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Deploying the dynamic wireless power transfer (DWPT) equipment at intersections can improve the transportation efficiency and
decrease the energy consumption. It can easily turn the disadvantages of waiting time for red phase into the advantages of
charging benefits for electric vehicles (EVs). This study develops a multiobjective speed planning model with differentiated
charging strategy to optimize the EV’s trajectory at signalized intersections with DWPT. To mitigate the negative impact of
DWPT, the proposed model is divided into charging priority driving (C-eco-driving) mode and time priority driving (T-eco-
driving) mode for connected and automated electric vehicles (CAEVs) to apply different scenarios. Meanwhile, a widely
applied car-following model, i.e., the Intelligent Driver Model (IDM), has been calibrated with the ground-truth dataset to
meet the intersection characteristic for EVs in mixed traffic. The efficiency and robustness of two eco-driving modes were
validated in single-vehicle and mixed traffic based on MATLAB simulation. For single vehicle, the electricity benefits of the C-
eco-driving mode and T-eco-driving mode increase about 0.0867 kWh and 0.0532 kWh, respectively. T-eco-driving mode
reduces 2.5 s of travel time. For mixed traffic, the C-eco-driving mode provides more charging benefits about 51~73% than no-
control strategy. In contrast, the T-eco-driving mode provides significant time benefits of 2.6 s and slight electricity benefits of
12~30% than no-control strategy. The increment of market penetration rate and wireless charging length can significantly
improve the charging benefits. When charging length has the same value, the closer the DWPT facilities to the intersection, the
more obvious the charging benefits.

1. Introduction

EVs have been recognized as an effective means of achieving
energy conservation and sustainable development in recent
years [1–4]. Governments have implemented various poli-
cies and regulations to encourage the popularization of
EVs, including a green-car subsidy program and license
plate bias [5]. With this momentum, EVs will phase out fuel
vehicles in the near future.

Due to the limited battery capacity and short driving
range, EVs require frequent charging. The widespread adop-
tion of EVs may result in an increase in charging demand.
As a result, many charging stations, battery swap stations,
and wireless charging equipment have been constructed to
meet the demands for charging [6–8]. The construction of
charging station has low cost, but charging waiting time
for EVs is long, and the fast-charging technology can
decrease the battery life [9]. The advantage of the battery

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 5879568, 13 pages
https://doi.org/10.1155/2022/5879568

https://orcid.org/0000-0002-2230-027X
https://orcid.org/0000-0003-0724-115X
https://orcid.org/0000-0001-6707-6366
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5879568


swap station is the short charging time; the disadvantage is
the unstandardized battery [10]. For wireless charging, EVs
can achieve electricity supplements when traveling at the
wireless charging lanes. It is more convenient and safer than
other charging infrastructures [11–13].

A few studies have concentrated on the competitive
analysis of different types of charging infrastructures
[14–16]. Based on the charging demands of electric public
transit system, Chen et al. [17] established mathematical
models to achieve the optimal deployment of various charg-
ing facilities, and the DWPT technology is more competitive
than charging stations and battery swapping stations with
low service frequency and high operating speed. To address
the range and recharge issues for EVs, Fuller [18] concluded
that dynamic wireless charging can be a more cost-effective
approach to extending driving range than increasing battery
capacity. Thus, it can be seen that DWPT will play a signif-
icant role in future charging technology field.

When deploying the DWPT along ingress lanes at inter-
sections or arterial, it can easily achieve electricity benefits
for EVs [19–21]. Therefore, some researches focused on
the influence of wireless charging lanes on traffic system.
He et al. [22, 23] investigated the impacts of the dynamic
charging lane on EV’s motion behavior, and the results show
that the each EV could run slowly on the charging lane with
causing low traffic efficiency. To improve the traffic effi-
ciency, He et al. [24] established a model to optimize the
location of the charging lane by considering their adverse
effects on road capacity. To address the optimal deployment
problem at signalized arterial, Li et al. [25] proposed a biob-
jective model considering both traffic efficiency and charging
facilities’ utilization rate. The results show that DWPT
equipment is more suitable to be installed near intersections.
Based on this theory, Mohrehkesh and Nadeem [26] pro-
posed a wireless charging scheme for the battery electric
vehicles and investigated how to integrate control strategies
at intersections but have not established a specific speed
guidance model for EVs. Subsequently, Zhang et al. [27]
proposed an eco-driving control strategy for CAEVs at sig-
nalized intersections with charging lane.

