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Trafc state estimation (TSE), which reconstructs the trafc variables (e.g., speed, fow) on road segments using partially observed
data, plays an essential role in intelligent transportation systems. Generally, trafc estimation problems can be divided into two
categories: model-driven approaches and data-driven approaches. Te model-driven method is commonly used to solve TSE
efciently and calibrate the parameters of these models. Te data-driven method requires a large amount of historical observed
trafc data in order to improve performance accurately. In order to combine the advantages of model-driven and data-driven
methods, this paper proposed a hybrid framework incorporating the trafc fowmodel into deep learning (TFMDL)modeling that
contains both model-driven and data-driven components. Tis paper focuses on highway TSE with observed data from loop
detectors. We build a hybrid cost function to adjust the weights of model-driven and data-driven proportions. We then evaluate
the proposed framework using the open-access performance measurement system (PMS) dataset on a corridor of US I-405 in Los
Angeles, California. Te experimental results show the advantages of the proposed TFMDL approach in performing better than
several benchmark models in terms of estimation accuracy and data efciency.

1. Introduction

Te intelligent transportation system (ITS) needs real-time
trafc information and an accurate estimate of the future
trafc state to make efective decisions so that users can
obtain reliable information (e.g., travel time, route choice).
Te bottleneck is a critical topographic feature leading to
trafc congestion because of its low capacity in the road
network [1]. Accurate estimation and prediction of the
trafc state could reduce trafc jams, pollution, and urban
trafc pressure [2]. Terefore, trafc state estimation (TSE)
plays a crucial role in urban trafc planning, control, op-
erations, and other transportation services.

Trafc state estimation refers to inferring trafc state
variables (i.e., fow, density, speed) on road segments using
partially observed trafc data by trafc detectors [3]. Te

methods of estimating trafc conditions can be briefy di-
vided into two main approaches: model-driven and data-
driven. References [4, 5] have defned the data-driven
method to infer trafc states based on the dependence
learned from historical data using statistical or machine
learning methods, such as convolutional neural networks
(CNN), and long-term memory (LSTM) [6]. Te model-
driven approach is based on a priori knowledge of trafc
dynamics, usually described by a physical model, e.g., the
Lighthill-Whitham-Richards (LWR) models [7, 8], and the
cell transmission model (CTM) [9].

Macroscopic trafc state variables denote the trafc
conditions on road links in a trafc segment. Trafc fow
models describe the dynamic behavior of vehicles and
drivers. After calibrating the trafc fow model, the model
can estimate and predict future trafc states more accurately
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[10]. Te model-driven approach uses real-time data as
input to evaluate the trafc state in unobserved area-
s.Select trafc fow models could capture the relationship
among trafc fow variables [11]. However, these trafc
fow models were proposed based on ideal assumptions
and conditions that may not fully capture real-world
trafc phenomena.

With the rapid development of information pro-
cessing technology, the neural network is widely used in
estimation and prediction because of its advantages in
modeling and optimizing nonlinear systems. It is nec-
essary to choose a suitable neural network model
according to the study problem and requirements [12].
Te neural network trains the model using historical data
and then estimates and predicts the unobserved trafc
state. However, for the hidden anomalies and mutation
points in the data sequence, due to the lack of training
data, it is difcult for machine learning to make accurate
estimations and predictions, which is especially obvious
during the fow breakdown in the bottleneck. Te trafc
fow model could establish a stable fundamental diagram
with some key parameters, especially since it is more
accurate and can be interpreted for the mutation situa-
tion (e.g., breakdown in bottleneck). Terefore, com-
bining the machine learning method with the trafc fow
model is a practical way to build a hybrid model, im-
proving the accuracy of estimation and prediction of
trafc state.

Tere are some researchers focused on the hybrid
method of modeling for estimation and prediction
[5, 13, 14]. Te latest representative study was published by
[15, 16] and combined with LWR, CTM, and Deep Learning
Neural Network to estimate trafc conditions accurately.
Teir study focused on the conditions with CAV and probe
vehicle data in general conditions. However, it is more
difcult and critical for trafc state estimation at the fow
breakdown in the bottleneck. Terefore, this paper flled the
gap in trafc state estimation and prediction under con-
gestion conditions with a hybrid stepwise modeling
framework, which can be further used for both modeling of
the fundamental diagram and neural network intended to
improve trafc state estimation and prediction accuracy. We
hope to shed light on improving trafc state estimation
accuracy across a hybrid modeling framework, especially
suitable for the congestion situation. It makes possible the
integration of the advantages of both model-driven and
data-driven approaches while overcoming the weaknesses of
either alone.

Te rest of this paper is organized as follows. Section 2
reviews related work on trafc state estimation with a trafc
fow model and a deep learning neural network. Section 3
builds a hybrid stepwise modeling framework for TSE by
integrating the trafc fow model and deep learning to es-
timate and predict trafc states. Section 4 presents an ex-
periment using the proposed method to verify the
performance of the proposed method and details the eval-
uation of the experiment results and discussion. Section 5
concludes our work and suggests a research direction in the
future.

