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We develop and assess centralized and decentralized signal control systems with short-term origin-destination (OD) demands as
inputs. Considering each intersection turning movement as a virtual link, we assign traffic demand to paths based on minimal
instantaneous travel time. ,en, the optimal control is formulated using a G/G/n/FIFO open queueing network model (QNM).
We also solve the issue of optimal control using a three-step naı̈ve method for the centralized system with the new inputs. Because
the optimization of large-scale network traffic signals can involve sizeable numbers of decision variables and nonlinear con-
straints, making it a nondeterministic polynomial time (NP) complete problem, we further decompose the centralized system into
a decentralized system where the network is divided into subnetworks. Each subnetwork has a dedicated agent that optimizes
signals within it. Furthermore, traffic demand for the entire network is decomposed into demands for subnetworks via path
decomposition index (PDI). ,e proposed control systems are applied to test scenarios constructed using different demand
profiles in grid networks.We also investigate the impact of network decomposition strategy on signal control system performance.
Results show that network decomposition with smaller subnetworks results in less computational time (CT) but increased average
travel time (ATT) and total travel delay (TTD).

1. Introduction

,is paper develops and compares the performance of
centralized and decentralized systems for optimal traffic
signal control with short-term origin-destination (OD)
demand as inputs. To add greater realism to the signal
control optimization model, a standard ring-and-barrier
diagram with phase plans and all-red intervals are used for
intersections in the test grid network. ,e control variables
are cycle length, green times of phases, and offset for each
signalized intersection of the network. We formulate the
optimization problem with a simulation-based queueing
network model (QNM) to minimize average travel time
(ATT) and total travel delay (TTD). ,e optimization of
network signal control is nondeterministic polynomial time
(NP) complete [1]. ,us, computational time (CT) is the
point of comparison for the performances of the centralized
signal control (CSC) and decentralized signal control (DSC)

systems. In addition, studies have shown network decom-
position to have a significant impact on system performance
[2, 3]. ,erefore, we investigate the performance of CSC and
DSC systems under different decomposition setups, using
test scenarios constructed with varying demand profiles and
grid networks.

We have constructed the framework of our DSC system
within a connected vehicle (CV) environment using mobile
edge computing (MEC) to ensure a low impact of data
transmission latency and enable distributed computing for
network signal control. Centralized systems are designed to
solve the optimal control problem by processing all data
inside a central traffic management center (TMC). However,
without simplifying variables or constraints or relaxing the
control objective, the optimal control CT is high, causing
high computational latency for real-time control. Data
transmission latency worsens as more devices are connected
to the central TMC. By adding MEC technology, data can be
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analyzed at the location where it is collected. ,us, traffic
data can be transmitted through the network with low la-
tency. In the DSC system, the network is divided into
subnetworks, and each subnetwork has a dedicated agent to
control signals inside it. ,us, the DSC system decomposes
the network signal control problem in the CSC system,
making it a distributed structure allowing reduced com-
putational latency.

In addition, more types of data will soon be readily
available thanks to the rapid development of CV and
communication technologies. For example, origin-destina-
tion (OD) demand data can be generated from a variety of
sources such as navigation systems (e.g., GoogleMaps), ride-
sharing applications (e.g., Uber), and GPS-equipped vehi-
cles; these data can include vehicle origin, destination, and
start time. However, many recent studies for network signal
control still use data from fixed sensors as inputs, such as
loop detector vehicle counts. Traffic data collected by in-
duction loop detectors and other standard sensors is limited
because it can only be used to understand traffic states in a
short period locally. However, OD demand, a widely-used
input for network modeling, can help predict network-level
traffic dynamics over a given period.

Our research objective is to present an analysis of
centralized and decentralized signal control systems with
short-term OD demand, investigating the effect of different
network decompositions on the performance of both
systems. ,is research contributes to understanding a
simulation-based framework of DSC system within the
MEC-enabled CV environment along with a scalable and
extendable decomposition method for grid networks.

2. Background

Signal timing plans in urban transportation networks are
optimized to increase network capacity utilization, improve
mobility (including reducing traveler delays), and mitigate
vehicle-based emissions, amongst other aims. Adaptive
signal control (ASC) systems are widely used in many
modern cities, from the earliest SCATS [4] and SCOOT [5]
systems, typical intermediate systems as OPAC [6], RHO-
DES [7], UTOPIA [8], and ASC Lite systems [9], to more
recent adaptive fine-tuning (AFT) systems [10] and deep
learning-based system [11]. Model predictive control (MPC)
is developed by many researchers to solve network signal
control in ASC systems. For a decentralized control design, a
multiagent MPC system was developed for linear dynamic
networks [12]. In addition, a distributed MPC had the ad-
vantage of flexibility in large networks over centralized
strategies, but fared worse in computational performance
[13]. ,ese approaches all rely on traffic volume data from
upstream links or queue lengths on each leg of an inter-
section. Traffic condition predictions from these types of
data only reflect the local traffic state over a short period.
Recently, Chow et al. [14] considered drivers’ route choices
under a user-optimal (UO) assumption in centralized and
decentralized systems, showing the potential benefits of the
knowledge we gain from combining traffic assignment and
traffic signal control modeling.

Rapidly developing CV technologies that produce nu-
merous types of vehicle, personal, travel, and geometric data
offer the potential to resolve this data quality issue. For
example, the 2017 SAE J2735 dedicated short range com-
munications (DSRC) report summarizes 17 messages, 156
data frames, 230 data elements, and 58 external data element
definition references [15]. In addition, Mobile Edge Com-
puting (MEC) adds to these capabilities. Currently, the
vehicle is not only the edge of data reception but also data
collection. Researchers have already introduced a deep
learning method for vehicular platoon control based on
MEC analysis [16]. A recent study applied MEC to a new
Internet of Vehicles (IoV) framework and developed a re-
source allocation algorithm to process high-dimensional
data [17]. Finally, the introduction of 5G will help MEC to
perform efficiently in these contexts.,e inherent features of
5G, such as high connectivity, low latency, and large
bandwidth, will facilitate the demanding computational and
communication requirements of MEC [18]. ,e combina-
tion of CV, MEC and 5G technologies will provide high-
quality data, stronger computational hardware, low-latency,
and high-bandwidth communication technology. On this
basis, we can develop more efficient signal control systems
for network-level traffic and real-time control. Conse-
quently, this study seeks to understand the performance of
different network decompositions when fed OD demands as
inputs, motivated by the possibilities of these new
technologies.

Our two forms of signal control for comparison are
centralized signal control (CSC) and decentralized signal
control (DSC). CSC optimizes the parameters of each in-
tersection in the network simultaneously to find an optimal
control solution. Much of the research in this area has fo-
cused on the algorithms used in different networks towards a
range of objectives. For instance, genetic algorithms (GA)
and approximate dynamic programming (ADP) approaches
were proposed for traffic signal control in oversaturated
networks [19]. Another algorithmic solution for over-
saturated networks was the ant colony optimization algo-
rithm (ACO) [20]. Other researchers have used heuristic
algorithms; for example, Beard and et al. [21] formulated a
mixed-integer linear programming (MILP) model and used
a heuristic algorithm to solve traffic signal control
optimization.

Researchers studied these CSC cases for small networks.
Escalating to even a medium-size network means that the
complexity (NP-complete) and increased time and topo-
logical scale cause more significant difficulties [1]. ,us,
strong assumptions are made to avoid complex variables and
traffic dynamics. For example, Gregoire et al. [22] applied a
backpressure algorithm (BP) to solve the network traffic
signal control problem, ignoring travel times for each link
and turning movement to keep the problem tractable.
Prashanth and Bhatnagar [23] used reinforcement learning
(RL) to generate and train data towards minimizing average
cost for ASC. However, the application of the method results
in the curse of dimensionality, where network signal control
with RL remains an NP-complete problem. Although recent
advances in computing offer some resources to solve
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real-time, large-scale data collection and processing, the NP-
complete problem of network-wide real-time signal control
remains unresolved.

