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Existing research on the transit network design problem has tended to focus on minimizing the various costs for both transit
operators and users. However, to implement an appropriate and effective transit network in urban environments, it is important
not to overly simplify the intrinsically complex nature of real-life network designs. In particular, the minimization of variance in
transit service levels typically employed in existing methods can be significantly improved by incorporating a transit equity
component. This paper adopts a multiobjective approach that considers system efficiency, user inconvenience, and transit equity
without the use of weights in order to design a more realistic and efficient transit network. In particular, the multiobjective
Nondominated Sorting Genetic Algorithm-II and the neighborhood local search method are employed in a logit-based mode-
choice model in order to incorporate the variable transit demand arising from the private vehicle traffic volume. A toy test network
and a real-life network from the city of Goyang, Republic of Korea, are used to verify the effectiveness of the proposed model. The
model finds a set of solutions that improve transit equity with minimal losses of other objectives when compared to existing
approaches, which produce a significant variance in the level of service, mainly due to the spatially condensed and overlapping
distribution of their transit networks. In addition, the relationship between the three objective functions and their resulting
patterns in response to key influential factors are also analyzed to verify the robustness of the proposed method in response to

changing future conditions.

1. Introduction

Traditionally, the transit network problem (TNP) consists
of five stages: (1) network design, (2) frequency setting, (3)
timetable development, (4) vehicle scheduling, and (5) crew
scheduling. The first two stages are known to strongly
influence the total cost due to their higher weights [1]. Most
previous studies have dealt with the transit network design
problem (TNDP) by formulating objective functions for the
monetary costs associated with the operating costs for the
operator and the travel costs for the users. These models can
be improved by considering additional factors such as user

demand, congestion, environmental pollution, the required
number of transfers for passengers, and differences in
regional characteristics. However, converting these factors
into monetary costs is not straightforward, and often they
counteract each other or require trade-offs. As such, a
single objective approach has major drawbacks when trying
to incorporate these additional factors, thus necessitating
the use of a multiobjective approach [2].

This paper develops a multiobjective approach that
considers transit equity along with system efficiency and
user inconvenience. Transit equity is another crucial factor
that has been overlooked. When maximizing the efficiency
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of a transit network for operators and users as a whole, some
transit users located at less dense areas can be neglected
because busier and more profitable regions are prioritized.
Therefore, it is essential to consider transit equity in the
design of a new transit network so that passengers in all
regions receive a more acceptable level of transit service
when compared to the existing network [3].

It has been noted that to evaluate the service level and
the competitiveness of the transit system, the modal split
between private vehicles and the transit system should be
considered, leading to variation in transit demand. Under
variable transit demand, it is inappropriate to use the total
or average passenger travel time to measure the efficiency of
the system because this can lead to lower transit demand or
to the avoidance of transit connections that require
longer travel times. In this study, system efficiency is
measured as a combination of fare revenue maximization,
which is equivalent to transit ridership, and operator cost
minimization.

This paper proposes a methodology for solving the
transit network design and frequency setting problem
(TNDESP) that considers multiple components, including
system efficiency, user convenience in terms of unmet de-
mand, and transit equity related to regional differences in
transit competitiveness, using a multiobjective approach for
the design of a public transit network. Nondominated
Sorting Genetic Algorithm-II (NSGA-II) is combined with a
neighborhood local search process to efficiently find mul-
tiple Pareto optimal solutions.

The rest of this paper is organized as follows. Section 2
presents a literature review, while Section 3 formulates the
multiple objective functions for transit equity and other
factors, thus extending existing single-objective-based
methods. Section 4 describes the proposed optimization
method. Sections 5 and 6 presents the results obtained from
testing our proposed method with a toy network and a real-
life network and performs sensitivity analyses for various
scenarios. Section 7 concludes this paper by suggesting
future research directions.