2. Literature Review

2.1. Macroscopic Trafc Flow Model for Trafc State
Estimation. Most traditional methods for trafc state esti-
mation and prediction are model-driven. Tese models were
proposed based on ideal assumptions and conditions that
fully capture the trafc fow phenomena of the real world.Te
fundamental diagram is one of the most basic concepts in
trafc fow theory, known as the relationship between fow-
speed, density-fow, and density-speed. Te fundamental
diagram appears in almost all trafc fow theories related to
the trafc state variables and contains remarkable information
about trafc characteristics [17]. It needs to calibrate the
critical parameters in the adopted trafc fow model to obtain
trafc fow characteristics in a link, section, or corridor.Tose
key parameters include free-fow speed, critical speed, critical
density, jam density, and ultimate capacity, among some
other parameters [18]. Suppose the adopted trafc fowmodel
could accurately capture the trafc state variables observed by
the detector. Te model-driven approach can precisely esti-
mate and predict trafc states in unobserved areas [3].
Terefore, it is essential to use a suitable trafc fow model to
systematically capture the fundamental relationships between
trafc fow, speed, and density.

Many calibration methods have been proposed to
identify the parameter values in the fundamental diagram.
Some studies are based on sensor data [19, 20], and others
are based on GPS data [21, 22]. In addition, some studies
combine sensor data with probe vehicle data [23, 24]. Te
fundamental diagram relates trafc state variables to each
other and is a core part of trafc fow theory.It plays a
signifcant role in most trafc state estimation methods.
Selected the Payne trafc fow model [25] to integrate into
the Kalman flter’s observation equation, [26] proposed a
framework to estimate and predict travel time. Reference
[27] highlighted a particle flter method to estimate trafc
conditions in freeway networks based on a speed-extended
CTM-based macroscopic model. Based on stochastic non-
linear macroscopic trafc fow modeling and an extended
Kalman fltering model, [28] proposed a general approach to
study trafc state estimation in freeways or networks.

Furthermore, the LWRmodel is the most widely used for
model-driven TSE. Reference [29] modifed the LWR partial
diferential equation (PDE) to incorporate a correction term
that reduces the discrepancy between the observed and
estimated trafc fow state. Reference [30] examined a dy-
namic frst-order modeling approach to solving the trafc
data-cleaning problem. Reference [31] developed a Bayesian
recursive framework to estimate trafc fow states based on a
freeway trafc model with aggregated states.

Te model-driven TSE method could represent the
physics of trafc fow and has high explanatory power for
trafc fow characteristics. Tis means that even if the esti-
mation is inaccurate, it would be possible to identify the
reference value and confdence intervals. However, the per-
formance of TSE might be poor if the model or calibrated
models are inappropriate. Terefore, model-driven TSE re-
quires careful selection of the trafc fow model and cali-
bration of model parameters by measuring trafc fow data.
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2.2. Data-Driven Method for Trafc State Estimation.
Data-drivenmethodsmainly rely on plentiful historical data,
it predicts the trafc fow state by identifying the current
trafc fow pattern from the collected historical trafc data,
without detailed descriptions of intrinsic trafc dynamics
based on trafc fow models [32]. Unlike the typical fun-
damental diagram, the data-driven methods are fexible in
incorporating additional explanatory variables, such as time
of day, day of week and weather [33].

Te Neural Network (NN) and Deep neural network
(DNN) have been widely and successfully applied to trafc
state estimation and prediction because of their advantages
in modeling and optimizing nonlinear systems [34, 35]. Two
popular DNN modeling tools are most used in TSE, CNN
method is good at dealing with visual data [36], while LSTM
specializes in sequential data processing [37]. Many studies
apply neural networks to enhance the accuracy and ro-
bustness of trafc state estimation. Reference [38] proposed
a CNN-based method that learns trafc as images and
predicts trafc speed in a large-scale network with high
accuracy. Reference [39] introduced Bayesian learning to
neural networks for the accurate prediction of trans-
portation estimation. However, relying on historical data
means these methods could have worse results if there are
irregular data or cases. Some studies focused on the irregular
situation with a data-driven approach. To name only a few,
[40] researched the prediction accuracy for trafc fow by
machine learning and the DNN approach during the disaster
recovery period. Reference [41] developed a framework that
combines a linear model with a deep learning model that
captures the nonlinear spatial-temporal trafc fow phe-
nomenon. It needs to be emphasized that the case study in
this paper did not analyze the irregular data or long-term
trends. In addition, [42] presented a new approach to
predicting freeway travel time based on recurrent neural
networks. Teir model could be capable of dealing with
spatial-temporal relationships implicitly. Furthermore, tra-
ditional neural network approaches for trafc fow esti-
mation and prediction are usually single-task learning
models, and there are some researchers focused on the
multitask learning (MTL) method for trafc fow forecast-
ing. Reference [43] highlight the multitask learning-based
neural network method that improves generalization for
trafc fow forecasting. Reference [44] incorporated multi-
task learning into its deep architecture and investigate ho-
mogeneous MTL and heterogeneous MTL for trafc fow
prediction. Reference [45] proposed a deep learning-based
multitask learning Gated Recurrent Units (MTL-GRU)
method to improve the forecasting accuracy of trafc fow
and speed.