Prompted by the difficulties involved in CSC, research
attention turned to distributed systems that decompose large
networks into smaller subnetworks and optimize the pa-
rameters of all intersections in the subnetwork simulta-
neously and cooperatively. ,is form of distributed control
is also referred to as decentralized signal control (DSC).
Gokulan et al. [24] developed a distributed, multiagent-
based approach for a traffic-responsive signal control sys-
tem. Multiagents achieved the distributed signal control at
each subnetwork. ,is method significantly reduced the
complexity issue of network-level signal control. Chow et al.
[3] recently developed and compared centralized and
decentralized signal control systems with a BP model for a
road network in Central London, UK. ,eir results showed
that while the total travel delay was lower with a centralized
system, a decentralized system reduced the computational
time by 40%.

Reinforcement Learning (RL) also plays an essential role
in DSC systems. Van der Pol and Oliehoek [25], for instance,
consider explicit coordination mechanisms between learn-
ing agents using coordination graphs. Other researchers
have used individual RL agents to control traffic signals in a
multi-intersection network from two angles: without
communication between RL agents as “game theory” [26],
and with communication between agents as “neighbor-
hoods” [27, 28]. ,e RL method is a powerful tool applied in
real-world scenarios, such as the 2,510 traffic lights in
Manhattan studied by [29]. However, Wei et al. [30]
identified key challenges, two of which are critical.,e first is
that learning costs are too high for complex problems; the
second is that risk management is not widely adopted,
causing potential traffic safety issues in a real-world setting.

Network decomposition topology is an important
consideration when constructing a framework and opti-
mizing DSC performance in some research. Cell-based
decomposition [31] and intersection-based decomposition
[1, 32] are two common approaches, but both result in
subnetworks with only one intersection each. Adacher and
Tiriolo [33] addressed this by working with subnetworks
containing more than one intersection.,eir recent research
using a clustering algorithm (CA) to solve the DSC problem
based on a Cell Transmission (CTM) model highlighted the
importance of spatial decompositions [2]. However, they
tested one network that includes a specific group of sub-
networks with a simplified signal phase, thereby offering
limited results. A grouping method was developed to de-
crease delay and number of stops while minimizing traffic
operators’ subjective decisions [34] and was applied to a one-
way corridor network with 21 intersections in Montgomery
County, Maryland. A principal component analysis (PCA)
method was developed to dynamically group controllers into
clusters, but only a few signalized intersections were con-
sidered within their tested traffic networks [35]. ,e ques-
tion of how to best decompose a network to optimize signal
control remains to be solved.

,e above literature is summarized in Table 1.

Except for RL and CA, most methods use networks with
up to 100 control variables. For model inputs, link flows are
widely used, as in ASC systems. System-level objectives
include delay, throughput, travel time, and queue length.

In summary, the components of information in the
literature presented above inform our study. Considering
that local counts are inputs for most existing ASC systems,
new technologies such as CV and MEC will enable the
collection of high-quality data and local data processing,
thereby offering new possibilities for enriched data inputs.
Yet, despite excellent algorithms and machine learning
methods, centralized signal control optimization prob-
lems remain NP-complete without simplifying signal
timing plans and their representation in models. Fur-
thermore, both signal plan representation and model
constraints must be kept relatively simple in order to
apply algorithms such as BP and ACO. As such, we ad-
dress the evident need to explore a new framework of DSC
in large-scale networks considering greater realism of
signal control, new forms of data inputs, and the opti-
mization of network decomposition.

Our research used a standard ring-and-barrier signal
timing plan and can consider up to 216 control variables in a
6 × 6 grid network. Unlike most previous work using
existing sensor data sources as inputs for optimizing net-
work signals in a current technological paradigm, we use
short-term OD demand as inputs given that the techno-
logical paradigm we assume is within the connected, MEC-
enabled environment. ,e decomposition method we use is
scalable based on subnetwork size rather than set for a
specific network. As such, our method is flexible for ex-
pansion to larger networks.

3. Network Description

Short-term origin-destination (OD) demand is assumed to
be accessible given that the technological paradigm assumed
is within the CV environment. We describe the network
signal control problem with short-term OD demand input.
A standard ring-and-barrier phase plan will be applied for
each intersection inside the network, and each turning
movement of a vehicle will be considered a virtual link with
periodic travel cost function with respect to signal timing.
,e cycle length is the same for all signalized intersections.
In addition, each traveler will choose the minimum in-
stantaneous path while entering the network. Finally, a
queueing process will describe the dynamics of traffic flow.

Table 2 contains notations and variables.
,ree types of short-term demand–to be used in the

remainder of this paper–are described below:

(1) Short-term demand for path
Short-term demand for path is defined as time-de-
pendent flow entering a path, i.e., number of vehicles
entering a path during one timestamp
It is notated as dp(1, t), where p is the path id, t is
timestamp and 1 means it is the first link of the path

(2) Short-term demand for links on the path
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Suppose path p has l links, short-term demand for
the kth link on path p is defined as time-dependent
flow on path p entering the kth link, i.e., number of
vehicles on path p enter kth link during one
timestamp

It is notated as dp(k, t), where p is the path id, t is
timestamp and k means it is the kth link of the path

Note: one link can be shared by many paths, but short-
term demand for links on path p only counts flow on p.

Table 2: Notation and variables.

Variables Description
ij Directed link from node i to node j; ij ∈ A

A Set of links
Tij(t)􏽮 􏽯

ijinA
Travel cost matrix at timestamp t

st(ij, t) Signal waiting time for signalized link ij at timestamp t

gt(ij, t) Green time remaining for signalized link ij at timestamp t

ft(ij) Free-flow travel time for link ij

FFT Matrix of free-flow travel time (FFT)
M Set of intersections
xm Control variable vector for intersection m, where xm � (clm, g1

m, g2
m, g3

m, g4
m, ofm) consists of cycle length, green times, offset

Χ Set of control variables for all intersections
od Original-destination index, where o is origin node, and d is destination
OD Set of od pairs
d(od, t) Short-term demand for OD pair od at timestamp t

Δ Set of short-term OD demand
T Time horizon
Pod, Ps, P Set of paths for od, for subnetwork s, and the whole network respectively
p Path index, p � (p(1), p(2), p(3), . . . , p(lp)) is a vector with ordered nodes on the path
lp Length of path p, i.e. the total number of nodes in path p

tc(p, t) Instantaneous travel cost for path p ∈ P at timestamp t
dp(k, t) Short-term demand at node p(k) for path p ∈ P at timestamp t

ds
p(k, t) Short-term demand at node p(k) for path p ∈ Ps in subnetwork s at timestamp t

w Maximum discharging flow rate for each lane of the link
Lqueue(ij, t) Queue length for signalized link ij at timestamp t

TA(·, ·, ·)
Function for the traffic assignment, inputs are short-termOD demand, signal control variables, and FFT, output is short-term

demand for the first link of all paths

Q(·, ·)
Function for queueing process, inputs are short-term demand for the first link of all the path and signal control variables,

output is short-term demand for all paths.
s Subnetwork index
S Set of subnetwork indexes
Γs(p, ps) Path decomposition index

Table 1: List of methods for network signal control.

Method Author Network size Control variables # of var
(estimated) Inputs CSC/

DSC Objectives

GA Hajbabaie [19] 4× 4 Cycle, phase split,
and offset 96

Upstream
volume from gate

signals
CSC Min delay, travel time;

max throughput, trips

ACO Putha et al.
[20] 4× 5 one-way Green time for

throughput traffic 40 Link flows CSC Max throughput

MILP Beard et al.
[21] 1× 2 Cycle, phase split,

and offset 12 OD demand CSC Min total travel time

BP
(CSC)

Gregoire et al.
[22] 8× 8 Phase type 64 Queue length CSC Min total queue length

BP
(DSC) Chow et al. [3] Bloomsbury network

(15 intersections)
Green time for

throughput traffic 30 Link flows
CSC
and
DSC

Min total delay

RL Chen et al.
[29]

Manhattan network
(2510 intersections) Phase type 2510 Link flows DSC

Min average travel time
and max total
throughput

CA Adacher and
Tiriolo [2]

Rome network (39
intersections)

Cycle, phase split,
and offset 234 Path demand DSC Min total delay
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Short-term demand for the same link on other paths may be
different.