To sum up, the DWPT technology can decrease partially
traffic operation efficiency but can increase the charging effi-
ciency. To mitigate the negative impacts of DWPT technol-
ogy, this paper proposed a new scheme for CAEVs at
intersections. Two driving control strategies are investigated
to apply different scenarios. The charging priority control
strategy is more suitable for the following scenarios: (1) long
red phase waiting time, (2) low traffic flow, and (3) low state
of charge (SOC) for EVs. The time priority control strategy
is more suitable for the following scenarios: (1) high traffic
flow and (2) high SOC for EVs. The scheme of differentiated
strategy can easily reduce disadvantage of DWPT in traffic
efficiency, meanwhile significantly improving the advantage
of DWPT in electricity benefits. As a result, the speed plan-
ning strategy for CAEVs should consider a variety of optimi-
zation factors, such as traffic efficiency, electricity
consumption, and driver comfort.

In this study, a multiobjective speed planning model
based on differentiated control strategy at a signalized inter-

section with DWPT is proposed. Based on the SOC of EVs
entering the control segment, the model is divided into C-
eco-driving and T-eco-driving by adjusting three weight
coefficients. The Next-Generation Simulation (NGSIM)
dataset is used to calibrate the car-following model for the
EV in mixed traffic. Numerical studies of single-vehicle
and mixed traffic are used to validate the efficiency and
adaptability of the speed planning model.

The remainder of this paper is composed as follows. Sec-
tion 2 provides the scenario description for EVs traversing
intersections with DWPT. Section 3 describes the differenti-
ated speed planning model and the calibrated IDM. Next,
the single-vehicle and mixed-traffic examples are carried
out to demonstrate the efficiency and adaptability of the pro-
posed model in Section 4. Finally, the concluding remark is
presented in Section 5.

2. Scenario Description

As shown in Figure 1, a signalized intersection with DWPT
is established, and vehicle queues consisting of CAEVs and
human-driven EVs pass through the intersection. The total
control segment’s start position is O, and its length is S.
WCLðS1, S2Þ denotes that the start position of deploying
the wireless charging transfer is S1, and the terminal location
is S2. The length of wireless charging is ðS2 − S1Þ. The posi-
tion of the intersection stop line is S3. When the CAEV
enters the control segment of a signalized intersection, it is
assumed that it can obtain certain information via V2I and
V2V communications, such as the distance to the stop bar,
SPaT information, the location and length of the charging
area, and the states of preceding vehicles, which are not
available to regular EVs. When mixed vehicles enter the con-
trol segment, the CAEV will follow the proposed model’s
trajectory planning advice to navigate the intersection
smoothly and avoid stopping. In contrast, the regular EV
will follow the designated car-following model. Two distinct
planning strategies for CAEV are considered in this study in
order to meet varying demands. As illustrated in Figure 1,
low-battery CAEVs may prefer the charging priority driving
strategy, whereas high-battery CAEVs may prefer the time
priority driving strategy. The former is concerned with elec-
tricity, whereas the latter is concerned with time and driving
comfort.

3. Two Models at a Signalized
Intersection with DWPT

3.1. Differentiated Speed Planning Model for the CAEV

3.1.1. Multiobjective Optimization. To guide CAEVs passing
through signalized intersections safely and efficiently, the
model optimization objective sets three factors: traffic effi-
ciency, electricity consumption, and driver comfort. Since
three factors have different units and dimensions and orders
of magnitude, when three factors are directly added together,
the role of the factor with a larger value in the objective func-
tion will be highlighted. Therefore, this paper standardizes
them to eliminate the influence of different dimensions.
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(1) Traffic efficiency optimization

This study improves the efficiency of traffic flow by
reducing the guidance time of vehicles in the control seg-
ment, while avoiding the behavior of stop-go at signalized
intersections. Therefore, the efficiency optimization formula
is

Ft = t f − t0 − Tmin
À Á

/ Tmax − Tminð Þ, ð1Þ

Tmax = max
i=1⋯n

t f ið Þ − t0 ið ÞÈ É
, ð2Þ

Tmin = min
i=1⋯n

t f ið Þ − t0 ið ÞÈ É
, ð3Þ

where Ft is the efficiency objective value; t0 and t f are the

initial time and terminal time of the control segment; Tmin
and Tmax are the shortest and longest travel times in all his-
torical trajectories, respectively; and n is the number of his-
torical trajectories.