To learn time series with long time spans, long short-
term memory (LSTM) neural networks have been efectively
applied in short-term trafc fow prediction. Reference [46]
applied LSTM to efectively capture nonlinear trafc dy-
namics using remote microwave sensor data collected for the
Beijing network. Along this line, [47] proposed a deep and
embedding learning approach to estimate and predict trafc
fow characteristics. Te model consists of an embedding
component, a CNN component, and an LSTM component.

Motivated by the success of CNNs and LSTMs, [48] pro-
posed a spatiotemporal image-based convolutional networks
approach to predict the network-wide trafc state. Reference
[49] proposed a novel Spatio-Temporal Graph Convolu-
tional Networks (STGCN) to enhance the time series pre-
diction accuracy for multi-scale trafc networks. In addition,
some other machine learning approaches have been de-
veloped for trafc fow prediction, such as Difusion Con-
volutional Recurrent Neural Network (DCRNN) [50],
Spatio-Temporal Attention-based Neural Network
(STANN) [51], spatial-temporal graph convolutional net-
work (ASTGCN) [52], spatiotemporal feature selection al-
gorithm (STFSA) with CNN model [53].

Compared with model-driven methods, data-driven
methods do not require explicit theoretical assumptions,
such as the fundamental diagram and partial diferential
equation. Tey cannot guarantee that the results will be
physically feasible. In addition, data-driven approaches
typically rely on relatively simple models and heavily rely on
the amount and variety of data used for training. However,
reliance on historical data means these methods could have
worse results if there is irregular data or long-term trends.
Te computational cost of training and learning can be very
high [3]. In addition, the process can be considered a black
box, meaning inductive insights are difcult to obtain.
Terefore, some trafc experts constantly criticize the data-
driven method for understanding the building blocks of the
models [54].

2.3. Hybrid of Trafc Flow Models and Neural Networks.
In a congestion bottleneck or adverse weather conditions,
driver behavior becomes more complex and nonlinear,
which leads to new challenges in trafc state estimation.
However, neither model-driven nor data-driven methods
alone can estimate such complex behavior with an allowable
level of accuracy.Terefore, to mitigate the limitations of the
previous TSE approaches, many researchers have studied a
lot of research combining the advantages of data-driven and
model-driven to compensate for their weaknesses.

A hybrid method could approximate the trafc states
described by some trafc fow models in nonlinear difer-
ential equations and discover unknown model parameters
using observed trafc data. It can improve the accuracy and
explanation of model-driven or data-driven methods alone
in traditional. However, many areas and questions still need
to be explored in developing the hybrid method. Te trafc
fow model was frst proposed in the deep learning method
by [55, 56] to solve the TSE problem with the PDE feature.
Moreover, [4] proposed a framework to solve nonlinear
partial diferential equations TSE problems. Tis problem
has both a physics-informed neural network and a physics-
uninformed neural network. Whereafter, [5] proposed a
hybrid framework, a physics-informed deep learning model,
to combine second-order trafc fow models and neural
networks for the TSE. And they used experiments to
demonstrate the proposed model in terms of data ef-
ciency and estimation accuracy. Reference [15] presented
a physics-informed deep learning method to improve the
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accuracy of the TSE problem. And they demonstrated the
powerful capability of the model in utilizing limited data
for real-time TSE. Reference [57] developed a hybrid
model that integrates both linear regression models with
a neural network layered by LSTM. Tey used this model
to forecast the demand for taxi rides, and the results
showed that this model could enhance the forecasting
performance. Reference [58] proposed a kinematic wave-
based deep CNN to estimate trafc speed dynamics. Tis
method combines the advantages and mitigates the
disadvantages of model-driven and data-driven ap-
proaches for TSE.

 . Methodology

3.1. Conceptual Illustration. It is critical for TSE to collect
ample historical data. Te recorded data is used to calibrate
or identify trafc fow states in amodel-drivenmethod. Real-
time information is collected at the moment when the trafc
state is unknown. Te conceptual illustration between trafc
state estimation, real-time data, and historical data is shown
in Figure 1. By combining the long-term historical and real-
time data could estimate the unknown trafc state between
the two locations

3.2.Model-DrivenMethod. Te fundamental diagram (FD)
appears in almost all trafc fow theories as it relates to the
trafc state variables and contains remarkable informa-
tion about trafc characteristics [59]. Some important
trafc fow model parameters (free speed vf, critical
density kc, critical speed vc, jam density kj, and capacity c)
could infuence the shape of the FD, especially in the
undersaturated regime (A) and oversaturated regime (B).
Figure 2 is the fundamental diagram with undersaturated
and oversaturated conditions.