2. Literature Review

Most research on transit network design has focused on
maximizing profit [4-6], minimizing total travel time and
passenger transfers [7, 8], minimizing operating and user
costs [1, 9-31] minimizing external costs (e.g., subsidies or
vehicle operating costs) [32-35], minimizing air pollutants
such as greenhouse gases [36-38] and maximizing equity as
an indicator of the regional public transportation service
level [2, 3, 39-43]. There have been more variations in the
methods prioritizing users than those focused on operators.
For example, some researchers have introduced the concept
of service coverage to represent transit demand and
attempted to maximize it while minimizing the number of
passenger transfers [44-47]. Various studies have also
employed interesting approaches to deal with unmet de-
mand as a function of the number of passenger transfers and
have attempted to minimize their total travel time [8, 48-50].
Nikoli¢ and Teodorovi¢ [51] sought to minimize unmet
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demand, total travel time, and total passenger transfers,
while Camporeale et al. [2] minimized unmet demand,
operator costs, and user costs. Szeto and Jiang [52] pointed
out that, even though the total travel time for passengers is
indeed important, minimizing the number of passenger
transfers can improve the passenger-related performance of
a transit network; in particular, an increase in transfers can
reduce network performance while also increasing passenger
travel times. Generally, passenger transfers increase the
travel time. Thus passengers tend to avoid or minimize them
[32, 49], though a certain number of transfers can improve
network performance.

Some studies on transit networks have considered two
or more objective functions. Early research focused on
prioritizing the objectives or using weighted sums.
Recent multiobjective approaches employing evolutionary
algorithms have attempted to find multiple Pareto
optimal solutions that consist of nondominated solution
sets. Most of these have considered user and operator costs
as objective functions wunder various constraints
[13, 14, 18, 19, 21-23, 53]. According to Pternea et al. [32],
transit demand is dependent on the transit network and
transit frequency, meaning that variable demand should be
employed. Some studies have considered variable transit
demand for a single objective function that combines
weighted objective functions [33, 54, 55]. However, there
have been very few studies in which variable demand is
considered in the multiobjective TNDESP without
weighted factors [53].

There have been some attempts to include transit equity
in the TNDEFSP. For example, Camporeale et al. [39] sought
to achieve a homogeneous transit network distribution for
transit users, while Fan and Machemehl [3] introduced the
concept of spatial equity as a limiting parameter that
guaranteed that additional travel times for users remained
below a certain threshold for their proposed network in
comparison to the existing network. Ferguson et al. [40] also
considered equitable access to basic amenities such as
employment, supermarkets, and medical services and the
minimization of regional differences in order to incorporate
transit equity into the transit frequency-setting problem
(TFSP). Camporeale et al. [2, 41] considered horizontal and
vertical transit equity from the perspective of transit service
supplies for selected regions, while Jiang [42] incorporated
transit equity by analyzing the difference between user costs
before and after modifications to a transit network. Kim et al.
[43] utilized the travel time ratio between transit and private
cars to define transit equity and identified the regions with
the lowest equity as targets for improvement. However, to
the best of the authors’ knowledge, no previous study has
employed an appropriate multiobjective approach to in-
corporate transit equity into the TNDFSP. It is challenging
to quantify transit equity so that it can be directly compared
with operating or user costs. Therefore, it is necessary to
independently consider system efficiency, user inconve-
nience, and transit equity to find a solution set that satisfies
all of the objective functions in a quantifiable and balanced
manner and that does not depend on subjective and qual-
itative opinions or experiences.
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3. Mathematical Formulation

In this paper, three main components are considered in the
TNDESP: system efficiency, user inconvenience, and equity.
A description of each of these is provided in Table 1.