(2) Electricity consumption optimization

The vehicle’s SOC is not only influenced by the electric-
ity loss of the traction but also supplemented by DWPT
facility and the regenerative braking system (RBS). It can
be formulated as follows:

Fe =
ENC − ECharge − Emin
À Á

Emax − Eminð Þ ,

ENC = EConsumption − ERecovery,
ECharge = PChargeTCharge,

Emax = max
i=1⋯n

ENC ið Þ − ECharge ið ÞÈ É
,

Emix = min
i=1⋯n

ENC ið Þ − ECharge ið ÞÈ É
,

ð4Þ

where Fe is the electricity objective value; ENC is the electric-
ity consumption that has considered RBS; and ECharge is the
charging electricity with DWPT. Emin and Emax are the min-
imum and maximum total electricity consumption in all his-
torical trajectories, respectively.

(3) Driver comfort optimization

This study optimizes the driver comfort by reducing the
speed fluctuation of CAEVs during the control segment. The
formula is shown as follows:

Fs =
Ð t f
t0
a2 tð Þdt −Umin

� �
Umax −Uminð Þ , ð5Þ

O

Control segment

S1 S2 S3
S

Wireless power transfer technology

CAEV REV
SOC SOC SOC SOC

Figure 1: The scenario with differentiated driving strategy at the signalized intersection with the DWPT.
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Figure 2: Entire process of speed planning.

Table 1: Weighting parameters of two driving modes.

Parameters C-eco-driving T-eco-driving

ω1 0.1~0.2 0.4~0.6
ω2 0.6~0.8 0.1~0.2
ω3 0.1~0.2 0.2~0.4
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Umax = max
i=1⋯n

ðt f ið Þ

t0 ið Þ
a2 tð Þdt

( )
, ð6Þ

Umin = min
i=1⋯n

ðt f ið Þ

t0 ið Þ
a2 tð Þdt

( )
, ð7Þ

where Fs is the stability objective value and Umin and Umax
are the minimum and maximum speed fluctuations in all
historical trajectories, respectively.

(4) Three-objective optimization function

Based on the above, we integrate three optimizations by
applying three weighting coefficients:

min
a tð Þ

L = ω1Ft + ω2Fe + ω3Fs,

ω1 + ω2 + ω3 = 1,
0 < ωi < 1, i = 1, 2, 3,

ð8Þ

where L is the objective value and ω1, ω2, and ω3 are weights
for different objectives, presenting the importance of time,
electricity, and stability, respectively. Three weighting coeffi-
cients can be dynamically adjusted to achieve differentiated
travel demands.

3.1.2. Dynamic Constraints. The objective function for
CAEV is subject to the following constraints:

(1) Motion state definitions and initial state declarations
are formulated as follows:

_x tð Þ ≜ v tð Þ, a tð Þ½ �T = f x tð Þ, u tð Þð Þ, t0 ≤ t ≤ t f ,
s t0ð Þ = 0, v t0ð Þ = v0,

ð9Þ

where xðtÞ is the state vector of the EV at time t and sðtÞ, vðtÞ
, and aðtÞ are distance, speed, and acceleration at time t,
respectively. Because the detector is set at the starting point
of the control segment, the initial coordinate for CAEVs is 0.

(2) The vehicle distance constraint is defined as the dis-
tance characteristic that the vehicle satisfies within
the control segment:

s ts1ð Þ = S1 s ts2ð Þ = S2, ð10Þ

s ts3ð Þ = S3 s t f
À Á

= S, ð11Þ

1 Step 1. Data preprocessing
2 Remove exception data and out-of-bound data from the original data.
3 Select continuous four state vectors for FVs: speed, space difference, speed difference, and acceleration.
4 Unit conversion, such as ft, ft/s to m, and m/s.
5 Step 2. Initialization
6 Randomly generate the initial values for five calibrated parameters within the bound, a, b, s0, T , and v0.
7 Initialize GA basic parameters, such as maximum iteration, population size, and crossfactor.
8 Step 3. Fitness function
9 Estimate the acceleration (predictive value) for FV at the next time point using Equations (17) and (18).
10 Evaluate RMSE between predictive value and true value with Equation (19).
11 Step 4. Update five calibrated parameters
12 Update five parameters with fitness function.
13 Step 5. Termination condition
14 If the number of iteration is larger than the maximum value or RMSE is not larger than the specified gap, stop the algorithm.
Otherwise, go back to Step 3.

Algorithm 1: IDM parameter calibration algorithm based on GA.

Table 2: IDM parameter calibration results.

Parameters Description Bounds Calibrated

a (m/s2) Acceleration [0.1, 5] 4.1

b (m/s2) Deceleration [0.1, 5] 3.7

s0 (m) Minimum distance [0.1, 10] 5.68

T (s) Time gap [0.1, 5] 1.5

v0 (km/h) Desired speed [1, 150] 72.3

Table 3: Parameters used in simulations.