In this paper, the model-driven adopted of a new S-
shaped three-parameter (S3) trafc fow model [60] to
estimate the relationships among three fundamental var-
iables (i.e., fow, speed, and density). Tis trafc fow model
could capture the fow-speed-density relationship simul-
taneously under all possible densities, especially at high
densities.

Te S3 model has the following density-speed rela-
tionship, as shown in (1)

v �
vf

1 + k/kc( 
m

 
2/m, (1)

where, vf is the free-fow speed and kc is the critical density.
Te term m is introduced to control the smoothness or
fatness of the curves for diferent planes across the feasible
range of trafc congestion conditions. q, k, and v are fow,
density, and speed, respectively. According to the conser-
vative law q � kv, we could derive the density-fow rela-
tionship, as shown in (2)

q �
k · vf

1 + k/kc( 
m

 
2/m. (2)

Trafc fow models use empirical data from devices and
develop hypotheses to calibrate and validate model pa-
rameters [34]. We could calibrate those key parameters vf,kc

and m using observed multi-day speed and fow data.
For the results to be scale-independent, we normalize the

average fow and average density as follows:
And then, we could derive the estimation trafc fow on a

new day at the timeline, namely the estimated speed vtf(x, t)

and estimated fow qtf(x, t), as shown in (3) and (4):

vtf(x, t) �
vf

1 + kobs(x, t)/kc( 
m

 
2/m, (3)

qtf(x, t) �
kobs(x, t) · vf

1 + kobs(x, t)/kc( 
m

 
2/m. (4)

For the results to be scale-independent, we normalize the
fow data and speed data as follows

q(x, t) �
q(x, t) − qmin(x, t)

qmax(x, t) − qmin(x, t)
. (5)

v(x, t) �
v(x, t) − vmin(x, t)

vmax(x, t) − vmin(x, t)
, (6)

qmax(x, t) and qmin(x, t) are the global maximum and
minimum fow over all time indexes. Similarly, vmax(x, t)

and vmin(x, t) are the global maximum and minimum speed
over all time index.

According to (5) and (6), we could normalize the ob-
served fow data qobs(x, t), the observed speed data vobs(x, t),
the estimated fow data qtf(x, t) by model-driven method,
and the estimated speed data vtf(x, t) by model-driven
method, respectively.

Ten we could calculate the error between the nor-
malized observed data and normalized estimated data by the
trafc fow model.

err1 � qobs(x, t) − qtf(x, t)


 + vobs(x, t) − vtf(x, t)


. (7)

Te calibrated trafc fow model could accurately
demonstrate the relationship among observed trafc state
variables.Temodel-drivenmethod could precisely estimate
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Figure 1: Illustration of trafc state estimation considers the
spatial-temporal correlation.
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and predict trafc states in unobserved areas and provide a
higher resolution of the estimated trafc fow state. Te
trafc fow relationship curve can be obtained by calibrating
the selected trafc fow model using observed actual data
from a loop detector, which can obtain explainable pa-
rameters. However, the robustness of the calibrated trafc
fow model needs to be improved in the event of trafc
accidents or adverse weather conditions.

3.3. Data-Driven Method. Another solution to improve the
accuracy of trafc state estimation is the data-driven
method. Instead of relying on the calibrated trafc fow
models based on empirical or historical observed data, it
applies the rapidly emerging machine learning techniques to
recognize the relationship between trafc state variables.
Based on the real-time input data, the data-driven method
could capture the trafc fow pattern in a specifc envi-
ronment, such as congestion and peak periods. Terefore,
the data-driven approach is expected to be more reliable
when the measured trafc data is abnormal or missing.

Deep learning is a subset learning method of machine
learning techniques. Long short-term memory is an arti-
fcial recurrent neural network (RNN) architecture used in
the deep learning area. It is a novel recurrent neural net-
work architecture developed to capture the long-term
temporal dependency for short-term travel speed or fow
estimation and prediction. As the Long short-termmemory
recurrent neural network (LSTM) has been recommended
by many existing works [6], especially for time series
forecasting. Tus, LSTM was selected as the deep learning
algorithm in the proposed model in the paper. A typical
LSTM model consists of an input, output, forget, and
external input gate. Te structure of LSTM is shown in
Figure 3.