Short-term OD demand is defined as time-dependent
flow entering from origin node o and heading to destination
node d, i.e., number of vehicles traveling from origin node o

to destination node d during one timestamp.
It is notated as d(od, t) where o d is the OD pair and t is

the timestamp.
,ree types of short-term demand are differed by their

objectives, such as paths, links, and OD pairs. Since short-
term demand for path is equal to short-term demand to
enter the first link on the path, it is a special case of short-
term demand for links on path. Set of short-term demand for
all paths is contained in set of short-term demand for links
on all paths. In addition, short-termOD demand is the input
for DTAmodel to predict short-term demand for links on all
paths in traffic network.

3.1. Travel Cost Matrix. ,e topology of the network is de-
scribed using the travel cost matrix Tij(t)􏽮 􏽯

ij∈A, where ij is
the link and t is a timestamp index. ,ere are two types of
links shown in Figure 1: signal links (dotted) and general links
(solid). All links are two-way as per the arrow indications.

,e travel time Tij(t) for a signalized link consists of
signal wait time st (ij, t) and turning time (also considered
free-flow travel time ft(ij) for signalized link), while that of
general links consists of only free-flow travel time ft (ij).
FFT � ft(ij)􏼈 􏼉ij∈A is the matrix of free-flow travel times for
all links. If node i is not directly connected to node j, then ij is
not a link, and the travel cost is infinite. Equation (1) describes
the travel cost matrix for all links and the network topology.

Tij(t) �

0 i � j,

∞ij is not a link,

st(ij, t) + ft(ij)ij is an intersection link,

ft(ij) otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

3.2. Control Variables. Figure 2 shows a standard ring-and-
barrier diagram for a 4-leg intersection signal control strategy.
our numerical simulations use this phase plan with control
variables X � xm � (clm, g1

m, g2
m, g3

m, g4
m, ofm)􏼈 􏼉m∈M, where

xm is a vector consisting of cycle length, green times for the
four phases and offset for signalized intersection m. Phase 1 is
a protected left-turn phase for northbound and southbound
movements; phase 2 is protected for northbound and
southbound through and right movements; phases 3 and 4
repeat phases 1 and 2 for the eastbound and westbound
directions. ,e bars between phases represent all-red inter-
vals. Offset is between intersections on a corridor for the
matching through-phase, based on a reference point or
master reference.

Link ij is the signalized link for intersection m. Signal
waiting time st(ij, t) in equation (1) is computed according
to the control variable xm, which is a periodic function as per
Figure 3. Similarly, we can get the green time remaining
function gt(ij, t) according to the control variable xm.

3.3. Origin-Destination (OD) Demand and Traffic
Assignment. Short-term OD demand represents the traffic
volume between each origin and destination pair entering
the network in each timestamp. We use
Δ � d(o d, t){ }od∈OD,t∈Zin[1,T] to represent short-term OD
demand for the network during the period [0, T]. T is the
total time horizon.

We use the “1–0” principle to assign short-term OD
demand, i.e., a traveler will choose the path with the min-
imum instantaneous travel time. We also assume travelers
will not change routes.

A path is defined as a vector with ordered nodes along
the path:

p � p(1), p(2), p(3), . . . , p lp􏼐 􏼑􏼐 􏼑. (2)

,e path length, lp, is quantified as the number of nodes
on the path. ,e instantaneous travel time for path p at
timestamp t is represented as follows:

1

3

2BD4

A

C

Figure 1: Sample of an intersection.

Offset

Phase 1

Protected Left Turn Through Right Turn All Red

Phase 2 Phase 3 Phase 4

Figure 2: Standard ring-and-barrier diagram.
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tc(p, t) � 􏽘

l(p)−1

i�1
Tp(i)p(i+1)(t). (3)

,e path with minimum instantaneous travel time for
short-term demand d(o d, t) is expressed as

p
∗
od � argp∈Pod

min tc(p, t) ≔ p
∗
od ∈ Pod: tc p

∗
od, t( 􏼁≤ tc(p, t), ∀p ∈ Pod􏼈 􏼉. (4)

Dijkstra’s Shortest Path First (SPF) algorithm is used to
search for equation (4).

Now we introduce demand for path dp(k, t) to describe
the traffic flow dynamics. dp(k, t) represents traffic volume
at node p(k) for path p at timestamp t. We assign OD
demand d(o d, t) to the path p∗o d with minimal instanta-
neous travel time (note that we use a small random error to
make sure the cost of each path distinct):

dp∗
o d

(1, t) � d(o d, t). (5)

We use TA(Δ, X, FFT) in equation (6) to describe the
traffic assignment process that takes short-term OD de-
mand, signal control variables, and matrix of FFT as in-
puts to estimate short-term demand for the first link of all
paths.

dp(1, t)􏽮 􏽯
p∈P�∪ o d∈O DPo d, t∈Z in [1,T]

� TA(Δ, X, FFT). (6)

3.4.Queueing Process. We use two basic assumptions for the
queueing process.

(1) Point queue: we assume that the upstream link holds
the queue for each signalized link. ,e link has
infinite vehicle storage. Vehicles exit the queue with a
constant discharge rate w.

(2) First in first out: the first vehicle that enters a link will
also be the first to leave the link.

,ese two assumptions describe link dynamics in Dy-
namic Traffic Assignment (DTA) [36]. We use these as-
sumptions here to generate traffic dynamics equations in the
Queueing Network Model (QNM). ,e input for the
queueing process is short-term demand for the first link of
all paths dp(1, t)􏽮 􏽯

p∈P,t∈Zin [1,T]
plus signal control variables

X during the time horizon.
Figure 4 shows a sample link. ,e link has three lanes for

left, right, and through movements, respectively. It is a
general link followed by a signalized intersection. We as-
sume that general links have three lanes (per direction) for
each turning movement, while the downstream signalized
links have one lane per direction.

Suppose the queue length on a signalized link at time-
stamp t is Lqueue(ij, t). Considering the figure describes the
movement for short-term OD demand dp(k, t), then node
nin � p(k), nout � p(k + 1), and nnext � p(k + 2). In addi-
tion, after the time required to pass the link ft(ninnout),
vehicles will join the queue such that
Lqueue(noutnnext, t + ft(ninnout)). noutnnext represents the
signalized link.

Suppose the signalized link noutnnext belongs to the hth

phase for intersection m. According to the control variable
xm � (clm, g1

m, g2
m, g3

m, g4
m, ofm), we obtain the following

information:

(1) Cycle length for the signalized link noutnnext is clm

(2) Green time of the phase for the signalized link
noutnnext is gh

m

Offset

1st Cycle 2nd Cycle 3rd Cycle 4th Cycle

…… 

5th Cycle

Si
gn

al
 w

ai
tin

g 
Ti

m
e

System Time

0

Figure 3: Sample of signal waiting time function.
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(3) Signal waiting time for the signalized link noutnnext is
st(noutnnext, t)

(4) Signal green time remaining for the signalized link
noutnnext is gt(noutnnext, t)

We then generate traffic dynamics via a close loop:

Step 0 (initialization): t � 0, k � 1, input demand
profile for all paths

dp(1, t)􏽮 􏽯
p∈P�∪ o d∈O DPo d, t∈Z in [1,T]

. (7)

Step 1 (demand update): ∀p ∈ P � ∪ o dPo d,

nin � p(k),

nout � p(k + 1),

nnext � p(k + 2).

(8)

Find intersection m, which contains the signalized link
noutnnext.
if α � dp(k, t)> 0, then

Lqueue noutnnext, t + β( 􏼁

� Lqueue noutnnext, t + β − 1( 􏼁 + α, (9)

β � ft ninnout( 􏼁. (10)

Equation (8) selects the kth link on path p. Link layout
is the same as Figure 4. Equation (9) updates the queue
length for each signalized link. β in equation (10) is the
first part of the total queueing time–the free-flow travel
time spent on link ninnout.
Calculate queueing time
Case 1: when the signal is green, gt(noutnnext, t + β)> 0

Δt � β +
Lqueue noutnnext, t + β( 􏼁 − w · gt noutnnext, t + β( 􏼁

w · g
h
m

× clm + mo d
Lqueue noutnnext, t + β( 􏼁

w
− 1, g

h
m􏼠 􏼡 + 1. (11)

If a vehicle cannot pass the intersection during the
green time in the current cycle of the signalized link, it
will wait for another cycle for the next green phase. ,e
time for the last vehicle in the queue to reach the front is
Lqueue(noutnnext, t + β)/w. ,e maximum discharging
flow rate w describes the maximum number of vehicles
that can traverse the signalized link in one timestamp.

