different speeds. Road 1 (low-
speed road) was 16.76 km long and had a speed limit of
70 km/h. Road 2 (highway) was 20.58 km long and had a
speed limit of 120 km/h. Both test roads were eight lanes in
both directions, with a lane width of 3.75m and a central
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barrier separating the opposite lanes. The trials at 40 km/h
and 60 km/h were conducted on Road 1, and the trials at
80 km/h and 100 km/h were conducted on Road 2 by the
participant driving the experimental vehicle. All trials were
conducted on straight sections of the test road.

2.4. Interactive Tasks. Participants were required to interact
with the BYD vehicle full-touch HMI display (FTIM) and
the relevant buttons (knob) of the Audi vehicle (CIM) dur-
ing the trial to perform the air conditioning secondary tasks,
as shown in Figure 4 and Table 1. In task 1, when driving the
Audi, the participants needed to press a button to turn on
the temperature adjustment function (step 1), and then turn
the knob to adjust the temperature (step 2). For the BYD,
they needed to click on a specific location on the HMI dis-
play to enter the temperature adjustment menu (step 1),
and then click “+” to adjust the temperature to the required
temperature (step 2). In task 2, participants driving the Audi
needed only to press the relevant button twice to complete
task 2 (step 1). Conversely, in the BYD, they had to click
on the relevant position on the HMI display (step 1) and
enter the secondary menu (step 2) to complete task 2. Sec-
ondary tasks selected in the trial were the most frequent sec-
ondary tasks in the driver’s usual driving behavior.

2.5. Experimental Design and Procedure. Before the formal
experiment, a basic information form and an informed con-
sent form were filled out. The participants were then famil-
iarized with the test vehicle and the operation of the test,
and trials started after they were able to drive the vehicle
and complete the secondary tasks with ease.

During the experiment, each participant was required to
drive two test vehicles on actual low-speed and highway to
perform the test operations. Each secondary task was per-
formed five times under the same conditions, and each par-

ticipant performed 40 trials in total. The order of each
condition was counterbalanced. Participants were asked to
perform the secondary tasks according to their own driving
habits and to follow the instructions given by the experi-
menters on the basis of ensuring driving safety and main-
taining driving speed.

Two experimenters followed the test vehicle at all times:
one person sat in the front passenger seat to monitor traffic
conditions and immediately alert the participant to any driv-
ing risk; and a second person sat in the rear seat to give the
driver secondary tasks.

2.6. Data Processing. During the data preprocessing, the time
was calibrated by the sound recorded by the device. The first
time point at which the participant’s eyes or hands moved
after the experimenter gave the command was the start time.
The later time point at which both movements ended was
the end time.

Combined with the calibration of the lane lines before
the trial, a computer image processing algorithm was used
to identify the distance between the left front wheel of the
vehicle and the left lane line during the trial, as shown in
Figure 5. The accuracy of the obtained data was 1 cm, which
satisfied the research requirements.

2.7. Data Analysis. In this study, each participant was asked
to perform two secondary tasks under different conditions.
Considering the existence of nonindependence between
sampled data, repeated measures analysis of variance
(ANOVA) was used to investigate the effects of interaction
mode and speed on glance behavior as well as lateral control
behavior. During data testing, the test level was set to 0.05.
Once the Mauchly’s spherical assumption was violated, we
applied the Huynh–Feldt correction.

If we found a significant main effect of speed, we
employed a linear regression to explore the impact coeffi-
cient of vehicle speed on each metric in both interaction
modes [36, 37].

Gray correlation analysis intends to seek the numerical
relationship between the subfactors in the system, and its
basic idea is to determine whether the connection is strong
based on the similarity of the geometry of the sequence; if
the trend of the change of two factors has consistency, that
is, the degree of association between the two is high; other-
wise, it is low. To quantify the degree of influence of per-
forming secondary tasks in FTIM on the driver’s visual
behavior and driving performance parameters, we used gray

CIM FTIM

Figure 1: Two types of interaction modes.
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Figure 2: Installation location of three video cameras.
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relation analysis to analyze the correlation between the
driver’s performance of secondary tasks in both interaction
modes, as shown in Figure 6.

3. Results

In this study, we explored the effect of performing secondary
tasks with FTIM on task completion time (TCT), driver’s
glance behavior, and lateral control ability by comparing

CIM. In addition, we also explored the effect of speed
on these metrics in both interaction modes. Therefore,
2 ðinteractionmodeÞ × 4 ðspeedÞ repeated measures ANOVA
were conducted on each of the metrics.

3.1. Task Completion Time. The time to complete a second-
ary task has been used to measure secondary task time
demands [38, 39]. Secondary task duration has been consid-
ered in the field of vehicle secondary task interface

Figure 3: Experimental route.

Task 1

Step 1 Step 2
x1

x1

Step 1

x5

Step 2x5

Step 1

x2
x1Step 1

x2
Step 2

CIM FTIM

Task 2

Figure 4: Operation process of secondary tasks in two interactive modes.