Te frst step in the LSTM model is the forget gate ft. It
uses the sigmoid function δ to remove unnecessary
information.

ft � δ Wff · ht−1 + Wxf · xt−1 + bf . (8)

Te second step is the input gate it and external input
gate gt. It then updates and decides the new information.

it � δ Wgg · ht−1 + Wxg · xt−1 + bg ,

gt � tanh Wgg · ht−1 + Wxg · xt−1 + bg .
(9)

Te third step is mainly to update the old cell state st.

st � ft · ft + it · gt. (10)

Te last step is the output gate ot.

ot � δ Woo · ht−1 + Wxo · xt−1 + bo( ,

ht � ot · tanh st( ,
(11)

δ denotes the standard logistics sigmoid function.

δ(x) �
1

1 + e
− x, (12)

where Wff, Wxf, Wgg, Wxg, Woo, Wxo is weight and bf, bg,
bo is bias. ht, xt is variable, ⊗ denotes the Hadamard
product.

Before building the LSTM model, the parameters of the
model should be determined. Te parameters automatically
adjusted by the model can be obtained through training and
learning in model training without human intervention. Te
hyperparameters need to be set manually, including the
number of input layers, the number of hidden layers in the
network, the number of nodes in hidden layers, the number of
output layers, activation function, loss function, optimization
function, step size, iteration times, etc.Te network structure of
the LSTM model established in this paper includes one input
layer, three hidden layers, and one output layer. In this study,
the same data are used to test LSTMmodels with hidden layers
1, 2, and 3, respectively, and the model with the minimized
error is selected by comparing the test results.

Similarly, we used (5) and (6) to normalize the observed
data and estimated data by the data-driven method.Ten we
could calculate the error between the normalized observed
data and normalized estimated data by the LSTM model, as
shown in (13)

err1 � qobs(x, t) − qdl(x, t)


 + vobs(x, t) − vdl(x, t)


, (13)
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where, qdl(x, t) and vdl(x, t) are the normalized estimated
fow and speed by the data-driven method. As previously
mentioned, qobs(x, t) and vobs(x, t) are the normalized ob-
served fow and observed speed data at location x in time t,

respectively.

3.4. TFMDL-Based Trafc State Estimation Model. Te
trafc fow model could simulate the evolution of the
trafc fow state, especially in particular circumstances
like accidents or bad weather. We could obtain accurate
and interpretable trafc state estimation results by cali-
brating the trafc fow model. In addition, considering
the potential resource waste and privacy problems as-
sociated with the massive use of trafc data, trafc fow
models can be used to minimize data utilization while
achieving estimation accuracy. Te neural network could
improve the accuracy of data estimation, especially in the
normal condition of good weather. Te estimation and
prediction results have high reliability [61]. Terefore,
this paper proposes a hybrid model that could accurately
estimate congestion duration on the bottleneck, the start
and end times of congestion. It is suitable for specifc
weather and can also improve the real-time accuracy of
trafc state estimation and prediction. When we derive
the estimated data using diferent methods, we could use
a hybrid stepwise modeling method to further improve
the accuracy of TSE by incorporating the trafc fow
model into the deep learning-based method (TFMDL).
Te fowchart of the hybrid method framework is shown
in Figure 4. Algorithm 1 gives the algorithm framework of
the proposed hybrid stepwise trafc state estimation
framework.

Te total cost function J of TFMDL for trafc state
estimation is calculated by the following (14):

J � α · Jtf +(1 − α) · Jdl, (14)

where J is the total cost function, Jtf is cost from the model-
driven method, and Jdl is cost from the data-driven method.
Te range of α is 0 or 1.

4. Case Study

4.1. Data Description. Te data collection site is the I-405
corridor in Los Angeles, the United States, with uninter-
rupted trafc fow, as shown in Figure 5. Tere are nine
detectors with absolute mileage (9.87–13.74) in July 2021 (0:
00–24: 00). It includes 31 days of data, including 27 days of
training data and 4 days of testing data. Te observed data
includes trafc fow, speed, and occupancy. Te detailed
detector information is shown in Table 1.

4.2. Evaluation for Estimation Results. Te performance of
evaluation criteria focuses on traditional measures that are
scalable and quickly explained: mean squared error (MSE),
root mean squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and
R-square (R2). Te defnitions of them are shown as follows

MSE �
1
N



N

x�1
measuredx − estimatedx( 

2
,

RMSE �

���������������������������


N
x�1 measuredx − estimatedx( 

2

N



,

MAE �
1
N



N

x�1
measuredx − estimatedx


,

MAPE �
100%

N


N

x�1

measuredx − estimatedx

measuredx




,

R
2

� 1 −


N
x�1 measuredx − estimatedx( 

2


N
x�1 measuredx − averagedx( 

2 ,

(15)

where measuredx is the measured trafc counts for x,
estimatedx is the estimated trafc counts for x, averagedx is
the average trafc counts for x,N is the total number of counts.

4.3. Estimated Flow and Speed by Trafc FlowModel. We use
the trafc fow model S3 to ft the measurement training
data, and the fundamental diagram of the case data is shown

Model-driven Data-driven

Observed Data

Key
parameters

Calibrated
model

Trained
model

Key
parameters

Final result

Hybrid model

Reach
threshold?