⌈ · ⌉ is an operator calculating the ceiling of the inside
value, which is a minimal integer greater than the value.
For example, if Lqueue(noutnnext, t + β) � 3 and w � 2,
then Lqueue(noutnnext, t + β)/w � 3/2 � 2. mo d(a, b)

calculates the remainder of a divided by b. For example,
mo d(7, 4) � 3.
Case 2: when the signal is red, gt(noutnnext, t + β) � 0

Δt � β + st noutnnext, t + β( 􏼁 +
Lqueue noutnnext, t + β( 􏼁

w · g
h
m

− 1 × clm + mod
Lqueue noutnnext, t + β( 􏼁

w
− 1, g

h
m􏼠 􏼡 + 1. (12)

In equation (12), the additional term st(noutnnext, t + β)

is the wait time (for the red signal to turn green).
Updating path demand function

dp(k + 1, t + Δt) � dp(k + 1, t + Δt) + α. (13)

After exiting the kth link on path p, traffic will enter the
(k + 1)th link on path p. Since we use constant max-
imum discharging rate w, α≤w for each iteration.
Step 2 (queue length update):
After the demand for all paths has been assigned, the
queue length is updated.

Lqueue noutnnext, t + β( 􏼁 �
Lqueue noutnnext, t + β( 􏼁 if Tgreen noutnnext, t + β( 􏼁 � 0,

Lqueue noutnnext, t + β( 􏼁 − w if Tgreen noutnnext, t + β( 􏼁> 0.

⎧⎨

⎩ (14)

IN OUT NEXT

Figure 4: Sample link.

Journal of Advanced Transportation 7



From Step 1, we increased the length of the queue for
each positive demand unit. When the signal is green,
the queue length is reduced by the number of dis-
charging vehicles; when the signal is red, the queue
length will be the same as Step 1.
If k< l(p) − 1, k � k + 1, go to Step 1; otherwise, k � 1,
go to Step 3;
Step 3 (stop condition):
If t<T + δ, t � t + 1, go to Step 1; otherwise, Stop.
After all the path demand functions are updated for the
current timestamp t, we start the next iteration for

timestamp t + 1. δ is extra time for all the vehicles
exiting the network.

In summary, equations (8)–(14) describe the dynamic
queueing process as Q( dp(1, t)􏽮 􏽯

p∈P, t∈Z in [1,T]
, Χ) as

shown in equation (15), which takes short-term demand
on the first link for all paths and signal control variables
as inputs, and short-term demand of each link for all
paths as outputs. ,e short-term demand for a given path
consists of the demand for each link for the path and
timestamp.

dp kp, t􏼐 􏼑􏽮 􏽯
kp∈Z in [1, l(p)], p∈P, t∈Z in [1,T+δ]

� Q dp(1, t)􏽮 􏽯
p∈P, t∈Z in [1,T]

, Χ􏼒 􏼓. (15)

Since we use general distributions for the demand (the
arrival rate) and service rate, finite servers (signalized
links), and FIFO assumption, network traffic dynamic
model in this work can be regarded as a G/G/n/FIFO
Queueing Network Model (QNM). ,e QNM is also open
since the number of customers (vehicles) is not fixed.

3.5. Summary. Network dynamics can be estimated using
inputs including short-term OD demand, signal control
variables (cycle length, phase split, and offsets) for all in-
tersections, and link free-flow travel times. ,e data flow is
shown in Figure 5.

,e travel cost matrix is estimated at the first step with
inputs free-flow travel time (FFT) and signal timing. Traffic
assignments are based on the “1–0” principle that assumes
travelers will choose the minimal instantaneous path. ,e
SPF algorithm is used to generate the shortest path. ,us,
OD demand is transferred into volumes for the first link of
all paths.,en, the traffic dynamic is estimated within QNM,
combined with signal control variables used in the initial
step. ,is estimation is completed via simulation in
MATLAB in Section 6.

4. Centralized Signal Control System

,e previous section outlines how to predict traffic dy-
namics using signal control variables, short-term OD de-
mand, and the FFT matrix within the G/G/n/FIFO open
QNM. We continue to develop a centralized signal control
(CSC) system to optimize network-wide signal control. We
assume low data transmission latency within the MEC-
enabled CV environment in both the CSC and DSC sys-
tems. We will count data transmission latency in our
network signal control system in a future study after
completing the device test in our Edmonton, Canada
testbed. We formulate the objective functions using min-
imal average travel time (ATT) and total travel delay (TTD)
and apply a three-step naı̈ve method to optimize the
network traffic.

4.1. Problem Formulation

4.1.1. Minimal Average Travel Time. Average travel time
(ATT) has been used as an objective or evaluation index
in many network signal control studies, as shown in
Table 1. ATT is the mean time spent by each vehicle
traveling inside a network and is computed using the
difference between a vehicle’s network entry and exit
times, as in equation (16). However, we cannot generate
trajectory data (time points of vehicles entering and
exiting network) from short-term OD demand to cal-
culate ATT.

ATT � mean Δtveh( 􏼁 �
􏽐

n
i�1 t

exit
vehi

− t
enter
vehi

􏼐 􏼑

n
. (16)

Equation (17) simply rearranges the RHS of equation
(16) to represent all vehicles’ mean exit and entrance time.
,us, ATT can be calculated by short-term demand of links
for all paths as equation (18).

􏽐
n
i�1 t

exit
vehi

− t
enter
vehi

􏼐 􏼑

n
�

􏽐
n
i�1 t

exit
vehi

n
−

􏽐
n
i�1 t

enter
vehi

n
, (17)

ATT �
􏽐

T+δ
t�1 􏽐p∈Pdp(l(p), t) × t

n
−

􏽐
T+δ
t�1 􏽐p∈Pdp(1, t) × t

n
.

(18)

δ is the additional time required for all demand in T to
exit the network. Equation (19). is the total number of
vehicles–the sum of short-term OD demand over the time
horizon.

n � 􏽘
T

t�1
d(o d, t). (19)

From Section 3, the short-term demand for a path is
generated from short-term OD demand Δ, control variable
X, and FFT. We can write one function—equation (20)—to
compute ATT from these three inputs.
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ATT � φ(Δ, X, FFT). (20)

4.1.2. Total Travel Delay. Total delay is the additional time
all vehicles spend in the network due to signal waiting time,
idling time in queues, and decelerating and accelerating. In
this work, only signal waiting time and idling time in queue
are considered due to the macroscopic representation of
vehicle behavior.

We calculate total delay based on total queueing time
with equations (9)–(13), while total queueing time is cal-
culated as equation (21). Like equation (22), we have one
function to compute TTD from the original inputs as
equation (20).

TTD � 􏽘
k∈Zin [1,l(p)]

􏽘
p∈P

􏽘
t∈Z in [1,T+δ]

Δt × α,
(21)

where Δt and α were previously defined.