Table 1: Description of secondary tasks.

Task type Description Interaction

Tuning air conditioning–related
secondary tasks

Task 1. Participants were instructed to adjust the air conditioning
temperature from 23°C to 18°C.

HMI display vs. knob

Task 2. Participants were instructed to turn up the airflow of the air
conditioner by two levels.

HMI display vs. button

Figure 5: Schematic diagram of the vehicle lateral position data processing process.
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evaluation [39–41]. Whether or not the full-touch interac-
tion mode increased the TCT of task interactions has
remained an open question. This study explored the changes
brought by the full-touch interaction mode on TCT by com-
paring the conventional interaction mode.

Figure 7 shows the TCT for two secondary tasks by inter-
action mode and speed. For task 1, there were significant main
effects of the interaction mode (F ð1, 29Þ = 41:098, P < 0:001)
and speed (F ð3, 87Þ = 17:492, P < 0:001), and no significant
interaction effect (F ð2:407, 69:802Þ = 1:131, P = 0:336). The
TCT was greater when task 1 was performed using FTIM
(M = 5:634 s, SEM = 0:169) compared with CIM (M = 4:099 s,
SEM = 0:186), and it decreased linearly and significantly with
increasing speed (F ð1, 29Þ = 36:826, P < 0:001). The normal-
ized coefficient of the speed during task 1 in the FTIM was
−0.231, which was larger than that in CIM (−0.143).

For task 2, there were significant main effects for both
interaction mode (F ð1, 29Þ = 525:548, P < 0:001) and speed
(F ð3, 87Þ = 16:225,P < 0:001), and a significant interaction
effect between the two factors (F ð3, 87Þ = 7:702, P < 0:001).
TCT was significantly greater with FTIM (M = 4:056 s,
SEM = 0:078) than with CIM ðM = 2:143s, SEM = 0:056Þ .
We also found a significant linear relationship between
TCT and speed (F ð1, 29Þ = 35:196, P < 0:001), and the effect

coefficients of speed on TCT were −0.331 (FTIM) and
−0.178 (CIM), respectively.

3.2. Glance Behavior. We selected the percentage of glance
(PoG), number of glances (NoG), mean single glance dura-
tion (MSGD), and percentage of long-duration glances
(PoLDG) to the HMI during performing the secondary task
as glance behavior metrics. In particular, a long-duration
glance was a glance lasting more than 2.0 s on the HMI. A
2 ðinteractionmodeÞ × 4 ðspeedÞ repeated measure ANOVA
was conducted on each visual metrics.

3.2.1. Percentage of Glance. PoG refers to the percentage of
glance engagement during task completion and can be used
to measure the visual demand of the secondary task. Under
CIM, drivers are more prone to perform interactive tasks
with manual memory and tactile-based feedback. Although
FTIM can rely only on visual feedback to complete tasks,
the PoG was used as an important metric to measure visual
demand during secondary tasks.

Figure 8 shows the PoG of the two tasks by interaction
mode and speed. PoG for task 1 differed significantly by
interaction mode (F ð1, 29Þ = 22:395, P < 0:001) and speed
(F ð3, 87Þ = 25:535, P < 0:001). On average, PoG was longer

SDLP

TLC

SDSWA
FTIM

CIM
TCT

PoLDG

MSGD

PoG

Mode

Factors

Vehicle lateral
control metrics

Glance behavior
metrics

Vehicle lateral control ability
correlation between FTIM and CIM

Gray correlation analysis

Glance behavior correlation between
FTIM and CIM 

NoG

Figure 6: The framework of gray correlation analysis.
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Figure 7: TCT for two tasks by interaction mode and vehicle speed.
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when performing task 1 with FTIM ðmean = 83:2%, SEM =
1:0%Þ than with CIM ðmean = 75:3%, SEM = 1:6%Þ. As the
speed increased, the PoG decreased linearly when perform-
ing task 1 (F ð1, 29Þ = 56:447, P < 0:001). We also observed
a mode by speed interaction (F ð3, 87Þ = 5:243, P = 0:002).
The results of linear regression indicated that the standard-
ized coefficient of speed on PoG using FTIM was −0.459,
which was significantly higher than CIM (−0.137).

There were significant main effects of interaction mode
(F ð1, 29Þ = 12:628, P = 0:001) and speed (F ð3, 87Þ = 14:859,
P < 0:001), and a significant interaction effect (F ð3, 87Þ =
7:239, P < 0:001) in task 1. On average, PoGs were longer
when performing task 2 with FTIM (mean = 81:2%, SEM =
1:2%) than with CIM (mean = 72:9%, SEM = 2:1%). As the
speed increased, the PoG decreased linearly when performing
task 1 (F ð1, 29Þ = 25:560, P < 0:001), and the standardized
coefficient of speed on PoG using FTIM was −0.426, which
was higher than CIM (−0.070).