In the fixed transit demand problem, it is natural to
consider the total travel time of transit passengers when
assessing passenger-side benefits. However, for variable
demand in which the transit system competes against private
vehicles, the total passenger travel time can be minimized if
the transit demand is reduced by lowering the service quality
of the transit system. To avoid this undesirable situation, it is
better to maximize the transit demand than the total pas-
senger travel time. A rise in transit demand suggests that the
transit service quality, including the travel time, is higher
than that of private vehicles for individual origin-
—destination pairs. In the fixed fare system, the transit
demand is equal to the revenue or fare income for the transit
operator, which can be easily integrated into operator profit.
The net profit of the operator, which is calculated as the
difference between the fare revenue and operator costs, can
also represent the efficiency of a transit system aiming to be
competitive against private vehicles and having low oper-
ating costs. The combination of fare revenue and operator
costs also helps to reduce the number of objective functions
and thus simplifies the problem.

An objective function for the system efliciency is for-
mulated using total demand (dﬁj) and transit fare (f) to
calculate total revenue and subtract expenses, which are a
function of the bus operating costs (0), the fleet size (f )
for each route, and the route length (I¥). When designing a
transit route, the route length and route frequency (i.e., the
fleet dispatching rate) are determined to accommodate
demand by introducing long-distance routes or ensuring an
appropriate level of service (LOS).

Transit users are assumed to perceive two or more
transfers as inconvenient, and this is considered to be
unmet demand. Stern [56] conducted a survey with transit
users and reported that more than half of the survey
participants were willing to transfer once without per-
ceiving it as an inconvenience. Zhao et al. [49] also found
that, for any given origin and destination pair, two or more
transfers should be avoided for effective transit operations.
This has been verified by data from the Republic of Korea
(hereafter Korea) provided by the Korea Transportation
Safety Authority (Table 2). According to transit smart-card
data from the Greater Seoul Area, for one weekday in May
2017, 75% of transit users traveled with no transfer, 21%
transferred once, 3% transferred twice, and 1% transferred
three or more times. In other words, 96% of transit users
traveled with no or one transfer. The objective function for
the user inconvenience is calculated as the total transit
demand (d!;) minus direct demand (d ) and single-
transfer demand (dtl)

Ferguson et al. [40] defined modal equity as the mini-
mization of the standard deviation of the accessibility
measures. In the variable demand problem employed in this
study, transit accessibility can be represented by the travel
time advantage over private vehicles because more

passengers will use the transit system when the transit travel
time to the destination is competitive in relation to the travel
time for private vehicles. In addition, the private vehicle
travel time, which can be used as the reference travel time,
better represents the spatial gap between the origin and
destination than the direct distance in the transportation
network. Thus, the gap between the transit and reference
travel time is equivalent to the accessibility of the transit
system. The objective function for transit equity is formu-
lated as the standard deviation of transit accessibility, which
is the difference in travel time between private vehicles and
the transit system (equation (3)).

Table 3 presents the notations used in this paper.
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Equations (4)-(11) are the constraints for the object
functions. Equation (4) limits the service frequency of a
route, equation (5) relates the route frequency to the
fleet size for a route, and equation (6) limits the
maximum route length. Equations (7) and (8) represent the
number of lines in the network and the number of bus stops
for a route, while equation (9) is an index that measures
transit accessibility. In the ideal case where the transit
travel time for a particular origin-destination pair is
shorter than that for a private car, the index will have a
value of 1. In equation (10), total transit demand consists of
direct demand, single-transfer demand, and two-or-more-
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TaBLE 1: Object function components.

Component Description

System efficiency Fare revenue (proxy for transit demand) minus operator costs, equivalent to net profit for the operator

User inconvenience Unmet demand (more than the maximum number of transfers)

Equity Deviation of transit accessibility

TaBLE 2: Number of transfers per day (weekdays).

Number of transfers

Trip (%)

None

One

Two or more
Total

16,273,347 (75.0%)
4,568,921 (21.1%)
854,405 (3.9%)
21,696,673 (100%)

Source: Korea Transportation Safety Authority, https://www.kotsa.or.kr/.

TABLE 3: Probelm notation.