TTD � ϕ(Δ, X, FFT). (22)

4.2. Centralized Signal Control. Suppose the cycle length is
the same for all intersections, while phases split and offset for
different intersections can vary with control objectives. In
addition, assuming that an intersection signal’s cycle length
is the sum of green times, and offset is a positive integer less
than the cycle length, the CSC problem can be formulated as
follows:

min
X∈Ω

ATT orTTD

Subject to :ATT�φ(Δ, X, FFT) orTTD

� ϕ(Δ, X, FFT), (23)

􏽘

4

k�1
g

k
m � clm, ∀m ∈M, (24)

clm � cln, ∀m, n ∈M, (25)

0≤ ofm < clm, ∀m ∈M, (26)

where Ω is the feasible set for X,
Ω � X: clm � cln ∈ Ωcycle,􏽮 (g1

m, g2
m, g3

m, g4
m) ∈ Ω

phase, of m ∈ Ωoffset, ∀m, n ∈M}Ωcycle ⊂ Z+ and Ωoffset ⊂ Z+

are finite subsets of Z+. Ωphase ⊂ Z4
+ is a finite subset of Z4

+.
Ωcycle, Ωphase, and Ωoffset are the feasible sets of cycle

length, phase split, and offset for a signalized intersection. If
the number of elements in each feasible set is ncycle, nphase,
and noffset respectively, then the size of the feasible set Ω is
|Ω| � ncycle × n4|M|

phase × n4|M|
offset. ,e total number of intersec-

tions inside the network is |M|.
,e control variables are combinations of cycle length,

phase splits and offset, which do not have convex rela-
tionships. So, the feasible set is not convex, and constraint
(21) is nonlinear since it is derived from equations (17)–(22)
to describe the network level index of complicated traffic
dynamics. Network signal control is known to be an NP-
complete problem [1] such that no method currently exists
to solve the problem without simplifying variables or

{Tij(t)}ij in A

{dp(1, t)}p€P, t€Z in [1,T]

{dp(kp, t)}kp€Z in [1,l(p)],p€P,t€Z in [1,T+δ]

X={xm=(clm, g1m, g2m, g3m, g4m, ofm )}m€M

FFT={ft(ij)}ij€A

∆ = {d(od,t)}od€OD,t€Z in [1,T]

Signal
Control

Variables

FFT

Network
Topology

Queueing
Process

Travel Cost
Matrix

Short-term
Demand for

all paths

Short-term
Demand for
the first link
of all paths

Traffic
Assignment

Short-term
OD demand

Figure 5: Data flow of network traffic dynamics prediction.
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constraints or relaxing the control objective when the network
size is relatively large. We now attempt to address this issue.

4.3. <ree-Step Naı̈ve Method. As there is no suitable al-
gorithm available to solve the optimization problem with
short-term OD demand as inputs, we propose a simple
,ree-Step Näıve Method. ,is method is transformed from
the basic widely used traffic signal timing coordination [37].
It generates optimal solution for each subproblem which is
very close to the overall optimal solution for Problem (A).

After choosing ATT or TTD as objectives, this method
decomposes the original Problem (A) into three subprob-
lems A1, A2, and A3. ,e simple method is described as
follows:

Step 1: solve problem (27), optimal cycle length: fix
phase splits and offsets for all intersections and find the
optimal cycle length as per the optimization objective.
Step 2: solve problem (32), optimal phase split: based on
the optimal cycle length in Step 1, fix the offset and
generate all combinations of phase splits, then find the
optimal phase split as per the optimization objective.
Step 3: solve problem (40), optimal offset: based on the
first two steps, generate all the combinations of offsets
for all intersections and find the optimal offsets plan as
per the optimization objective.

Problem (27, 32, 40) is listed as follows:

min
X∈Ω1

ATT orTTD, (27)

Subject to :ATT � φ(Δ, X, FFT) orTTD

� ϕ(Δ, X, FFT), (28)

g
k
m �

clm
4

, ∀m ∈M, ∀k ∈ 1, 2, 3, 4{ }, (29)

clm � cln, ∀m, n ∈M, (30)

ofm � 0, ∀m ∈M, (31)

where Ω1 � X: clm � cln ∈ Ωcycle, gh
m � clm/4,􏽮

of m � 0, ∀m, n ∈M, ∀h ∈ 1, 2, 3, 4{ }}.
ATT or TTD is a convex curve with respect to cycle

length, and we can solve problem (27) via the Bisection
Algorithm (BA). If cl∗ is the optimal cycle length from
problem (27), then we formulate problem (32) as follows:

min
X∈Ω2

ATT or TTD, (32)

Subject to :ATT � φ(Δ, X, FFT) orTTD

� ϕ(Δ, X, FFT), (33)

􏽘

4

k�1
g

k
m � cl

∗
, ∀m ∈M, (34)

of m � 0, ∀m ∈M, (35)

where Ω2 � X: c{ lm � cl∗, (g1
m, g2

m, g3
m, g4

m)

∈ Ωphase, ofm � 0, ∀m ∈M, ∀h ∈ 1, 2, 3, 4{ }} .
Although problem (32) is simpler than Problem (A), the

feasible set of the problem is still large and challenging to
solve. Although some Genetic Algorithms (GA) may be
applied to the problem, they cannot guarantee the solution is
optimal, and therefore we use a global search.

Suppose (g1∗
m , g2∗

m , g3∗
m , g4∗

m )􏼈 􏼉m∈M is the optimal phase
split for all intersections from problem (32), then problem
(40) is formulated as follows:

min
X∈Ω3

ATT or TTD, (36)

Subject to : ATT � φ(Δ, X, FFT) orTTD

� ϕ(Δ, X, FFT), (37)

0≤ ofm < cl
∗
, ∀m ∈M, (38)

where Ω3 � X: clm � cl∗, (g1
m, g2

m, g3
m,􏼈

g4
m) � (g1∗

m , g2∗
m , g3∗

m , g4∗
m ), of m ∈ Ωoffset, ∀m ∈M}.

,e feasible set of this problem is convex, and thus we
use a gradient search approach with a constant step size to
update offset vector value.

If there are n intersections, we generate the control
variable as a n × 6 matrix 􏽥X. Each row represents the signal
control variable xm, m � 1, 2, 3, . . . n. ,e last column 􏽥Xof is
a vector of offsets for all intersections, which is the control
variable for problem (40).

We update the control variable according to equations
(38) and (39).

􏽥X
(i+1)

of � 􏽥X
(i)

of + αd
(i)

, (39)

d
(i)

� argd(i)∈D min 􏽥X
(i)

of + αd
(i)

􏼚 􏼛, (40)

where D � e1, e2, . . . , en􏼈 􏼉 is the standard basis for vector
space Rn, α � cl∗/c, and c is a constant value which is a
divisor of cl∗.

Finally, we will get the solution for the network-wide
signal optimization as

X
∗

� x
∗
m � cl

∗
, g

1∗
m , g

2∗
m , g

3∗
m , g

4∗
m , of

∗
m􏼐 􏼑􏽮 􏽯

m∈M. (41)

4.4. Summary. ,is section formulated the optimization
problem for centralized signal control (CSC) with short-
term OD demand for a network. We first introduced ATT
and TTD as the control objectives with inputs as short-term
demands for all paths. Because this optimization problem is
NP-complete due to nonconvex variables and nonlinear
constraints, we decomposed the problem with a three-step
NäıveMethod whereby we solve smaller subproblems one by
one. However, this problem remains costly to solve (which
we demonstrate in Section 6) without developing a new
algorithm for the problem.
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5. Decentralized Signal Control System

Decentralized signal control (DSC) is also referred to as
distributed control, and its development is motivated by the
difficulty of solving CSC. ,us, we develop a DSC system
with short-term OD demand as inputs to control network
traffic. Section 5.1 introduces the CV environment with
Mobile Edge Computing (MEC), Section 5.2 proposes the
decomposition method, and Section 5.3 describes the two-
layer process for our DSC system.

5.1. Connected Vehicle (CV) Environment. A central traffic
management center manages traditional signal control
systems. Although data can be transferred through each end
of the traffic network in the CV environment, the traditional
framework has limitations resulting from the latency and
bandwidth during data processing. With the help of MEC,
optimization calculations can be completed at the location
where data is generated. ,is benefits network signal control
systems by reducing data transmission latency and enables
distributed computing for DSC. Like the CSC system, we
assume data transmission latency is too low to be counted in
a MEC-enabled CV environment in the DSC system. In
addition, we focus more on computational efficiency and
network performance when comparing CSC and DSC.

Figure 6 compares CV environments with and without
MEC for traffic control.

Communication in a CV environment, both with MEC
and without MEC, includes three major parts: the TMC,
infrastructure and vehicles. In traditional ITS architecture
without MEC, all data is sent to and processed at a cen-
tralized TMC. However, the limited bandwidth of the
backhaul connection between the centralized TMC

(Central-TMC) and local infrastructure will be rapidly
exhausted by the volume of data gathered by the increasing
number of sensors in the ITS. Likewise, the latency will be
unacceptable for CV applications that require large amounts
of data.

After introducing MEC into the framework, data can be
processed, and applications can be run on any local edge
unit, regardless of whether it is an infrastructure edge or
vehicle edge. ,us, the heavy computation workload for the
central TMC can be evenly distributed to the lower-level
mobile edge computers, increasing computation capacity
and proximity for real-time data processing.