3.2.2. Number of Glances. As shown in Figure 9, we found a
significant main effect of interaction type (F ð1, 29Þ = 4:740,
P = 0:038) and a significant main effect of vehicle speed
(F ð3, 87Þ = 9:194, P < 0:001). The NoG, when performing
task 1 under FTIM (mean = 2:802, SEM = 0:165), was signif-
icantly higher under CIM (mean = 2:396, SEM = 0:156). A

significant linear relationship was found between the NoG
on secondary task 1 and vehicle speed (F ð1, 29Þ = 18:120,
P < 0:001). The interaction effect between vehicle speed
and interaction type was significant (F ð2:163, 16:777Þ =
3:738, P = 0:021). The results of linear regression indicated
that the standardized coefficient of speed on NoG using
FTIM was 0.223, which was significantly higher than
CIM (0.059).

The results showed significant main effects for interac-
tion type (F ð1, 29Þ = 96:244, P < 0:001) and vehicle speed
(F ð3, 87Þ = 3:091, P = 0:031), as well as interaction effects
ðFð3, 87Þ = 11:486, P < 0:001Þ in task 2. The NoG under
full-touch HMI (mean = 2:256, SEM = 0:105) was signifi-
cantly higher than under conventional HMI (mean = 1:268,
SEM = 0:055). The normalized coefficient of the speed in
the FTIM was 0.142, and the coefficient was −0.284 in CIM.

3.2.3. Mean Single Glance Duration. As shown in Figure 10,
during the completion of task 1, the MSGD was significantly
longer using the FTIM (M = 2:049 s, SEM = 0:140) than CIM
(M = 1:469 s, SEM = 0:103) (F ð1, 29Þ = 18:572, P < 0:001).
MSGD differed significantly by speed (F ð2:260, 65:544Þ =
27:788, P < 0:001). The interaction effect was also found
(F ð2:526, 73:261Þ = 7:212, P = 0:001). On average, the
MSGD decreased linearly as the vehicle speed increased

Task 1
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G
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)

CIM
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Figure 8: PoG for two tasks by interaction mode and vehicle speed.
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(F ð1, 29Þ = 56:908, P < 0:001), and the standardized coeffi-
cient of speed on MSGD using FTIM was −0.379, which
was significantly greater than CIM (−0.181).

For task 2, significant main effects of interaction mode
(F ð1, 29Þ = 14:203, P = 0:001) and speed (F ð2:499, 72:468Þ
= 19:284, P < 0:001) were present, as well as a significant
interaction effect (F ð2:559, 74:223Þ = 15:494, P < 0:001).
The MSGD was longer with FTIM (M = 1:713 s, SEM =
0:107) than with CIM (M = 1:297 s, SEM = 0:072). Similar
to tasks 1, the MSGD decreased linearly with increasing
vehicle speed when performing task 2 (F ð1, 29Þ = 49:035,
P < 0:001). The normalized coefficient of the speed in the
FTIM was −0.374, which was significantly greater than
that in CIM (−0.051).

3.2.4. Percentage of Long-Duration Glances. PoLDG differed
significantly by interaction mode (F ð1, 29Þ = 6:744, P =
0:015) and speed (F ð2:412, 69:953Þ = 21:740, P < 0:001)
during task 1 (see Figure 11). The PoLDG was greater with
FTIM (M = 40:8%, SEM = 4:2%) than with CIM (M = 27%,
SEM = 4:9%). PoLDG decreased linearly as speed increased
(F ð1, 29Þ = 98:910, P < 0:001), and the decline rate under
FTIM was −0.360, which was significantly greater than that
under CIM (−0.159).

There were significant main effects of interaction mode
(F ð1, 29Þ = 58:908, P < 0:001) and speed (F ð3, 87Þ = 33:401,

P < 0:001) when task 2 was performed. Compared with CIM
(M = 0:000, SEM = 0:000), the PoLDG was longer when
using FTIM (M = 26:5%, SEM = 3:5%). We identified an
interaction effect between interaction mode and speed
(F ð3, 87Þ = 33:401, P < 0:001). In task 2, the PoLDG using
FTIM decreased linearly with the increase in vehicle speed
(F ð1, 29Þ = 84:560, P < 0:001), and the standardized coeffi-
cient was −0.561.

3.3. Vehicle Lateral Control Metrics. In this study, the selected
vehicle lateral control metrics were: SDLP, TLC, and SDSWA.
A 2 ðinteractionmodeÞ × 4 ðspeedÞ repeatedmeasure ANOVA
was conducted on each vehicle lateral control metrics.