Sets

K Set of lines in the transit network

N Set of nodes n

Parameters

[ Operating cost ($/km)

B Fare ($)

a5 % Parameters of utility function
Function

Uc Utility of mode C

P(C) Probability of choice for mode C

Cc Coefficient of utility function
Variables

Kk Headway for line k

jk Frequency for line k

Sfmin Minimum frequency

frax Maximum frequency

£ Fleet size for line k

I Length of line k

Lmax Maximum length of a line

dgj Transit demand from i to j

d Transit demand from i to j without transfer
dzj‘- Transit demand from i to j with one transfer
d; j" Transit demand from i to j with two or more transfers
Ej Accessibility from i and j

nz Number of zones

Ujjc Utility of mode C from i to j

TT. Total travel time from i to j using mode C
TCyc Total travel cost from i to j using mode C
2t Round trip travel time for line k

ti; Transit travel time from i to j

t; Passenger car travel time from i to j
t;‘jt Passenger waiting time from i to j
¢in-veh Passenger in-vehicle time from i to j
gieess Passenger access time from i to j
tflf;'ess Passenger egress time from i to j
t};amfef Passenger transfer time from i fo j

NL Number of lines in the network
NLax Maximum number of lines in the network
NL vin Minimum number of lines in the network
ns Number of stations on line k

nsk Maximum number of stations on line k
nsk. Minimum number of stations on line k
w Number of modes

D, Dummy variable
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transfer demand, the latter of which is taken to be
unmet demand. The travel time for public transit
consists of in-vehicle, waiting, access, egress, and transfer
time (11)

This paper adopts the convex combination method
[57, 58] for the user-equilibrium (UE) traffic assignment
for private cars and the optimal strategy assignment
model [59] for transit assignment. To capture varying
mode-choice behavior that is dependent on established
transit networks, equation (12) determines mode-choice
probabilities based on a logit model that uses the travel
times and costs associated with the trip assignment.

P(C) = exp (Uc) X
Ywexp (Uw) (12)
UijC = 0(1 * TTI]C + (Xz * TCI]C + DC + Cc.
4. Methodology

TNDEFSP is a well-known NP-hard problem due to its vast
solution search space and combination of various decisions
for optimization [50]. Numerous algorithms have been ap-
plied to multiobjective transit network design problems, such
as genetic algorithms [12, 18, 21-24, 37, 54], simulated
annealing [46, 54], tabu search [16, 17, 55], ant colony op-
timization [9, 15], the artificial fish swarm algorithm [28], and
particle swarm optimization [29]. NSGA-II [60] is known to
be a very effective algorithm for solving multiobjectives
[26, 53] and has been used to find optimal solutions for cases
where one objective function is not dominant over the others
while still satisfying the constraint conditions.

NSGA-II computes the fitness values for the solutions
using fast nondominated sorting and a crowding distance
approach. The calculated ranking of these solutions can be
differentiated using a dominance rule, although they belong
to the same front, unlike the existing method [61].

An optimal solution that is not dominated by other
solutions is selected as a candidate solution because it is
impossible to optimize multiple objectives at the same
time. Assuming that all objective functions Z, (x), Va € A
need to be minimized, given a feasible solution
X ={x1,x,,x 3, ..., X}, x; dominates x, when the fol-
lowing two conditions are satisfied (x; > x,):

(1) If all objective functions Zq (x7) SZq (x,),YVq € Q

(2) If Z,(x;) < Z,(x;,),Yq € Q for at least one objective
function.

A Pareto optimal solution is not dominated by other
solutions in the solution set; this nondominant set is referred
to as a Pareto optimal set or Pareto optimal solutions [62].

Crowding distance is used to calculate the density of two
adjacent solutions to determine fitness values within the
same rank and to produce a diversity of solutions. Because
the crowding distance is a Euclidean distance between two
solutions, if the scale of an objective function differs from
others, the influence of that objective function will be biased.
To address this scaling issue, a normalization method

employed in previous studies is adopted here (equation
(13)), [60, 63]:

Vm(x)zw, (13)

‘max — Ymin

where v, (x) is the normalized m' value
The transit network optimization is performed as shown
in Figure 1.