Parameters Values Parameters Values

vmax (m/s) 22 ηd 0.92

vmin (m/s) 2.00 ηm 0.91

amax (m/s2) 4.88 ηb 0.90

amin (m/s2) -3.41 α 0.0411

m (kg) 1521 PCharge (kW) 20

θ 0 W (kWh) 60

Cr 1.75 S3 (m) 500

c1 0.0328 S (m) 550

c2 4.575 Tred (s) 35

Af (m
2) 2.3316 Tgreen (s) 45

CD 0.28 tentry (s) 0

Threshold 0.5
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sk tð Þ < sk−1 tð Þ, ð12Þ
where ts1 and ts2 are the entry time and exit time in the wire-
less charging area, respectively, and ts3 is the arrival time at
the stop line S3. Equation (12) is the safe distance constraint.

(3) Vehicle kinematic constraints declare the physical
boundaries of vehicle speed and acceleration:

vmin ≤ v tð Þ ≤ vmax,
amin ≤ a tð Þ ≤ amax,

ð13Þ

where vmin and vmax are the maximum speed, respectively,
and amin and amax are minimum and maximum accelera-
tions. The maximum speed is the legal limit on the road,
and the minimum speed is a reasonable threshold to avoid
the vehicle traveling at very low speeds in the charging area.

(4) Traffic state constraint that ensures the EV can pass
through the signalized intersection during the green
time:

tmin ≤ ts3 ≤ tmax,
tmin = Tr + kT , tmax = Tr +G + kT if signalt0 = red,

tmin = 0, tmax = Tg if signalt0 = green,
tmin = Tg + R + kT , tmax = Tg + k + 1ð ÞT if signalt0 = green,

ð14Þ

where k = 0, 1, 2⋯ , tmin and tmax are the shortest time and
the longest time, respectively; Tr and Tg are the red light
or green light duration when the vehicle enters the segment;
R and G are the red and green periods, respectively; T is the
traffic phase period; and signalt0 is the phase state at the ini-
tial time.

3.1.3. Model Regularization. To achieve high computational
efficiency for real-time control, this study numerically dis-
cretizes time and space dimensions into a series of colloca-
tion points using metaheuristics or gradient-based methods
and regularizes the speed profile of the entire process by

consulting reference [27, 28]. The entire speed planning pro-
cess can be divided into five phases, as illustrated in Figure 2.

(1) Cruise at the initial speed v0 from t0 to t1

(2) Decelerate at a constant rate a1 from t1 to t2

(3) Cruise at a specific speed v∗ from t2 to t3

(4) Accelerate at a constant rate a2 from t3 to t4

(5) Cruise at the terminal speed vf from t4 to t f

The initial speed v0 is assumed to be the same value with
vf in the control segment, which contents the characteristics
of the wireless charging scheme.

t0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t f ,
v0 = vf ,

a1 =
2 S3 − v0 ts3 − t0ð Þð Þ

t2 − t1ð Þ t4 + t3 − t2 − t1ð Þ ,

a2 = −
t2 − t1
t4 − t3

a1,

v∗ = v0 + t2 − t1ð Þa1,

ð15Þ

where v∗ is the minimum speed of the control segment. a1
and a2 are deceleration and acceleration, respectively. There-
fore, Equation (8) can be simplified, as shown in Equation
(16).

min
t1,t2,t3,t4

L = ω1
t f − t0 − Tmin
Tmax − Tmin

� �
+ ω2

ENC − ECharge − Emin
Emax − Emin

� �
+ ω3

Ð t f
t0a

2 tð Þdt −Umin
Umax −Umin

 !

s:t:Equations 9ð Þ − 15ð Þ

8>><
>>:

ð16Þ

The proposed model is solved by the Particle Swarm
Optimization (PSO) algorithm [29]. The comprehensive
power-based energy consumption model is used to estimate
the energy consumption [30].

3.1.4. Differentiated Travel Mode. The value of weighting
coefficient represents different driving strategies. By adjusting
the values of ω1, ω2, and ω3, the proposed model is divided
into C-eco-driving mode and T-eco-driving mode. Table 1
shows the value range of two modes. The coefficient is set to
a range of values rather than fixed values to ensure dynamicity.