,is CV environment was implemented in a testbed in
Edmonton, Canada, with all settings to be applied gradually
within the next four years. MEC devices are located at each
intersection of the network, collecting and delivering data
and controlling the traffic signal. ,ese MEC devices are
called local MEC and include a computing server, roadside
equipment (RSE), and a controller. Each vehicle has onboard
equipment (OBE), and the Central TMC has a cloud
computing server.

In addition, we decompose the whole network into
subnetworks with several intersections. Each subnetwork
has a regional MEC controller. Each regional MEC con-
troller is designed to receive messages from surrounding
regional MEC controllers, make decisions for the traffic
signal control of intersections inside the subnetwork and
send messages to surrounding intersections.

5.2. Network Decomposition. Network decomposition is
highlighted in recent DSC research [2] as an important
factor for optimizing DSC system. In this work, a grid
network is decomposed into grid subnetworks. Besides

MEC MEC

TMC

Centralized Database

Data Packages:
• MAP (Map Data)
• SPAT (Signal Phase And Timiing

Message)
• BSM (Basic Safety Message)

• Other DSRC Messages

• SRM (Signal Request Message)
• SSM (Signal Status Message)

• Estimate Traffic Flow
• Average Vehicle Speed
• Short-term OD demand

New Data Packages:

DSRC/C-V2X

Sensors

DSRC/C-V2X

Infrastructure Vehicle

Sensors

Figure 6: CV environment with/without MEC.

Journal of Advanced Transportation 11



spatial decomposition, we also decompose demand for paths
of the whole network into demand for paths of each sub-
network. ,us, each subnetwork has an individual short-
term demand profile to optimize network signals inside it as
a small CSC system.

Figure 7 shows an example of a 6× 6 network decom-
posed into nine 2× 2 subnetworks.

After short-term OD demand is collected at each end of
the network, the Central TMC will distribute OD and path
information to regional MECs in subnetworks. As assumed
in Section 3, travelers will not reroute on their way. ,e path
from the node in the top left corner to the second-to-top
right node, illustrated in the figure, is divided into three sub-
paths through three subnetworks marked as 1, 2, and 3.

Path decomposition is achieved by the Path Decom-
position Index (PDI) Γs(p, ps), where s is the index for the
subnetwork, p is path for the whole network, and ps is path
for subnetwork s. Γs(p, ps) � m if the mth node of path p is
the first node of path ps for subnetwork s. For example,
suppose the index for the top middle subnetwork in Figure 7

is 2. For path p shown, since the 4th node for the whole path
p is the first node of the subpath p2 inside the subnetwork,
we have Γ2(p, p2) � 4.

Say ds
p(k, t) is defined as short-term demand at node

p(k) for path p ∈ Ps in subnetwork s at timestamp t.
Suppose Γs(p, ps) � m. ,en,

d
s
ps

(1, t) � dp(m, t). (42)

5.3. Two-Layer Process. With the introduction of a CV
environment with MEC and network decomposition with
PDI, Figure 8 illustrates the two-layer process for a DSC
system with short-term OD demand used for this work.

In the first layer, the input is the short-term OD matrix.
,e central-TMC will gather this information from the
regional MEC controllers. ,e output from this first
layer—the short-term demand for each path—is input to the
second layer. ,e second layer has two functions: traffic
dynamics (traffic state prediction) on regional MEC

Regional
MEC

controller

Regional
MEC

controller

Regional
MEC

controller

Regional
MEC

controller

Regional
MEC

controller

Regional
MEC

controller

Regional
MEC

controller

Regional
MEC

controller

Regional
MEC

controller

1

32

Central
TMC

OD
+Path

OD

Figure 7: An example of network decomposition.
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controllers and signal optimization on local MECs inside
each subnetwork.

Each subnetwork can be considered a small CSC system
since the signal optimization is achieved via the three-step
naı̈ve method, the same as for CSC systems. In addition,
traffic dynamics are achieved using the same queueing
process. Since the network traffic reacts to changes in signal
timing plans, we repredict traffic dynamics after updating
signals. ,is loop will run until the convergent or iteration
number is up to a preset constant integer k.

In the CSC system, all three functions are run inside the
cloud server of central TMC. However, in the DSC system,
the sole function of the Central-TMC is to calculate short-
term path demand to provide route guidance.,e remaining
optimization tasks are allocated to the regional MEC con-
troller inside each subnetwork. In addition, local MECs in
the subnetwork are involved in the computation of the signal
optimization function. All the computation resources of the
DSC system are fully used.

5.4. Summary. ,is section introduced the environment and
decomposition method of the DSC system. ,e structure of
the DSC system was described as a two-layer process.

,e DSC system has three main functions: route guid-
ance in central TMC, traffic dynamics prediction in regional

MEC controller, and signal optimizations with local MECs
in each subnetwork. PDI plays a vital role in allocating sub-
jobs to each regional MEC controller. Considering that each
subnetwork functions as a small CSC system, the DSC
system, as outlined here, is an extension of the CSC system
that enables network expansion.

6. Numerical Simulation

We use MATLAB for our numerical simulation, with
computation completed in the Compute Canada server. ,e
maximum number of cores is 40, and the speed for each core
is 2.4GHz. Both the CSC andDSC systems are demonstrated
below in five scenarios. We test 1 × 1, 2 × 2, 3 × 3, 4 × 4, 6 ×

6 grid networks as illustrated in Figure 9.
,e basic settings for all cases are as follows:

(1) Time horizon: T � 300 time units, demand is ran-
domly generated from a uniform distribution (var-
iance equals mean value) for OD pairs within the
time horizon with demand interval as 1 time unit.

(2) Free-flow travel time for all general links: 10 time
units.

(3) Left turn, right turn, and through for signalized links
cost 3, 2, and 1 time units, respectively. All-red time
for signal control is 2 time units. ,e discharge rate

Updated
Signals

Iteration=k

Optimized
Signals of

Subnetworks

Local MECs
(Signal Optimization)

ATT/TTD
(Original)

ATT/TTD
(Optimized)

Regional MEC
Controllers

(Traffic Dynamics:
Queueing Network)

Short-Term
Demand for

each
Subnetwork

Short-Term
Demand for

Paths

Central-TMC
(Route Guidance)

Short-Term
OD
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Figure 8: Two-layer process for decentralized signal control system.
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for each signalized link is w � 2 vehicles per time
unit.

(4) A standard ring-and-barrier diagram (Figure 2) is
used for all intersection signal timings.

(5) Cycle length is the same for all intersections. Phase
splits (i.e., green times) and offsets may vary among
different intersections. ,e unit of control variables
and two objectives are in time units.

For DSC-1 cases, the subnetwork size is 1 × 1 with one
intersection. For DSC-2 cases, the subnetwork size is 2 × 2
with four intersections. If we consider the CSC case as
decomposing the whole network into one subnetwork,
then CSC, DSC-1, and DSC-2 are regarded as different
network decompositions for the same network.

6.1. Scenario 1: CSC, 2 × 2 Network. Scenario 1 consists of
CSC for a 2 × 2 network. We show the results of the ,ree-
Step Näıve Method step by step.

6.1.1. Cycle Length. ,e first step is to optimize the cycle. We
consider five different demand levels (levels 1–5): 560, 1120,
1680, 2240, 2800 total vehicles over the time horizon with
interval as 1 time unit. Results are shown in Figure 10.

Both ATTand TTD are convex, such that we can use the
Bisection Method to search for the local optimal point of the
cycle length. As demand increases, the optimal cycle length
increases as well.

6.1.2. Phase Split. Demand level 3 has an optimal cycle
length cl∗ � 48. ,e offset is fixed as the initial value 0, and
we solve the problem via the global search method.

Set the feasible set of phase splits for problem (32) as

Ωphase � (12 12 12 12), (16 16 8 8), (16 8 16 8), (16 8 8 16), (8 16 16 8), (8 16 8 16), (8 8 16 16){ }. (43)

Figure 9: Grid networks.
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,e optimal phase is g∗m � (12 12 12 12), m � 1, 2, 3, 4,
which results from the uniformly distributed demand.
,e minimal ATT � 159.27 and TT D � 2.24 × 105.