4.1. Network Encoding and Network Creation. The transit
network is expressed as an individual in the algorithm, and in
this study, the encoding scheme has been designed to si-
multaneously consider the transit routes and frequency.
Unlike Chai [26], where stations and lines are encoded
separately, this method can perform crossovers or mutations
without modifying the line information. As shown in Fig-
ure 2, the border (the red line) separating each bus route and
the bus stops for a route are sequentially listed, followed by
the frequency of that route. Our proposed approach generates
a transit network according to a process that considers the
characteristics associated with public transit, with the max-
imum route length and number of routes limited by the
network size. The network creation process consists of the
following steps:

(i) Step 1: Determine the number of bus lines (NL).

(ii) Step 2: Determine the number of stations for line
k(nsk. <nsk<nsk ).

min max
(iii) Step 3: Check the maximum line length constraint.
If the line satisfies the constraint, then go to the next
step. If not, go back to Step 2.

(iv) Step 4: Check the minimum and maximum station
constraints. If the line satisfies the constraints, then
go to the next step. If not, go back to Step 2.

(v) Step 5: Randomly set the frequency of bus line k
within a given range (fim < %< foma)-

(vi) Step 6: Repeat Steps 2 to 5 until all bus lines have
been created.

4.2. Crossover and Mutation Operator. Transit network
crossovers and mutations are employed to find the optimal
solutions. In particular, the crossovers consist of two types:
line and station crossovers. In a line crossover, part of the
network is exchanged based on a random point for the
transit networks K1 and K2 (Figure 3). If the number of
routes does not meet the compatibility conditions, the new
transit network is removed as a solution candidate. As
shown in Figure 4, a station crossover selects two bus routes
on the same transit network. If the two bus lines share a
station, an exchange is performed based on that station
(Figure 4(a)); otherwise, it is based on a random station
(Figure 4(b)). Similar to the line crossover process, after the
crossover, if a new route does not satisfy the line length or
number of stations constraint, it is excluded. Mutations are
only applied to lines, with a random route selected within a
transit network (Figure 5). Existing research suggests a
crossover rate of 0.8-0.9 and a mutation rate of 0.05-0.1.
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NL, | NL, | NL; | NL, | NLg [ - | NLg

mm) | NL, |NL, | NL; |NL,/| NL; | = |NLg

FiGURE 5: Line mutation.

This paper arbitrarily chooses 0.8 as the crossover rate and
0.1 as the mutation rate.

4.3. Local Search. Neighborhood local search is combined
with the NSGA-II in this study. For an individual generated
from the crossover and mutation procedures, a local search
technique is employed to improve the efficiency of the so-
lution search. All of the generated offspring that share
identical bus stops are determined. Parts of the routes are
then switched, followed by checking whether the newly
formed individuals are compatible with the limiting con-
ditions associated with the maximum route length and the
minimum number of bus stops for a route. The new indi-
vidual then replaces the two individuals in the previous step
if their fitness value is higher (Figure 6).

5. Numerical Results

5.1. Toy Network. An ideal grid-form network consisting of
16 zones, 65 nodes, 160 links, and 128 connectors is con-
structed (Figure 7). Every node is a candidate for a bus stop,
and all links are 2km long and have an average speed of
60 km/h. The total demand is 80,000 trips/day, the demand
for the CBD area is 30% higher than in other regions, and
the demand for each area is uniformly distributed. The
proposed optimization method is coded and run using
EMME4/API software. The parameters for the numerical
experiments are set as follows: crossover probability of 0.8,
mutation probability of 0.1, population size of 50, and 50
iterations.

Optimal solutions are found by simultaneously con-
sidering objective functions related to the system, users, and
the public (Figure 8). Figure 8(a) shows that the final
population performs generally better than the initial pop-
ulation. In particular, the Pareto solution set from which a
final population can be chosen exhibits significant im-
provements with respect to all three objective functions.