Yes

No

Data-driven
TSE

Data-driven
TSE

Flow-speed-
density curve

Figure 4: Te framework of the proposed TFMDL structure.
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Figure 5: Data acquisition. (a) Freeway segment location. (b) Bottleneck identifcation.

Step 1: Select multi-day data to calibrate the key parameters in the trafc fow model, and we could derive the calibrated trafc fow
model, including the fow-speed curve, fow-density curve, and speed-density curve.
Step 2: Using the calibrated model to estimate and predict the trafc fow state in an unobserved area (with partially observed data).
Step 3: Calculate the error 1 (model-driven error) between the observed and estimated value by the model-driven method.
Step 4: Build a machine learning model and divide the data set into training and testing data sets.
Step 5: Check if you have reached the maximum training threshold and return to Step 4 or step forward.
Step 6: Calculate error 2 (data-driven error) between the observed and estimated value by the data-driven method.
Step 7: Calculate the total cost function with the TFMDL model.

ALGORITHM 1: Implementation for building TFMDL-base TSE framework.
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in Figure 6. Te calibrated key parameters of the trafc fow
are shown in Table 2.

Ten we could derive the estimated speed and fow by
calibrated trafc fow model, as shown in (16) and (17).

vtf(x, t) �
70

1 + kobs(x, t)/30( 
4.8

 
0.42, (16)

qtf(x, t) �
kobs(x, t) · 70

1 + kobs(x, t)/30( 
4.8

 
0.42. (17)

4.4. Estimated Flow and Speed by Machine Learning Model.
Te network structure of the LSTM model established in this
paper includes one input layer, three hidden layers, and one
output layer. Te number of nodes of each hidden layer is 64,
the optimization function is Adam, the excitation function is
Sigmoid, and the number of iterations of each training is 100.
Tis paper uses the same data to test LSTM models with the
same parameters and hidden layers of 1, 2 and 3, respectively,
for the selection of network layers. Te comparison results are
shown in Tables 3 and 4. It can be seen that the LSTM model
with a three-layer hidden layer has the best performance, which
has fewer RMSE, MAE, and MAPE than other tests. Te es-
timated fow and speed by the data-driven method in the Los
Angeles case are shown in Figures 7 and 8, respectively.

To determine the benefts of the proposed method,
several benchmark models are also tested in the case study,
and we provide more comparative analysis by referring to
some literature [14, 62]. Te benchmark algorithms include
the LSTM model, k-Nearest Neighbor (KNN), ARIMA
model, and Random Forest (RF). We further compare the
observed data with estimated data by diferent methods, as
shown in Tables 5 and 6. We could fnd that the proposed
TFMDL framework is better than the other benchmark
methods.

As shown in Table 5 and 6, we could fnd that the pro-
posed TFMDL framework has better performance than the
other models. Te fndings can be summarized as follows:

(1) On the whole, the precision of the proposed method
is slightly higher than the other methods, especially
in estimating the state of trafc speed. Te proposed
model shows the best performance in MAE, RMSE,
and MAPE, with values of 1.20, 2.24, and 2.75%,
respectively.

(2) In terms of fow estimation, the proposed model
shows the best performance inMAPE, with a value of
4.26%, while the KNN method performed well in
MAE and RMSE, respectively.

4.5. Spatiotemporal Analysis of TFMDL. We further evaluate
the average performance and stability of the proposed TFMDL
framework, and Figure 9 depicts the observed and estimated
speed profles on four days in spatiotemporal.Te solid blue line
indicates the prominent diference between the observation and
the estimation. It shows the transition between the free-fow and
the congested states. Reference [63] systematically analyze the

spatiotemporal transition characteristics of trafc conditions
near an on-ramp bottleneck.Te accuracy of speed estimations
on diferent days and for diferent absolute miles is shown in
Table 7. Figure 10 shows the average comparison error in each
location for four days. Te fndings can be summarized in
Figures 9 and 10 Table 7 and by the following:

(1) Te proposed framework could accurately estimate
speed on all datasets. At absolute mile 12.93 on 07/
31/2017, it has the lowest MAE (0.83m/s), while at
absolute mile 9.87 on 07/27/2017, it has the highest
MAE (1.89m/s). Te average MAE of the dataset is
all less than 1.8m/s. In terms of MAPE, the average
MAPE of the dataset are all less than 7%. Absolute
mile 12.93 on 07/31/2017 has the lowest MAPE
(1.87%), while absolute mile 10.67 on 07/26/2017 has
the highest MAPE (10.54%).