3.3.1. Standard Deviation of Lateral Position. As shown in
Figure 12, compared with CIM (M = 7:567 cm, SEM =
0:293), the SDLP was significantly greater when performing
task 1 under FTIM (M = 11:103 cm, SEM = 0:405) (F ð1, 29Þ
= 73:80, P < 0:001). We observed a significant main effect of
speed (F ð2:633, 76:358Þ = 40:135, P < 0:001) and also
observed a linear relationship between speed and SDLP
(F ð1, 29Þ = 83:141, P < 0:001). In addition, an interaction
type by speed interaction was not observed (F ð2:439,
70:738Þ = 2:567, P = 0:073). The normalized coefficient of
the speed during FTIM was 0.555, which was slightly higher
than that during CIM (0.552).
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SDLP for task 2 differed significantly by interaction mode
(F ð1, 29Þ = 107:050, P < 0:001) and speed (F ð3, 87Þ = 21:139,
P < 0:001). On average, SDLP was greater when performing
task 2 with FTIM (M = 7:754 cm, SEM = 0:260) than with
CIM (M = 5:045 cm, SEM = 0:235). As the speed increased,
the SDLP increased linearly when performing task 2
(F ð1, 29Þ = 123:840, P < 0:001). We did not observe a signif-
icant interaction effect (F ð3, 87Þ = 0:282, P = 0:838). The
normalization coefficient for speed with FTIM was 0.519,
which was slightly higher than with CIM (0.419).

3.3.2. Time to Lane Crossing. As shown in Figure 13, during
the completion of task 1, TLC was significantly shorter using
the FTIM (M = 4:067 s, SEM = 0:189) than using the CIM
(M = 5:378 s, SEM = 0:236) (F ð1, 29Þ = 21:712, P < 0:001).
TLC differed significantly by speed (F ð3, 87Þ = 57:164, P <
0:001). On average, the TLC decreased linearly as the vehicle
speed increased (F ð1, 29Þ = 129:971, P < 0:001). No interac-
tion effect was present (F ð2:369, 68:704Þ = 0:938, P = 0:409).
The normalization coefficient for speed with FTIM was
−0.560, which was slightly shorter than with CIM (−0.620).

Similar to task 1, there were significant main effects of
interaction mode (F ð1, 29Þ = 74:170, P < 0:001) and speed
(F ð3, 87Þ = 35:481, P < 0:001), and no interaction effects
(F ð3, 87Þ = 2:283, P = 0:085) when task 2 was performed.

The TLC when performing task 2 under FTIM (M = 4:923
s, SEM = 0:219) was significantly longer than under CIM
(M = 7:376 s, SEM = 0:242). A significant linear relationship
existed between TLC and speed (F ð1, 29Þ = 94:662, P <
0:001). The normalization coefficient for speed with FTIM
was −0.523, which was slightly lower than with CIM
(−0.591).

3.3.3. Standard Deviation of Steering Wheel Angle. As shown
in Figure 14, SDSWA for task 1 differed significantly by
interaction mode (F ð1, 29Þ = 7:686, P = 0:01) and speed
(F ð3, 87Þ = 11:822, P < 0:001). The SDSWA when perform-
ing task 1 under FTIM (M = 0:853, SEM = 0:023) was signif-
icantly greater than under FTIM (M = 0:765, SEM = 0:023).
The SDSWA tended to decrease linearly with increasing
speed (F ð1, 29Þ = 16:926, P < 0:001). We did not find a sig-
nificant interaction between speed and interaction mode
(F ð3, 87Þ = 1:900, P = 0:136). The normalization coefficient
for speed with FTIM was −0.299, which was slightly higher
than with CIM (−0.118).

The SDSWA in FTIM (M = 0:748, SEM = 0:024) was sig-
nificantly greater than the SDSWA in CIM (M = 0:655,
SEM = 0:017) (F ð1, 29Þ = 11:442, P = 0:002) when task 2
was performed. No significant main effect of speed was pres-
ent (F ð3, 87Þ = 2:636, P = 0:055). In addition, we did not
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find a significant interaction between speed and interaction
mode (F ð3, 87Þ = 1:900, P = 0:136). The normalization coef-
ficient for speed with FTIM was −0.187, which was slightly
greater than with CIM (0.003).

3.4. Gray Correlation Analysis. We used gray correlation
analysis to quantitatively analyze the differences in TCT,
visual behavior, and lateral control metrics when performing
secondary tasks in two different interaction modes.