6.1.3. Offset. Continue with the values above for cl∗, g∗m, and
m. Set c � 6, then the step size for the gradient search ap-
proach α � cl∗/c � 8. ,e resulting optimal offsets are
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of1 � 16, of2 � 24, of3 � 32, of4 � 0, final ATT � 154.74,
and TT D � 2.19 × 105. ATT is reduced by 2.84% and TT D

by 2.33% from the previous step. CT � 32.45 seconds.
,e results show that the ,ree-Step Näıve method can

solve the CSC problemwith OD demand as inputs for a 2 × 2
network. In addition, the bisection, global search, and
gradient searchmethods are applicable for Step 1, Step 2, and
Step 3, respectively. CT is acceptable for the time horizon
T � 300 time units.

6.2. Scenario 2: DSC-2, 4 × 4 Network. Scenario 2 shows the
two-layer process of the DSC system. ,e example used is a
DSC-2 case for a 4 × 4 network.,e stop iteration number is
5. ,e cycle length is fixed to 60. ,ere are 351 vehicles over
the time horizon T � 300 with demand time interval as 1
time unit. ,e number of CPU cores is 16. c � 6 for the
,ree-step Näıve Method. Results for each iteration are
shown in Table 3.

,e optimal solution results in ATT � 133.35 and
TT D � 2.65 × 104. In this scenario, CT � 151.81 secs.
From the first iteration, ATT is reduced by 22.87%, while
TT D is reduced by 38.52%.

Table 3 also shows each iteration in the DSC case in the
last row. ,e remaining scenarios measure the impact of
CPU core numbers, stop iteration numbers, and different
network decompositions based on the performance mea-
sures used (ATT, TT D, and CT).

6.3.CPUCores:CSC,2 × 2. We tested the number of cores to
observe the impact on CT. We used a CSC case with a 2 × 2
network, with 192 vehicles over the time horizon with de-
mand time interval as 1 time unit.

Figure 11 shows that when the number of CPUs in-
creases, CT will decrease from over 250 seconds to around
10 seconds. However, the curve is convex, which means the
marginal benefit decreases with respect to the number of
CPU cores. ,is decrease demonstrates the computational
limitations of a centralized system even with a powerful
computing cloud server.

6.4. Iteration Number: DSC-1, 2 × 2. Here we demonstrate
how the number of iterations impacts DSC system perfor-
mance, using a 2 × 2 network decomposed into four 1 × 1
subnetworks. ,ere are 192 vehicles over the time horizon
with demand time interval as 1 time unit, the same demand
as in Scenario 3.

,e objective function converges as the number of it-
erations increase (Figure 12), evidence of the convergence
for the two-layer process. In other words, there exists an
equilibrium between demand and traffic signal optimization.
,e two objectives, ATT and TTD, correlate since they have
similar trends when the iteration number increases.

6.5. Network Decompositions. Scenario 5 is designed to
compare different decompositions under different short-
term OD demand profiles. ,e demand input is shown in
Table 4. Demand is increased from level 1 to level 3.

Short-term OD Demand is generated randomly following
uniform distribution over OD pairs and the time horizon
with demand interval as 1 time unit. ,e mean value and
standard variance are τ, 2τ, 3τ /od for the three levels, re-
spectively. τ is the adjust coefficient for different network
sizes to balance saturation rate under the same demand level
for all the networks. ,e number of control variables for one
intersection is 6, so the maximum number of control var-
iables in the simulation is 216 for the 6 × 6 network.

Since the primary calculation of the system is in the local
layer of the two-layer process, and the local MEC has a
computing unit located at each intersection, the total
number of cores used for the DSC system is equal to the
number of intersections inside the network. Limited to the
test environment, we will use clusters with the same number
of CPU cores to intersections instead. ,e numbers of cores
used for DSC cases are 1, 4, 9, 16, 36 for 1 × 1, 2 × 2, 3 × 3,
4 × 4, 6 × 6 networks, respectively. Since CSC system
computation is supposed to be completed in the cloud
server, 40 cores are used.

Table 5 outlines the results for Scenario 5. Each case is the
result of 10 iterations.

Table 5 outlines the case for CSC only since the network
1 × 1 only has one intersection. In addition, networks 2 × 2
and 3 × 3 cannot be divided into more 2 × 2 subnetworks.
,e DSC-2 case is not possible for either network. Since CT
increases exponentially as the CSC case network size in-
creases, we do not have CSC cases for 4 × 4 and 6 × 6
networks. CT for the CSC case of the 3 × 3 network is ∼1 h
30min, which is high for any real-time application, thereby
making it problematic for a larger-sized network in these
conditions.

In Table 5, the best value among different demand levels
for cases of the same network and decomposition (DSC-1,
DSC-2, or CSC) is shaded in grey. For TTD, the best case is
always the one with the lowest demand. Since demand re-
flects the total number of vehicles in the network, the
resulting TTD is correlated. However, for ATT, the best case
is not consistent with demand level. For example, the best
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Figure 11: Impact of CPU cores on CT.
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case is demand level 3 for network 1 × 1 in CSC cases and
network 2 × 2 in both the DSC-1 and CSC cases due to the
varying distribution of demand profiles. For larger networks,
cases with lowest demand have the best ATT and TTD

because larger networks seem to be oversaturated in the high
demand level as compared to smaller networks. For example,
ATTs in both DSC-1 and DSC-2 cases of network 6 × 6
increase by 30% approximately from demand levels 1 to 2. In
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Table 4: Demand profile of scenario 5.

Network size Level 1 (τ/od) Level 2 (2τ/od) Level 3 (3τ/od) τ # of intersections # of control variables
1 × 1 96 168 228 12 1 6
2 × 2 192 360 552 6 4 24
3 × 3 284 520 816 4 9 54
4 × 4 351 753 1089 3 16 96
6 × 6 574 1082 1205 2 36 216
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summary, TTD is positively correlated to demand while
ATT will depend on demand distribution and signal time,
especially in cases of small networks.

Figure 13 illustrates the results of comparing CTof cases
in the same network decomposition.

We investigate the CTs of CSC and DSC-1 cases by
number of signalized intersections. Here, the goodness of fit
for CSC cases is measured by power function. Since the
power value is over 7, this indicates that the CT of CSC
increases exponentially when number of intersections in-
crease. Given that the relationship is convex, the goodness of
fit for DSC-1 is measured using 3-degree polynomial
function. However, the coefficients for x2 and x3 are rela-
tively small, indicating that the relationship between CTand
number of intersections in the DSC-1 cases is nearly linear.
R-square values for both cases are over 99%. Fits for the CSC
cases using polynomial functions are low on goodness of fit
and thus, not shown here. ,erefore, based on CT, we
conclude that the DSC-1 system is more suitable for a real-
time application of larger size networks than the CSC
system.

For cases of same network size, we further compare the
performance of different decompositions, as per Table 6.
Since the intersection of CSC cases and DSC-2 cases are
empty, we use the performance ratios over DSC-1 cases for
other cases with same demand level and network size.

From the ratio of CSC versus DSC-1 cases in the upper
half of Table 6, we find that DSC-1 cases emerge as the most
computationally efficient. Ratios for CT in all cases are
greater than one. In addition, CT is reduced by around 55%
and 99.7% as compared to CSC cases for 2 × 2 and 3 × 3
networks, respectively. However, ATT and TTD for DSC-1
cases are inferior. Ratios for ATT and TTD for all cases are
smaller than one. In general, DSC-1 cases result in much
better CT than CSC cases, but demonstrate poorer perfor-
mance in ATT and TTD.

When comparing CSC with DSC-1 cases, the im-
provement of ATT is around 10% for 2 × 2 network, while
the improvement is less than 5% for 3 × 3 network for the

CSC cases. However, there is significant improvement of
TTD for CSC cases in 3 × 3 network compared to 2 × 2, for
which ratios are less than 0.7 when compared to those of
2 × 2 networks (over 0.88). We can see the same trend when
comparing DSC-2 with DSC-1 cases. Cases of 6 × 6 network
are better in terms of TTD as compared to 4 × 4 network
cases. We should consider suitable objective functions for
optimizing different cases.