The Pareto surface illustrated in Figure 8(a) is an
interpolated smooth surface that clearly shows a Pareto
optimal rather than connecting the actual points. The data
points in Figure 8(a) are projected against each objective
function to generate two-dimensional graphs, and the
associated Pareto optimal solutions are presented in
Figures 8(b)-8(d), revealing hidden relationships between
the three objective functions. Because fluctuations in one
objective function can influence other objective functions
differently, these relationships can be utilized as guide-
lines for the design of transit networks for specific
purposes.

Table 4 presents the correlation coefficients from
Spearman correlation analysis for the associated variables.

As shown in Figure 9(a), the system efficiency tends to
increase as the passenger volume per route length increases.
Figure 9(b) shows the relationship between average route

length and unmet demand for origin-destination pairs. The
unmet demand tends to decrease as the transit route length
increases because there are more locations that can be
reached without transferring. Figure 9(c) presents the
changes in transit equity according to the total daily op-
erating length, defined as the product of route length and
route frequency. It is found that as the total daily operating
length increases, the transit equity improves. Because transit
services are provided over a geographically larger area, re-
gional differences in accessibility to these services tend to
shrink and transit equity consequently improves.

Unlike most previous studies that have considered
system efficiency and unmet demand, this research also
accounts for transit equity in the design of an optimal transit
network. Table 5 compares the results with and without
transit equity. When transit equity is not considered, the
system efficiency is higher, and the percentage of unmet
demand in relation to total demand is lower. However, both
the number of routes and the total route length are lower,
indicating that each route tends to be shorter, which in turn
is indicative of a very limited transit network. When system
efficiency and unmet demand are optimized, and transit
equity is not considered, transit demand decreases due to the
dense and overlapping spatial distribution of the routes
(Figures 10(b) and 10(d), respectively). In addition, when
transit equity is not considered, the Pareto solution set for
each objective function does show any improvement (except
for transit equity), yet the transit services are not distributed
evenly throughout the network and tend to be denser in
regions with higher demand. When transit equity is con-
sidered, system efficiency and unmet demand are slightly
worse, but transit equity has improved overall. In
addition, services are distributed in various regions com-
pared to when transit equity is not considered (Figures 10(a)
and 10(c)).

The suggested algorithms with neighborhood local
search are compared with nonlocal search cases in terms of
the evolution of the average objective function for each
iteration (Figure 11). It is confirmed that all objective
functions improve with the use of local search. Figure 12
depicts the Pareto optimal of the final population of two
cases, with the solutions found with the local search mostly
dominating the solutions found without it.

5.2. Large Network Analysis. The proposed method is ap-
plied to an existing transit network to verify its applicability
in real life. The network is in the city of Goyang, Gyeonggi
Province, Korea (Figure 13). This city included 3,828 nodes,
39 zones, 8,963 links, and a population of about 1.04 million
in 2017. The network data (road and transit) and origin-
destination demand (traffic and transit) are collected from
the Korean Transportation Database (KTDB). The existing
transit network consists of 68 bus lines.
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TABLE 4: Results of spearman correlation analysis.