When conducting gray correlation analysis, the first step
is to determine the reference and comparison series. The
data series reflecting the characteristics of the system behav-
ior, called the reference series, and the reference series
should be a more desirable comparison standard. The data
series composed of factors affecting the system behavior is
called the comparison series. According to the qualitative
analysis of the two modes under different metrics (given in
Sections 3.1–3.3), the visual engagement and lateral driving
performance under CIM in both task 1 and task 2 were bet-
ter. Therefore, we selected the measured metrics under CIM
as the reference series and the corresponding metrics under

FTIM as the calculated series in the gray correlation analysis.
The reference series XCIM

k and the comparison series XFTIM
k

are denoted as follows:

XCIM
k = s xCIMk 1ð Þ, xCIMk 2ð Þ,⋯, xCIMk 30ð Þ� �Τ,

XFTIM
k = xFTIMk 1ð Þ, xFTIMk 2ð Þ,⋯, xFTIMk 30ð Þ� �Τ,

ð1Þ

where k = fSDLP, TLC, SDSWA, PoG, NoG, MSGD, PoLDG,
TCTg and X is a vector consisting of the values of a given
indicator for all participants, next normalized for individual
participants.

xCIMk ið Þ = xCIMk ið Þ
1/30∑30

i=30x
CIM
k ið Þ

i = 1, 2,⋯, 30,

xFTIMk ið Þ = xFTIMk ið Þ
1/30∑30

i=30x
FTIM
k ið Þ

i = 1, 2,⋯, 30,
ð2Þ

where i is the participant ID.
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The absolute difference between the FTIM and CIM
indicators is then calculated, and the minimum A and max-
imum B differences are determined by

A = min
30

i
xCIMk ið Þ − xFTIMk ið Þ�� ��, i = 1, 2,⋯, 30,

B = max30

i
xCIMk ið Þ − xFTIMk ið Þ�� ��, i = 1, 2, ::::30:

ð3Þ

The final correlation coefficients and correlations
between FTIM and CIM for the same indicators are calcu-
lated by the following formula:

ζk ið Þ = A + ρ ⋅ B
xCIMk ið Þ − xFTIMk ið Þ�� �� + ρ ⋅ B

ρ = 0:5ð Þ,

rk =
1
30

〠
30

i=1
ζk ið Þ:

ð4Þ

The relationship between the metrics in the two modes is
shown in Figure 15. We observed that among all of the met-
rics, MSGD had the highest correlation, and PoG had the
lowest correlation under the two modes. Finally, the correla-
tions of TCT in the two modes were 0.693 (task 1) and 0.672
(task 2); the correlations of visual indicators in the two
modes were 0.688 (task 1) and 0.659 (task 2), and the corre-
lations of vehicle lateral motion indicators in the two modes
were 0.680 (task 1) and 0.668 (task 2).

4. Discussion and Conclusion

The main objective of this study was to investigate whether
performing interactive tasks using the full-touch HMI
required more visual demands, thus posing a greater chal-
lenge to the lateral control capability of the vehicle.

Compared with CIM, using FTIM to perform secondary
tasks had greater PoG, NoG, MSGD, and PoLDG. There is
no doubt that there were larger SDLP and SDSWA and
smaller TLC when performing secondary tasks under FTIM
than under CIM. This finding suggested that more driver
attention resources were required to perform the air condi-
tioning–related secondary task using FTIM, resulting in
poorer lateral vehicle stability and ride comfort. This finding
is similar to that of Wang et al. [37], which showed that
visual distraction affected the lateral motion characteristics
and comfort of the vehicle.

Compared with using FTIM, the advantages exhibited
when using CIM to perform interactive tasks in task 1 and
task 2 were different. The gray correlation analysis showed
greater difference in glance behavior and lateral control abil-
ity between the two interaction modes in task 2. Firstly,
more advantage of fewer attentional resources was required
for CIM in task 2. This result was reflected mainly in the fact
that no glance was longer than 2.0 s when using CIM for task
2, whereas the PoG of more than 2.0 s reached 26.5% when
using FTIM. Secondly, the TCT when using CIM to perform
task 2 was only 52.8% of that when using FTIM. Finally,
similar to attentional resources, in terms of lateral driving

performance, a clear advantage was demonstrated when
using CIM to perform the secondary task compared with
FTIM. This finding was consistent with previous studies
[31, 32]. The TLC when performing the secondary task
using CIM was 1.89 s longer than when using FTIM. TLC
was the most directly measurable indicator of vehicle lateral
departure, which implied that the risk of lateral departure
was higher when performing the secondary task using FTIM
than CIM. With the correlation coefficients of each metric in
the two modes, we found that PoG had the greatest variabil-
ity. Therefore, we suggest that measures should be taken in
the HMI display design (e.g., setting nonvisual feedback) to
reduce the visual involvement during task completion.