(2) Te proposed framework could accurately estimate
speed in oversaturated conditions. It may depend
mainly on the trafc fow model (S3), which could
better ft real-world observations, particularly under
high trafc density ranges. However, compared to
datasets with oversaturated conditions (i.e., absolute
miles 9.87, 10.67, and 11.17), better estimation results
are observed on datasets with light trafc conditions
(i.e., absolutemiles 12.93 and 13.74).We could further
analyze whether model-driven or data-driven ap-
proaches occupy amore signifcant proportion during
congestion period estimation in Section 4.6.

(3) Tis framework could capture the state of trafc
congestion and noncongestion conditions, and we
could obtain the start time of congestion and the end
time of congestion. Obviously, the estimation efect
is signifcantly better in the noncongestion period
(i.e., green in the fgure) and slightly worse in the
congestion period (i.e., yellow and red in the fgure).

(4) It is observed that, compared to observed speed
profles, the estimated speed profles look not
smooth enough, and we can fnd some sharp speed
changes. Te main reason may be related to the
parameter α in equation (14) only selecting integer
values of 0 or 1. Considering the decimal value of the
parameter α is expected to improve the estimation
performance under congested trafc conditions, and
it is also the further work of this study.

(5) As shown in Figure 10, the estimated average error
on 07/31/2017 is the lowest, and the estimated av-
erage error on 07/28/2017 is the highest. Combining
the last four Figures 9(e)–9(h) in Figure 9, we could
fnd that this is probably related to the overall
congestion range. It is obvious that the spatiotem-
poral congestion on 07/28/2017 is on a much larger
scale than the other days.

4.6. Model-Driven and Data-Driven Proportion Analysis.
According to Figure 9, we could fnd that the congestion du-
ration is 12:00 am 8:00 pm. Terefore, we further analyze the
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Table 2: Key parameters in the Los Angeles case.

Free-fow speed (km/hr) Critical speed (km/hr) Critical density (veh/km/ln) Ultimate capacity (veh/km/ln) m
70 52.48 30 1574 4.8

Flow vs. density
2500

2000

1500

1000

500

0
0 25 50 75 100

Density (veh/mi/ln)

Fl
ow

 (v
eh

/h
r/

ln
)

125 150 175

Calibrated curve using S3 model

Observed data

(a)

90

80

70

60

50

40

30

20

10

0
0 250 500 750 1000

Flow (veh/hr/ln)

Flow vs. speed

sp
ee

d 
(m

i/h
r)

1250 1500 1750

Calibrated curve using S3 model

Observed data

(b)

90

80

70

60

50

40

30

20

10

0
0 25 50 75 100

Density (veh/mi/ln)

Density vs. speed

sp
ee

d 
(m

i/h
r)

125 150 175

Calibrated curve using S3 model

Observed data

(c)

Figure 6: Fundamental diagram in Los Angeles case. (a) fow-density relationship. (b) speed-fow relationship. (c) speed-density
relationship.

Table 1: Descriptive information about detectors.

Detector ID Absolute mile Length (mile) Number of lanes
1 13.74 0.57 4
2 13.51 0.23 4
3 12.93 0.58 5
4 12.62 0.31 5
5 11.93 0.69 6
6 11.37 0.56 6
7 11.17 0.2 6
8 10.67 0.5 6
9 9.87 0.8 4
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proportion of model-driven and data-driven in our proposed
TFMDL framework all day (as shown in Figure 11) and during
the peak period (as shown in Figure 12). Te corresponding
proportion analysis of model-driven and data-driven methods
is shown in Tables 8 and 9, respectively. Te following fndings
can be summarized in Figures 11 and 12, Tables 8 and 9.

(1) In all-day analysis, the estimated data by model-
driven and data-driven proportions are almost
identical, as shown in Figures 11(a)–11(c), while on
31/07/2017, as shown in Figure 11(d), the proportion
of data-driven is more signifcant than the data es-
timated by model-driven.

(2) When we analyze the estimation data during the
peak period (12: 00 am–8:00 pm), it is obvious that
the data estimated by the model-driven method is
larger than the data-driven method. However, one of
the exceptions is the data on 31/07/2017. Te esti-
mated data by model-driven and data-driven pro-
portions are almost identical.

(3) According to Tables 8 and 9, we can fnd that the
proportion of model-driven estimated data during
the peak period is signifcantly higher than the data-
driven method. Terefore, we could conclude that
the model-driven could better capture the congested

Table 3: Compare evaluation indicators in the machine learning model.

Layers RMSE MAE MAPE
One-layer 109.61 80.31 10.75
Two-layers 107.36 76.34 10.69
Tree-layers 105. 7 76.19 10.3 
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Figure 7: Estimated fow by the data-driven method in the Los Angeles case. (a) one-layer; (b) two-layer. (c) three-layer.
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Figure 8: Estimated speed by the data-driven method in the Los Angeles case. (a) one-layer. (b) two-layer. (c) three-layer.

Table 4: Compare evaluation indicators in the machine learning model.