For C-eco-driving mode, when the SOC of CAEV enter-
ing to the segment is below the threshold, the strategy
focuses on the charging efficiency. Thus, ω2 is set as primary
weighting coefficient (0.6~0.8), as the upper bound of C-eco-
driving mode; ω1 and ω3 are set as secondary weighting
coefficient (0.1~0.2), as the lower bound of C-eco-driving
mode. Only considering electricity (ω1ω2, ω3 = 0, 1, 0) is
likely to cause the vehicle to remain stationary in the charg-
ing area, which makes the model unsolvable.

For the T-eco-driving mode, when the SOC of CAEV
entering to the segment is above the threshold, the strategy
focuses on the traffic efficiency. ω1 is set as the first

Table 4: Parameter setting of eight scenarios.

Scenario
Initial speed

(m/s)
WCL
(m)

Scenario
Initial speed

(m/s)
WCL
(m)

A 16
(50,
250)

E 20
(50,
150)

B 18
(50,
250)

F 20
(50,
250)

C 20
(50,
250)

G 20
(50,
350)

D 22
(50,
250)

H 20
(50,
450)
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weighting coefficient (0.4~0.6) to achieve high traffic effi-
ciency. ω3 is set as the second weighting coefficient
(0.2~0.4) to avoid the occurrence of large speed fluctuations.

ω2 is set as the third weighting coefficient to ensure that
speed fluctuation is adjusted in the direction of increasing
electricity benefits.
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Figure 3: Results of eight scenarios.
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ω3 is not set as the first weighting coefficient as the com-
fort priority mode. The reason is that only considering
driver comfort without considering travel time and SOC
does not satisfy the real demands.

3.2. Calibrated Car-Following Model for the EV. The IDM
[31] is an accident-free model capable of producing realistic
acceleration profiles, and it can accurately simulate various
traffic flow scenarios. Therefore, this study applies IDM to
plan the trajectory for EVs. As defined in Equation (17)
and Equation (18):

_v = a 1 − v
v0

� �δ

−
s∗ v,Δvð Þ

s

� �2
" #

, ð17Þ

s∗ v,Δvð Þ = s0 + max 0, vT + vΔv
2
ffiffiffiffiffi
ab

p
� �

, ð18Þ

where v, a, and b are the speed, acceleration, and decelera-
tion of the following vehicle, respectively; s, s0, and s∗ are
the current distance, minimum distance, and desired dis-
tance, respectively; v0 is the desired speed; δ is the accelera-
tion; Δv is the speed difference between the preceding
vehicle and following vehicle; and T is the time gap that
means following vehicle’s reaction time.

Model calibration refers to parameter calibration, and
different parameters typically reflect different driving char-
acteristics. To meet the intersection characteristic, the
NGSIM dataset [32], collected from a segment of
Lankershim-Boulevard in Los Angeles, California, is used
to calibrate the IDM. A genetic algorithm [33] is used to cal-
ibrate the five major parameters of IDM, such as a, b, s0, T ,
and v0. The Root Mean Square Error (RMSE) was used eval-
uate the difference between predicted values and true values,
whose formula is as follows:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
âi − aið Þ2

s
, ð19Þ

where ŷ = fâ1, â2,⋯,âng are predicted values; y = fa1, a2,⋯,
ang are true values; and n denotes the number of all data
points.

Based on the preceding discussion, Algorithm 1 presents
the pseudocode for the calibration method. Table 2 shows
the calibration results for the IDM. The bounds of calibrated
parameters refer to the literature [34].

4. Numerical Studies

To validate the effectiveness and adaptability of the proposed
model, single-vehicle and mixed traffic is performed under
various numerical examples based on MTALB simulation.
Table 3 shows the basic parameters of numerical
simulations.

4.1. Single-Vehicle Simulation under Different Initial Speeds
and Wireless Charging Lengths. The initial speed of vehicles
and wireless charging length (WCL) are used as variables in
single-vehicle simulation. This paper built eight scenarios to
evaluate the traffic benefits of the proposed model. As shown
in Table 4, scenarios A, B, C, and D are used to compare
each other with different initial speeds when the WCL is
fixed. Scenarios E, F, G, and H are used to compare each
other with different WCLs when the initial speed is fixed.

Figure 3 depicts the velocity, trajectory, and SOC of
CAEVs. According to Figure 3(a), the vehicle with the T-
eco-driving mode has higher speed than that with the C-
eco-driving mode in total, and the CAEV with the T-eco-
driving mode has less speed fluctuation than that with the

Table 5: Numerical results under eight scenarios.