In line with previous works [7, 37], during the secondary
task (either FTIM or CIM), the TCT, MSGD, and PoLDG
decreased with increasing driving speed, whereas the NoG
on the HMI increased. On average, an increase in speed
increases the probability of traffic accidents [42]. Accord-
ingly, to reduce driving risk, drivers may shift their glance
more frequently between the road ahead and the HMI dur-
ing secondary tasks and may minimize visual involvement
during secondary tasks and the total time spent on task com-
pletion. As driving speed increases, drivers improve their
ability to self-regulate when performing secondary tasks,
and this study supports previous research by Young [43].
That is, drivers have self-regulatory behaviors to reduce the
risk of collision during driving. Another finding of this study
was that glance behavior while performing secondary tasks
was influenced more by speed in FTIM than in CIM. This
seems to indicate that as speed increases, drivers feel that it
is more dangerous to perform interactive tasks using FTIM.
Therefore, drivers are more cautious and increase the degree
of self-regulatory behavior. Interestingly, the study also
found that lateral driving performance decreased with
increasing speed in both interaction modes, as evidenced
by the increase in SDLP and by the decrease in TLC and
SDSWA with increasing speed. This finding suggests that
although the driver’s self-paced secondary task behavior
increased with speed, it did not fully compensate for the
driving risks associated with increasing speed. It was notable
that the normalization coefficients of speed on SDLP and
TLC were smaller when using FTIM compared with using
CIM. This finding may imply that an increase in speed has
less effect on driving stability and comfort in FTIM. We
found, however, that the lateral driving risk was greater in
FTIM than in CIM at either speed.

There are some limitations associated with this study.
First, this test is a real road experiment, in order to ensure
driving safety, the traffic flow on the test road we chose in
this study is relatively low, so the participant is less affected
by the vehicle in front of it. It seems not very rigorous to
explore the longitudinal control of the driver under such
condition. Therefore, in this study we did not discuss the dif-
ference in the driver’s longitudinal control ability between
the two interaction modes. To overcome this limitation, we
will conduct driving simulator experiments on a six-degree-
of-freedom driving simulator platform in the future research
to further investigate the effect of FTIM on the driver’s longi-
tudinal control ability. Second, we only considered low speed
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roads and highways without considering bottleneck roads in
the experimental design, which is another limitation of our
study. Considering that different roads can affect driving
behavior, we plan to design real-world road and driving simu-
lator tests with different road types, including bottleneck
roads, to further explore the effects of different road types on
driving behavior under FTIM in future studies. Lastly, con-
nected and autonomous vehicles are the inevitable trend of
development; however, before they fully cover the market,
there is bound to be a long transition phase: a mixed driving
phase of traditional and intelligent vehicles. Therefore, the
impact of FTIM on driving behavior should be further consid-
ered for platoon strategies in mixed traffic [44, 45].

Data Availability

The data sharing is not applicable to this article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (51908054), in part by the
Fundamental Research Funds for the Central Universities
(CHD 300102220202), and in part by the Scientific Innova-
tion Practice Project of Postgraduates of Chang’an Univer-
sity (No.300103722022).

References

[1] W. J. Horrey, C. D. Wickens, and K. P. Consalus, “Modeling
drivers' visual attention allocation while interacting with in-
vehicle technologies,” Journal of Experimental Psychology
Applied, vol. 12, no. 2, pp. 67–78, 2006.

[2] W. Horrey and C. Wickens, “Multiple resource modeling of
task interference in vehicle control, hazard awareness and in-
vehicle task performance,” in Proceedings of the 2nd Interna-
tional Driving Symposium on Human Factors in Driver Assess-
ment, Training and Vehicle Design: Driving Assessment 2003,
pp. 7–12, University of Iowa, USA, 2005.

[3] C. D. Wickens, “Multiple resources and mental workload,”
Human Factors, vol. 50, no. 3, pp. 449–455, 2008.

[4] M. Regan, M. Lee, and J. Young, Driver Distraction: Theory,
Effects and Mitigation, CRC Press, 2008.

[5] D. Strayer, J. Watson, and F. Drews, “Cognitive distraction
while multitasking in the automobile,” Advances in Research
and Theory, vol. 54, pp. 29–58, 2011.

[6] K. Young, P. Salmon, and M. Cornelissen, “Missing links? The
effects of distraction on driver situation awareness,” Safety Sci-
ence, vol. 56, pp. 36–43, 2013.

[7] D. Hu, X. Feng, X. Zhao, H. Li, J. Ma, and Q. Fu, “Impact of
HMI on driver’s distraction on a freeway under heavy foggy
condition based on visual characteristics,” Journal of Transpor-
tation Safety & Security, vol. 14, no. 6, pp. 905–928, 2022.

[8] G. K. Kountouriotis, P. Spyridakos, O. Carsten, and N. Merat,
“Identifying cognitive distraction using steering wheel reversal
rates,” Accident Analysis & Prevention, vol. 96, pp. 39–45,
2016.

[9] H. Hofmann, V. Tobisch, U. Ehrlich, and A. Berton, “Evalua-
tion of speech-based HMI concepts for information exchange
tasks: a driving simulator study,” Computer Speech & Lan-
guage, vol. 33, no. 1, pp. 109–135, 2015.

[10] Y. Liang, M. L. Reyes, and J. D. Lee, “Real-time detection of
driver cognitive distraction using support vector machines,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 8, no. 2, pp. 340–350, 2007.

[11] T. McWilliams, B. Mehler, B. Seppelt, and B. Reimer, “Driving
simulator validation for in-vehicle human machine interface
assessment,” Proceedings of the Human Factors and Ergonom-
ics Society Annual Meeting, vol. 63, no. 1, pp. 2104–2108,
2019.