In addition to comparing DSC-2 and DSC-1 cases, CT
ratios of 6×6 networks are approximately 2.7, smaller than
the ratios of the 4 × 4 networks. ,ese ratios demonstrate
that expanding DSC-2 to a more extensive network does not
sacrifice much computational efficiency. However, the ratio
of CT jumps from less than 3 to over 300 with increases in
network size when we look at CSC cases. ,is change
highlights the limitation of CSC cases when expanding
network size.

As a final note, we cannot directly compare the DSC-2
and CSC case results in Table 6. However, feasible solutions
from the DSC system are a theoretical subset of feasible
solutions from CSC systems. ,us, the CSC system could
achieve better ATT and TTD than all DSC systems for the
same network. ,e CT ratio for DSC-2 over DSC-1 in a
larger network is superior; the CT ratio for CSC over DSC-1
in a larger network is inferior. As a result, we can expect
DSC-2 cases are more computationally efficient than CSC
cases in the same-sized network.

6.6. Summary. We have presented five scenarios to test and
compare the CSC and DSC systems. Scenarios 1 and 2
demonstrate the ,ree-step Näıve Method in a CSC system
of a 2 × 2 network and two-layer process to optimize signals
in a 4 × 4 network by decomposing it into four subnetworks,
respectively. Scenario 3 shows that an increasing number of
cores for the computation can increase computational ef-
ficiency while marginal revenue decreases. Scenario 4 shows
a convergence of the DSC system when iteration numbers
increase. Scenario 5 compares cases with different network

Table 5: Test results of scenario 5 (ATT and TTD are measured in time units.).

Network size Demand level
DSC-1 (subnetwork size is 1 × 1) DSC-2 (subnetwork size is 2 × 2) CSC (no subnetwork)
Lv. 1 Lv. 2 Lv. 3 Lv. 1 Lv. 2 Lv. 3 Lv. 1 Lv. 2 Lv. 3

1 × 1
ATT — — — — — — 26.76 24.42 19.68
TTD — — — — — — 2.04E+ 03 3.54E+ 03 4.46E+ 03

CT (sec) — — — — — — 0.55 0.64 0.65

2 × 2
ATT 71.98 74.69 71.73 — — — 64.89 68.39 64.84
TTD 7.44E+ 03 1.63E+ 04 2.46E+ 04 — — — 7.32E+ 03 1.43E+ 04 2.29E+ 04

CT (sec) 6.28 5.51 5.52 — — — 14.36 14.76 14.51

3 × 3
ATT 105.38 110.81 117.91 — — — 100.55 108.08 112.86
TTD 1.70E+ 04 3.39E+ 04 6.03E+ 04 — — — 1.17E+ 04 2.18E+ 04 3.80E+ 04

CT (sec) 16.44 16.01 16.13 — — — 6023.88 5954.00 6607.22

4 × 4
ATT 135.25 176.37 170.77 129.46 164.24 169.21 — — —
TTD 2.74E+ 04 8.98E+ 04 1.26E+ 05 2.51E+ 04 8.13E+ 04 1.26E+ 05 — — —

CT (sec) 45.25 44.17 44.81 299.63 303.61 299.01 — — —

6 × 6
ATT 234.17 299.44 285.00 210.02 281.35 245.14 — — —
TTD 8.86E+ 04 2.34E+ 05 2.50E+ 05 7.47E+ 04 2.00E+ 05 2.15E+ 05 — — —

CT (sec) 287.56 286.19 283.41 772.50 769.49 521.23 — — —
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Figure 13: Impact of number of intersections on CT, CSC and DSC-1 cases.

Table 6: Comparison between different decompositions.

Network Demand level 1 Demand level 2 Demand level 3
CSC/DSC-1

2 × 2
ATT 0.90 0.92 0.90
TTD 0.98 0.88 0.93
CT 2.29 2.68 2.63

3 × 3
ATT 0.95 0.98 0.96
TTD 0.69 0.65 0.63
CT 366.42 371.80 409.72

DSC-2/DSC-1

4 × 4
ATT 0.96 0.93 0.99
TTD 0.92 0.91 1.01
CT 6.62 6.87 6.67

6 × 6
ATT 0.90 0.94 0.86
TTD 0.84 0.92 0.80
CT 2.69 2.69 2.76
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decompositions and demand levels. Results demonstrate
that DSC cases have significantly better performance on CT
and weaker performance on ATT and TTD. Network de-
composition also has an impact on three scales. Increases in
the subnetwork size may see reductions in ATT and TTD
and loss of computational efficiency for the cases tested.

7. Conclusions

,is research develops and compares CSC and DSC systems
using short-term OD demand as inputs in an MEC-enabled
CV environment and investigates the performances of
different network decompositions for both systems. Control
variables considered are cycle length, phase split (green
times for all phases), and offset for each intersection inside
the network. ,e two control objectives used for optimi-
zation are minimal Average Travel Time (ATT) and Total
Travel Delay (TTD). Network dynamics are based on a G/G/
n/FIFO open queuing network model, solved by simulation
in MATLAB. Signal timing is proposed using a standard
ring-and-barrier diagram with four phases and all-red in-
tervals. Considering each phase as a virtual link, we assume
that travelers will choose the paths with minimal instan-
taneous travel time. ,e optimal control problem for net-
work signals is formulated with OD demand and free-flow
travel time as inputs. However, the original problem is NP-
complete due to nonconvex variables and nonlinear con-
straints. ,erefore, we use a ,ree-step Näıve Method to
decompose it into three subproblems and develop a DSC
system within a CV environment with MEC. ,us, the DSC
system decomposes the network into subnetworks, with
each subnetwork controlled by an individual agent (regional
MEC controller). Agents can exchange information in real-
time. Finally, a two-layer process is proposed to solve the
DSC system.

Numerical simulations were performed via five scenarios
where demand was randomly generated following a uniform
distribution. Scenarios 1 and 2 helped identify the basic
settings and results of the CSC and DSC systems. Scenario 3
demonstrated the limitations of solving CSC cases against
increasing the number of CPU cores. Scenario 4 gave an
example for the convergence of the loop in the two-layer
process for DSC cases. Scenario 5 investigated both systems
in cases with different network decompositions and demand
levels. ,e results show that network decomposition with
smaller subnetworks results in better computational effi-
ciency but reduced performance on ATT and TTD. For
example, the CSC case for a 3 × 3 network has a CT of
90minutes, while the DSC-1 case with the same demand
takes 16 seconds–a reduction of over 99%. In addition, the
DSC system can be regarded as the physical combination of
several small CSC systems if considering each end of the
traffic network as connected to the central TMC with fiber.
,e ,ree-step Näıve Method used in CSC systems to solve
signal optimization is the samemethod used to solve optimal
signal timing plans in each subnetwork of the DSC systems.
In this case, the method–a combination of the bisection
method, global search, and gradient search approaches–is
highly inefficient. ,us, the main difference between the

systems is structure. ,e results show notable improvement
in computational efficiency with some, but not significant,
loss of ATT and TTD compared to the CSC system, thus
demonstrating the value of the DSC system structure.

,e results also revealed the ability of the DSC structure,
with the scalable decomposition method, to apply to more
extensive networks, which suffer acceptable losses of com-
putational efficiency compared to the CSC system. Although
the performances of ATT and TD are positively correlated,
some cases revealed that we should choose suitable objec-
tives for the different cases.

,is work used a simulation-based method to gather
more realism to the framework of network signal optimi-
zation. We also highlight the limitations of this work as
future research to pursue. First, we must test our system in
real-world traffic networks in a CV environment with MEC
(which we only describe generally). ,e simulation in a
cloud server with parallel computing is not equal to a DSC
system within a real-world CV environment with MEC,
constituting the need for field tests. Second, algorithms for
signal optimization are simple and time-consuming in the
CSC system, the three-step naı̈ve method is inefficient in this
regard. When network size increases to 3 × 3, CT increases
to more than 1.5 hours. ,is leads the further work to
develop innovative algorithms to optimize traffic signal
controls in CSC system. ,ird, queueing assumptions like
Point Queue and First In First Out is not realistic, more
updated models should be considered to capture traffic flow
dynamics in the future. Finally, the route guidance function/
traffic assignment model in Central TMC is under-
investigated our present study, requiring further research
into its limitations.
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