Modal split Passenger volume Daily total operating ~ Average line length Total length  Total = No.
(transit, %) per km Length (km) (km) (km) fleet  Lines
System ~0.446 0.898 ~0.849 -0.806 ~0.795  -0.630 0.043
efficiency
g:nri:d 0.116 0.207 -0.114 —0.396 -0.277 0.135 0.345
Equity -0.804 0.772 -0.819 —0.532 —0.685 -0.779 —-0.387
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TaBLE 5: Pareto optimal solutions with and without equity.
System efficiency =~ Unmet demand . o - o .
(M-won) (person, % *) Equity Car (%) Transit (%)  Total length (km) No. Lines
S* 30.334 539 (2.0) 0.673 67.1 32.9 416 17
— 29.571 137 (0.5) 0.702 67.2 32.8 544 17
With equity U 29.427 — 0.734 67.9 321 460 14
— 30.282 427 (1.6) 0.715 67.3 32.7 420 17
E* 28.510 775 (2.9) 0.655 66.5 335 580 17
\ 30.729 308 (1.2) 0.753 67.4 32.6 364 10
— 30.641 182 (0.7) 0.754 67.7 323 372 10
Without equity  U* 28.959 — 0.769 68.4 31.6 388 11
— 29.143 41 (0.2) 0.971 69.5 30.5 368 10
E* 30.529 51 (0.2) 0.751 67.5 325 376 10
§*: Best system efficiency solution, U*: Best unmet demand solution, E*: Best equity solution, “—” Solutions other than $*, U*, or E*, *: Ratio of unmet
demand to transit demand.
— = :
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! 1 o
4
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FiGure 10: Optimal transit network: (a) Best system efliciency (with equity). (b) Best system efficiency (without equity). (c) Best unmet

demand (with equity). (d) Best unmet demand (without equity).

For a large network, the average computation time takes
34h, but this study is geared toward long-term transit
systems in large cities that do not require near real-time
solutions. Given that the typical interval between the re-
design of transit routes is several years, the computational
time is not a significant factor [53].

Figure 14 presents the transit equity of the existing
network, the network based on maximizing system efficiency
only, and three groups of Pareto solution sets against the two
other objective functions. Table 6 summarizes the associated
numerical values. The existing network performs poorly in
terms of the objective functions and is thus shown to be
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ineffective. In field operations, it is common to only consider
the system efficiency. Maximizing the system efficiency
increases it by 11.5% compared to the existing network.
However, because this does not consider either unmet de-
mand or equity, the transit services tend to be offered in
regions with high demand, resulting in an uneven geo-
graphic distribution of transit routes. When all three ob-
jective functions are considered together, though the system

network and Pareto optimal solution sets.

efficiency is slightly lower, both unmet demand and equity
improve.

As shown in Figure 14, the solutions found via our
proposed method can be categorized into three groups.
Group 1 results in high equity and high system efficiency
while the unmet demand is relatively high. In Group 2, the
equity varies only slightly, while the unmet demand im-
proves and the system efficiency worsens. Thus, Group 2
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TABLE 6: Summary of the solutions for the transit networks.
System efficiency Unmet demand . o - o .
(M-won) (person, % *) Equity Car (%) Transit (%) Total length (km) No. lines
Existing 185.846 42,014 (31.2) 1.721 54.9 45.1 1,164 67
System efficiency only 207.301 20,335 (12.1) 1.885 43.7 56.3 1,772 51
S* 204.035 14,544 (8.7) 1.843 43.8 56.2 1,421 61
— 201.341 7,409 (4.3) 1.743 42.8 57.2 1,549 65
Pareto solution sets U* 198.352 3,887 (2.3) 2.126 44.0 56.0 1,530 64
— 199.736 7,340 (4.4) 1.865 43.6 56.4 1,573 65
E* 202.788 13,070 (7.6) 1.633 42.6 57.4 1,503 62
§*: Best System Efficiency Solution, U*: Best Unmet Demand Solution, E*: Best Equity Solution, “—” Solutions other than §*, U*, or E*, *: Ratio of Unmet
Demand to Transit Demand.
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FIGURE 15: Interval-based average calculation.

overlaps with the solution region in which all three objec-
tives are well-balanced. Group 3 has the lowest unmet de-
mand and the highest equity but with significantly lower
system efficiency. These observed trends were expected
because it is difficult to optimize multiple nonprioritized
objective functions, especially when they have trade-off
relationships with each other. It is recommended that
planners choose a feasible solution group based on their
target operational policies and social outcomes.

6. Sensitivity Analysis

The sensitivity of the objective functions to the constraint on
the number of lines, the total demand, and the operating cost
is also analyzed. For this, it is not possible to use the average
of the objective values for the Pareto solutions because the
solutions may not be distributed evenly. To minimize the
bias from uneven distributions, the top and bottom 10% are
excluded, and the range between 10% and 90% is divided
evenly into four sections. The averages of these sections are
then compared (Figure 15).