[12] National Highway Traffic Safety Administration, Visual-man-
ual driver distraction guidelines for in-vehicle electronic devices,
National Highway Traffic Safety Administration, Washington,
DC, 2013.

[13] C. Harvey, N. A. Stanton, C. A. Pickering, M. McDonald, and
P. Zheng, “To twist or poke? Amethod for identifying usability
issues with the rotary controller and touch screen for control
of in-vehicle information systems,” Ergonomics, vol. 54,
no. 7, pp. 609–625, 2011.

[14] H. Grahn and T. Taipalus, “Refining distraction potential test-
ing guidelines by considering differences in glancing behav-
ior,” Transportation Research Part F: Traffic Psychology and
Behaviour, vol. 79, pp. 23–34, 2021.

[15] S. G. Klauer, T. A. Dingus, T. V. Neale, J. D. Sudweeks, and
D. J. Ramsey, The Impact of Driver Inattention on near-
Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic
Driving Study Data, Department of Transportation, Washing-
ton D.C., 2006.

[16] Z. Li, C. Wang, R. Fu, Q. Sun, and H. Zhang, “What is the dif-
ference between perceived and actual risk of distracted driv-
ing? A field study on a real highway,” PLoS One, vol. 15,
no. 4, p. 15, 2020.

[17] Y. Ma, Y. Q. Shi, R. Fu, and Y. S. Guo, “Impact of driver’s dis-
tracted driving time on vehicle lane departure,” Journal of Jilin
University, vol. 45, no. 4, pp. 1095–1095, 2015.

[18] M. N. Azadani and A. Boukerche, “Driving behavior analysis
guidelines for intelligent transportation systems,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 23, no. 7,
pp. 6027–6045, 2022.

[19] O. Oviedo-Trespalacios, “Getting away with texting: behav-
ioural adaptation of drivers engaging in visual-manual tasks
while driving,” Transportation Research Part A: Policy and
Practice, vol. 116, pp. 112–121, 2018.

[20] O. Oviedo-Trespalacios, M. M. Haque, M. King, and
S. Washington, “Effects of road infrastructure and traffic com-
plexity in speed adaptation behaviour of distracted drivers,”
Accident Analysis & Prevention, vol. 101, pp. 67–77, 2017.

[21] M. Saifuzzaman, M. M. Haque, Z. Zheng, and S. Washington,
“Impact of mobile phone use on car-following behaviour of
young drivers,” Accident Analysis & Prevention, vol. 82,
pp. 10–19, 2015.

[22] H. Misawa, K. Takenaka, T. Sugihara, H. Liu, T. Taniguchi,
and T. Bando, “Prediction of driving behavior based on
sequence to sequence model with parametric bias,” in 2017
IEEE 20th International Conference on Intelligent Transporta-
tion Systems, pp. 1–6, Yokohama, Japan, 2017.

[23] Y. Zou, L. Ding, H. Zhang, T. Zhu, and L. Wu, “Vehicle accel-
eration prediction based on machine learning models and

12 Journal of Advanced Transportation



driving behavior analysis,” Applied Sciences, vol. 12, no. 10,
p. 5259, 2022.

[24] J. M. Cooper, N. Medeiros-Ward, and D. L. Strayer, “The
impact of eye movements and cognitive workload on lateral
position variability in driving,” Human Factors, vol. 55,
no. 5, pp. 1001–1014, 2013.

[25] N. Medeiros-Ward, J. M. Cooper, and D. L. Strayer, “Hierar-
chical control and driving,” Journal of Experimental Psychol-
ogy General, vol. 143, no. 3, pp. 953–958, 2014.

[26] J. K. Caird, S. M. Simmons, K. Wiley, K. A. Johnston, andW. J.
Horrey, “Does talking on a cell phone, with a passenger, or
dialing affect driving performance? An updated systematic
review and meta-analysis of experimental studies,” Human
Factors, vol. 60, no. 1, pp. 101–133, 2018.

[27] P. Choudhary and N. R. Velaga, “Analysis of vehicle-based lat-
eral performance measures during distracted driving due to
phone use,” Transportation Research Part F: Traffic Psychology
and Behaviour, vol. 44, pp. 120–133, 2017.

[28] S. Glaser, S. Mammar, M. Netto, and B. Lusetti, “Experimental
time to line crossing validation,” in 2005 IEEE Intelligent
Transportation Systems, pp. 791–796, Vienna, Austria, 2005.

[29] W. V. Winsum, K. A. Brookhuis, and D. D. Waard, “A com-
parison of different ways to approximate time-to-line crossing
(TLC) during car driving,” Accident Analysis & Prevention,
vol. 32, no. 1, pp. 47–56, 2000.