Con. t f (s) Echa (Ws) Econ (Ws) Erec (Ws) Con. t f (s) Echa (Ws) Econ (Ws) Erec (Ws)

A-C 45.0 430612 274757 96390 A-T 39.0 286859 146650 26886

B-C 42.0 425701 360127 131887 B-T 38.0 291260 245521 75750

C-C 43.0 471664 473915 180412 C-T 38.0 295516 354387 128464

D-C 39.0 404445 543897 206228 D-T 38.0 291191 481342 184875

E-C 43.0 365223 535568 189656 E-T 38.0 123058 356885 129217

F-C 43.0 471664 473915 180412 F-T 38.0 295516 354387 128464

G-C 43.0 576075 416312 161602 G-T 38.0 465161 356885 129217

H-C 43.0 691393 378857 145336 H-T 38.0 595830 356885 129217

Table 6: Attribute settings in mixed traffic.

Attributes Value

Initial speed of the EV 16~22m/s

Initial speed of the CAEV 18~20m/s

Initial headway 30~60m
Penetration rate 0~100%
Wireless charging length 100~400m

Table 7: Parameter settings of six numerical examples.

Condition
MPR
(%)

WCL
(m)

Condition
MPR
(%)

WCL
(m)

I 0 (50, 250) IV 60 (50, 250)

II 20 (50, 250) V 80 (50, 250)

III 40 (50, 250) VI 100 (50, 250)
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C-eco-driving mode. It demonstrates the significance of time
and stability for the T-eco-driving mode. More specifically,
for the T-eco-driving mode, the minimum speed v∗ within
the control segment declines when the initial speed continu-
ously increases. However, the minimum speed v∗ remains
relatively stable as the initial speed increases for the C-eco-
driving mode. The main reason is that the weighting coeffi-
cient ω3 is different. From Figure 3(b), for the T-eco-driving
mode, the speed of four scenarios basically overlaps. For the
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Figure 4: Spatial-temporal trajectories of six conditions (I~VI).
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Figure 5: Electricity usage (consumption, recovery, and charging) and average travel time of six conditions (I~VI).

Table 8: Parameter settings of four numerical examples.

Condition
MPR
(%)

WCL
(m)

Condition
MPR
(%)

WCL
(m)

VII 40 (50, 150) IX 40 (50, 350)

VIII 40 (50, 250) X 50 (50, 450)
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C-eco-driving mode, the value of v∗ maintains an upward
trend and cruise time at the speed v∗ becomes longer with
the extension of the wireless charging area (WCA). It is eas-
ily inferred that the upward is limited.

Figures 3(c) and 3 (d) depict the trajectory results of
eight scenarios for the CAEV. The dotted lines indicate the
point of entering and exiting the charging area. As shown
in Figure 3(c), for the T-eco-driving mode, the vehicle

0 20 40 60 80 100 120 140 160
Time (s)

0
50

100
150
200
250
300
350
400
450
500

Tr
aj

ec
to

ry
 (m

)

C-eco-driving mode T-eco-driving mode

0 20 40 60 80 100 120 140 160
Time (s)

0
50

100
150
200
250
300
350
400
450

500

Tr
aj

ec
to

ry
 (m

)

C-eco-driving mode T-eco-driving mode

0 20 40 60 80 100 120 140 160
Time (s)

0
50

100
150
200
250
300
350
400
450
500

Tr
aj

ec
to

ry
 (m

)

C-eco-driving mode T-eco-driving mode

0 20 40 60 80 100 120 140 160
Time (s)

0
50

100
150
200
250
300
350
400
450
500

Tr
aj

ec
to

ry
 (m

)

C-eco-driving mode T-eco-driving mode

(VII) WCL = (50,150)

(IX) WCL = (50,350)

(VIII) WCL = (50,250)

(X) WCL = (50,450)
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Figure 7: Electricity usage (consumption, recovery, and charging) and average travel time under four conditions (VII~X).
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arrives at the intersection in 35 seconds, and the total time
spent traversing the control segment is approximately 40
seconds. For the C-eco-driving mode, the arrival time at
the intersection is 36 s, 39 s, 41 s, and 43 s, respectively. The
total time is approximately 45 seconds. It implies that the
vehicle with the T-eco-driving mode takes less time to pass
through an intersection than the C-eco-driving mode.
According to Figure 3(d), trajectories under four scenarios
are consistent due to speed profile overlap for the T-eco-
driving mode. The charging duration of the CAEV increases
with the extension of the charging lane for the C-eco-driving
mode. Similarly, the CAEV with the T-eco-driving mode
takes less time than the C-eco-driving mode.