Layers RMSE MAE MAPE
One-layer 4.28 2.11 5.16
Two-layers 4.06 1.91 4.92
Tree-layers 3. 5 1. 5 4.51

Table 5: Compare evaluation indicators with diferent models using fow data.

Methods MAE RMSE MAPE (%)
LSTM 76.19 105.87 10.38
KNN 31.19 44.69 8.94
ARIMA 32.84 47.52 10.85
Random forest 112.70 156.25 9.91
Tis paper 41.94 69.38 4.26
Average 58.97 84.74 8.87
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Speed observations profile on 2017-07-26
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Speed estimations profile on 2017-07-26
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(b)
Speed observations profile on 2017-07-27
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(c)

Speed estimations profile on 2017-07-27
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(d)
Speed observations profile on 2017-07-28
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(e)

Speed estimations profile on 2017-07-28
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(f )
Speed observations profile on 2017-07-31
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(g)

Speed estimations profile on 2017-07-31
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Figure 9: Comparison speed between observations and estimations on diferent days. (a) Speed observations on 07/26/2017, (b) Speed
estimations on 07/26/2017, (c) Speed observations on 07/27/2017, (d) Speed estimations on 07/27/2017, (e) Speed observations on 07/28/
2017, (f ) Speed estimations on 07/28/2017, (g) Speed observations on 07/31/2017, and (h) Speed estimations on 07/31/2017.
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Table 6: Compare evaluation indicators with diferent models using speed data.

Methods MAE RMSE MAPE (%)
LSTM 1.85 3.85 4.51
KNN 4.35 6.86 8.83
ARIMA 1.42 2.71 3.41
Random forest 13.13 19.09 4.09
Tis paper 1.20 2.24 2.75
Average 4.39 6.95 4.72
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Figure 10: Comparison of average error in each location within four days in all day.
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Figure 11: Comparison of speed estimation between model-driven and data-driven in all days. (a) Comparison estimation on 07/26/2017,
(b) Comparison estimations on 07/27/2017, (c) Comparison estimation on 07/28/2017, and (d) Comparison estimations on 07/31/2017.
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trafc fow with fewer data points. Furthermore, the
mode-driven method could better explain the trafc
fow dynamics, especially during the congestion

period. On the contrary, the data-driven approach
infers trafc states based on historical data and a lack
of accurate estimates of congestion periods.
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Figure 12: Comparison of speed estimation between model-driven and data-driven in the peak period. (a) Comparison estimation on 07/
26/2017, (b) Comparison estimations on 07/27/2017, (c) Comparison estimation on 07/28/2017, and (d) Comparison estimations on 07/31/
2017.

Table 7: Comparison error between observations and estimations on diferent days on diferent absolute mile.

07/26/2017 07/27/2017 07/28/2017 07/31/2017
Absolute mile MAE/MAPE MAE/MAPE MAE/MAPE MAE/MAPE
13.74 1.62/5.24 1.56/4.23 1.55/4.78 0.95/2.19
13.51 1.71/5.73 1.64/4.61 1.65/5.68 1.07/2.58
12.93 1.68/5.13 1.40/3.36 1.70/4.82 0.83/1.87
12.62 1.60/5.59 1.83/5.39 1.88/5.72 1.14/2.52
11.93 1.66/4.70 1.40/3.41 1.77/4.72 1.17/2.41
11.37 1.37/5.81 1.24/4.59 1.72/6.93 1.01/3.26
11.17 1.73/7.98 1.39/4.71 1.67/5.65 1.29/3.63
10.67 1.52/10.54 1.60/8.33 1.70/8.88 1.26/4.59
9.87 1.82/9.19 1.89/7.25 1.87/8.25 1.58/4.35
Average 1.63/6.66 1.55/5.10 1.72/6.16 1.14/3.04
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5. Conclusion and Future Work

Trafc fow estimation and forecasting is a critical
problem in transportation planning. In this paper, we
proposed a hybrid framework incorporating model-
driven and data-driven methods for trafc state estima-
tion. Te results of numerical experiments based on real-
world datasets demonstrate the efectiveness of the pro-
posed framework. Experiments in the real-world show
that the proposed TFMDL framework could improve
performance better than model-driven or data-driven
methods alone in terms of estimation accuracy and data
efciency. Meanwhile, this hybrid stepwise modeling
framework could better capture dynamic trafc fow states
during congestion conditions.

Te study focuses on trafc speed and fow estimation
and prediction, but a comprehensive trafc state esti-
mation and prediction, which includes travel time and
queue length, would have more signifcance for passen-
gers. Terefore, the future work of this study includes: (1)
trying to consider the relations among diferent formats of
trafc data and then building a multiple input/output
trafc framework to output a comprehensive trafc state
estimation and prediction result. (2) embedding queue
models in the proposed framework to improve the per-
formance under oversaturated trafc conditions. (3)
considering the dynamic value of a parameter α is ex-
pected to improve the estimation performance under
diferent trafc conditions.
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