[30] B. Pfleging, S. Schneegass, and A. Schmidt, “Multimodal inter-
action in the car: combining speech and gestures on the steer-
ing wheel,” in AutomotiveUI ’12: Proceedings of the 4th
International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, pp. 155–162, New York,
NY, USA, 2012.

[31] M. Zeng, Research on the Influence of Vehicle Information Sys-
tem Distraction on Driving Safety, Guangdong University of
Technology, 2018.

[32] S. Jung, J. Park, J. Park et al., “Effect of touch button interface
on in-vehicle information systems usability,” International
Journal Of Human-Computer Interaction, vol. 37, no. 15,
pp. 1404–1422, 2021.

[33] Y. Suh and T. K. Ferris, “On-road evaluation of in-vehicle
interface characteristics and their effects on performance of
visual detection on the road and manual entry,” Human Fac-
tors, vol. 61, no. 1, pp. 105–118, 2019.

[34] J. Engstroem, E. Johansson, and J. Oestlund, “Effects of visual
and cognitive load in real and simulated motorway driving,”
Transportation Research F Traffic Psychology & Behaviour,
vol. 8, no. 2, pp. 97–120, 2005.

[35] G. Reymond, A. Kemeny, J. Droulez, and A. Berthoz, “Role of
lateral acceleration in curve driving: driver model and experi-
ments on a real vehicle and a driving simulator,” Human Fac-
tors, vol. 43, no. 3, pp. 483–495, 2001.

[36] D. Gujarati, “Use of dummy variables in testing for equality
between sets of coefficients in linear regressions: a generaliza-
tion,” The American Statistician, vol. 24, no. 5, pp. 18–22,
1970.

[37] C. Wang, Z. Li, R. Fu, Y. Guo, and W. Yuan, “What is the dif-
ference in driver's lateral control ability during naturalistic dis-
tracted driving and normal driving? A case study on a real
highway,” Accident Analysis & Prevention, vol. 125, pp. 98–
105, 2019.

[38] K. Hornbæk and E. L. Law, “Meta-analysis of correlations
among usability measures,” in Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pp. 617–626,
San Jose, CA, USA, 2007.

[39] B. Mehler, D. Kidd, B. Reimer, I. Reagan, J. Dobres, and
A. McCartt, “Multi-modal assessment of on-road demand of
voice and manual phone calling and voice navigation entry
across two embedded vehicle systems,” Ergonomics, vol. 59,
no. 3, pp. 344–367, 2016.

[40] R. Graham and C. Carter, “Comparison of speech input and
manual control of in-car devices while on the move,” Personal
Technologies, vol. 4, no. 2-3, pp. 155–164, 2000.

[41] A.-K. Kraft, C. Maag, and M. Baumann, “Comparing dynamic
and static illustration of an HMI for cooperative driving,” Acci-
dent Analysis & Prevention, vol. 144, article 105682, 2020.

[42] L. Aarts and I. van Schagen, “Driving speed and the risk of
road crashes: a review,” Accident Analysis & Prevention,
vol. 38, no. 2, pp. 215–224, 2006.

[43] R. Young, “Self-regulation minimizes crash risk from atten-
tional effects of cognitive load during auditory-vocal tasks,”
SAE International Journal of Transportation Safety, vol. 2,
no. 1, pp. 67–85, 2014.

[44] X. Yang, Y. Zou, and L. Chen, “Operation analysis of freeway
mixed traffic flow based on catch-up coordination platoon,”
Accident Analysis & Prevention, vol. 175, article 106780, 2022.

[45] Z. Zhong, E. E. Lee, M. Nejad, and J. Lee, “Influence of CAV
clustering strategies on mixed traffic flow characteristics: an
analysis of vehicle trajectory data,” Transportation Research
Part C: Emerging Technologies, vol. 115, article 102611, 2020.

13Journal of Advanced Transportation


	Differences in Drivers’ Glance Behavior and Lateral Control Ability during Full-Touch Interaction Mode and Conventional Interaction Mode: A Case Study of Road Experiments
	1. Introduction
	1.1. Research on the Impact of Secondary Tasks on Resource Demands and Driving Performance
	1.2. Impact of Different Interaction Modes
	1.3. Objectives and Approach

	2. Method
	2.1. Participants
	2.2. Vehicle Equipment
	2.3. Driving Route
	2.4. Interactive Tasks
	2.5. Experimental Design and Procedure
	2.6. Data Processing
	2.7. Data Analysis

	3. Results
	3.1. Task Completion Time
	3.2. Glance Behavior
	3.2.1. Percentage of Glance
	3.2.2. Number of Glances
	3.2.3. Mean Single Glance Duration
	3.2.4. Percentage of Long-Duration Glances

	3.3. Vehicle Lateral Control Metrics
	3.3.1. Standard Deviation of Lateral Position
	3.3.2. Time to Lane Crossing
	3.3.3. Standard Deviation of Steering Wheel Angle

	3.4. Gray Correlation Analysis

	4. Discussion and Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