Furthermore, Figures 3(e) and 3 (f) depict the SOC of
the CAEV. The battery’s maximum capacity is assumed to
be 60 kWh, and the initial SOC is 0.5. Overall, the CAEV
with the C-eco-driving mode has more electricity than the
T-eco-driving mode, indicating the importance of charging
electricity for the C-eco-driving mode. Based on the RBS
system, the SOC of the CAEV regularly rises when the vehi-
cle operates rapidly deceleration or drives in a wireless
charging area, and SOC falls when the vehicle accelerates
rapidly. According to Figure 3(e), regardless of which eco-
driving mode the CAEV uses, the terminal SOC rises with
the increase of the initial speed. It implies that the initial
speed has a significant impact on the model’s performance.
As illustrated in Figure 3(f), the longer the WCL, the greater
the charging benefits. The DWPT technology has the poten-
tial to significantly promote electricity for two eco-driving
modes. Numerical results show that the benefit in electricity
replenishment for the C-eco-driving mode is
0.114~0.216 kWh, and the benefit for the T-eco-driving
mode is 0.066~0.162 kWh.

Detailed numerical results under eight scenarios have
been shown in Table 5. Four metrics are used for evaluation.
t f is the terminal time; Echa is the recharge energy within the
charging area; Econ is the energy consumption; Erec is the
recovered energy due to RBS.

4.2. Mixed-Traffic Simulation with Different Market
Penetration Rates, Charging Lengths, and Locations. In
mixed-traffic simulation, the market penetration rate
(MPR) of CAEV, charging lengths, and locations are used

as variables to analyze the adaptability of the proposed
model. As shown in Table 6, the fluctuation of the initial sta-
tus is considered to better evaluate the robustness of the
model.

4.2.1. Adaptability Analysis of Different MPRs. To analyze
the traffic benefits of different MPRs, six numerical examples
are used to validate the model adaptability. As shown in
Table 7, when charging area is set to (50, 250) as the con-
stant value, the MPR is set to the variable value ranging from
0% to 100%.

Figure 4 depicts the spatial-temporal trajectories of
approximately 28 vehicles under six conditions (I~VI). The
trajectories of vehicles controlled by the C-eco-driving
mode, T-eco-driving mode, and calibrated IDM are shown
in blue, red, and black lines, respectively. In general, at a
higher penetration rate, many regular EVs are more likely
to drive on suboptimal trajectories due to car-following
characteristics, and these EVs could take advantage of
DWPT and travel on a suboptimal trajectory with a low
delay. However, the benefit of a moderate penetration rate
is highly fluctuant. For instance, in the left of Figure 4
(III), the lead vehicle is a CAEV which can advantageously
guide rear vehicles. In contrast, the lead vehicle is a regular
EV which cannot benefitly guide following vehicles in the
right of Figure 4 (III). As a result, benefit performance is
strongly related to the type of the lead vehicle.

Figure 5 shows the average travel time and electricity
usage under six conditions for two eco-driving modes. As
shown in Figure 5(a), for the C-eco-driving mode, as MPR
increases, electricity consumption slowly rises from
1.39 kWh to 1.84 kWh, and electricity recovery remains sta-
ble at 0.56~0.69 kWh. Compared to scenario I, electricity
charging in scenarios II~VI increases dramatically, with a
growth rate ranging from 70.4% to 100.1%. It demonstrates
the advantage of the C-eco-driving mode when recharging
electricity. Under scenarios II~VI, the average travel time
increases slightly; it is unavoidable to sacrifice a little travel
time due to the slow speed of vehicles in exchange for more
charge. For the T-eco-driving mode from Figure 5(b), com-
pared to scenario I, the electricity consumption and recovery
under scenarios II~VI decrease certainly, by approximately
4.9~28.2% and 11.9~30.1%, respectively; the consumption
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is proportional to the recovery due to the coexistence of
acceleration and deceleration. Electricity charging rises
slightly about 14.3~30.5% with the MPR. Then, average
travel time under scenarios II~VI decreases by approxi-
mately 2.6 s when compared to scenario I. It is the benefit
of the T-eco-driving mode in terms of traffic efficiency.

4.2.2. Adaptability Analysis of Different Charging Lengths.
Similarly, four numerical examples are used to analyze the
model adaptability of different charging lengths, as shown
in Table 8. When MPR is set to 40% as the constant value,
charging length is set to the variable value.

The spatial-temporal trajectories under four conditions
are shown in Figure 6. With the increase of WCL in the C-
eco-driving mode, the vehicle’s trajectory becomes
completely smooth, and the fluctuation gradually decreases.
The shorter charging area could cause the vehicle to drive
slowly in a short period. In other words, a larger charging
area can provide more charging benefits as well as a more
pleasant driving experience. The trajectory in the T-eco-
driving mode has not changed significantly with the WCL.