The previously identified Pareto solutions were subject to
a constraint on the maximum number of lines and conse-
quently, they all had a number of lines that were below the
constraint. Therefore, the number of allowed lines is reduced
by 0% to 50%. As the number of lines allowed decreases, the
average route length increases (Figure 16(b)), which indi-
cates that longer routes can cover a larger service area and

passengers do not need to transfer as often, reducing the
unmet demand and the daily total operating length. How-
ever, as shown in Figure 16(a), the system efficiency is
unaffected by the reduction in the number of lines allowed
because route frequencies can be increased on some routes
to compensate for loss.

In the long term, total regional demand can increase as a
city grows and decrease if the city shrinks. Therefore, sen-
sitivity analysis for changes in total demand is conducted. As
shown in Figure 17(a), unmet demand and system efficiency
both have a positive correlation with total demand. In ad-
dition, transit equity improves as the total demand increases
(Figure 17(b)), possibly due to the expansion in transit
services to match the growing demand.

The effect of operating costs, which typically include fuel
and labor costs, on the objective functions is also analyzed
(Figure 18). As the operating costs increase and the total
revenue remains constant, the level of service and modal
split for transit decreases, resulting in a reduction in transit
equity and system efficiency. However, unmet demand does
not appear to have a correlation with operating costs.
Figure 18(b) shows that the relationship between operating
costs and the daily total operating length is nonlinear.

Based on the sensitivity analyses, the optimal transit
network solutions vary in terms of their route length, fleet
size, and the number of lines, thus affecting the objective
functions. The system efficiency is influenced by transit
demand, unmet demand is influenced by the average route
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length of the transit network, and transit equity is influenced
by the daily total operating length, which represents the
extent of transit services. These findings can serve as a
guideline for determining the optimal transit network for
individual cities or regions based on their geographic,
economic, and policy-related characteristics.

7. Conclusions

The design and operation of transit networks require various
elements, including public policies and demand, to be
considered. Therefore, the TNDEFSP is considered a multi-
objective problem [1, 50, 64]. Existing literature has focused
mainly on the perspective of operators and transit passen-
gers. In this paper, an innovative transit network design
methodology was proposed that also considered transit
equity in addition to the operator and users without applying
subjective and/or qualitative weights to the multiple ob-
jective functions.

Our proposed method seeks a range of solutions while
simultaneously trying to maximize system efliciency, mini-
mize unmet demand, and improve transit equity to minimize
the difference in transit service levels between regions. Using a
toy network, the relationships between the three objective
functions were delineated, and we identified potential factors
that may influence these relationships. By applying the
proposed approach to an existing real-life network in Goyang,
Korea, using key information such as the location of bus stops,
the service coverage, and the number of lines, the applicability
of the method was verified. It was found that it was not
possible to optimize all three objective functions simulta-
neously; rather, our proposed approach produced a set of
solutions from which a particular transit network can be
designed based on the goals of the decision-makers.

In addition to analyses based on the current state of the
existing network, sensitivity analyses were conducted for
potential future changes in the number of possible lines, total
demand, and operating costs and their effect on the objective
functions. By considering the results of these sensitivity an-
alyses, it is expected that decision-makers will be able to assess
regional characteristics in more detail in order to make well-
informed decisions about their target transit network.

In this paper, a novel methodology for a multiobjective
transit route network design algorithm that considers transit
equity and variable demand was developed. This line of
research suggests some useful future research directions. For
example, optimal solutions for specific seasons or months
could be explored according to changing demand over time.
In addition, the proposed approach can be refined by
comparing results from other cities and be generalized by
introducing differentiating parameters to develop a more
universal methodology.

Data Availability

The experiment dataset used to support the findings of this
study is available at https://github.com/jennapark/
TRNDEFSP_S].git.
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