Figure 7 illustrates the electricity consumption and aver-
age travel time for two eco-driving modes under four differ-
ent conditions (VII~X). For the C-eco-driving mode, the
electricity consumption drops steadily with the extension
of the charging lane, and the reason is that the longer the
WCL, the less fluctuation in speed, as illustrated in
Figure 6. The recovery of electricity is also slightly reduced
due to the coexistence of acceleration and deceleration.
Additionally, charging capacity increases dramatically from
1.25 kWh to 2.56 kWh as a result of the WCL extension.
When the WCL is increased from 100m to 400m, the aver-
age travel time remains stable at about 42.5 s. This demon-
strates that increasing the WCL can significantly improve
energy efficiency while maintaining the same travel time.
For the T-eco-driving mode, electricity consumption and
recovery remain basically stable as the WCL changes in
response to the trajectory’s fluctuation. Similarly, according
to the WCL, electricity charging increases by approximately
0.46~2.21 kWh, and the average travel time is nearly 38 s.
Additionally, we compare the electricity charging and travel
time between two eco-driving modes. On the one hand,
while both have an upward trend in terms of charging, the
C-eco-driving mode has a greater increase than the T-eco-
driving mode. The T-eco-driving mode, on the other hand,
has a shorter travel time than the C-eco-driving mode. Thus,
both C-eco-driving and T-eco-driving modes successfully
accomplish their respective objectives.

4.2.3. Adaptability Analysis of Different Charging Locations.
To analyze the impact of different locations of the DWPT
facilities on traffic benefits, four charging lengths (100, 200,
300, and 400m) are used to validate the adaptability of the
proposed model. This study moves the same charging length
by a distance of 100m, which simulates 15 numerical
examples.

Traffic benefits of different charging locations in mixed
traffic are shown in Figure 8. Firstly, for the average travel
time of vehicles, when the charging area is (100, 200), the

average travel time is 43.03 s. When the charging area is
(400, 500), the average travel time is about 42.01 s. It can
be seen that when the length has the same value, the closer
the charging area is to the intersection, the shorter the aver-
age travel time. Secondly, for total electricity consumption,
only when the charging area is (0, 100) and (400, 500), the
electricity consumption is the positive value, and EVs pass-
ing through signalized intersections do consume additional
battery electricity. Finally, the results of the three-
dimensional histogram show that when the lengths are the
same, the closer the DWPT facilities to the intersection,
the more obvious the electricity benefits of EVs. Both evalu-
ation indicators show that the DWPT is more profitable
when it is set close to the intersection.

5. Conclusion

In this paper, a multiobjective speed planning model for
CAEVs with the C-eco-driving model and T-eco-driving
model is proposed, which can provide a differentiated speed
guidance advice for meeting the driving strategy at signal-
ized intersections with consideration of DWPT. The IDM
calibrated by the NGSIM dataset is then used to calculate
the trajectory for regular EVs. Numerical examples are used
to demonstrate the proposed model’s effectiveness and
robustness at various scenarios of signalized intersections.
For single vehicle, the T-eco-driving mode produces less
speed fluctuation and travel time than the C-eco-driving
mode. The C-eco-driving mode produces a more competi-
tive charging benefit than the T-eco-driving mode. We note
that adjusting the wireless charging length does not influ-
ence the results of the T-eco-driving mode. For mixed traffic,
the C-eco-driving mode significantly outperforms the no
guidance model in terms of charging benefit. The T-eco-
driving mode significantly outperforms the no guidance
model in terms of electricity consumption and average travel
time. It is worth noting that the benefits of the moderate
MPR have certain fluctuations and are influenced by the
type of the leading vehicle. The simulation results indicate
that the proposed model has a significant improvement of
traffic benefits. When charging length has the same value,
the closer the DWPT facilities to the intersection, the more
obvious the charging benefits. Additionally, the coexistence
of two eco-driving modes and human driving will result in
a mutual game effect in mixed traffic, which requires exten-
sive discussion and is the direction of future research. How
to improve the cost competitive of DWPT and encourage
the government as well as private enterprises to construct
more DWPT facilities is also a challenge for future work.

Data Availability

The Lankershim dataset, provided by the Federal Highway
Administration’s NGSIM program, is used to calibrate the
IDM model at signalized intersections in this study. The
dataset includes detailed vehicle and road information for
micro traffic flow research (http://ops.fhwa.dot.gov/
traffiffifficanalysistools/ngsim.htm 2006).
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