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*is study aims to develop a spatiotemporal traffic density estimation method based on the advanced driver assistance system
(ADAS) Probe data. *is study uses the vehicle trajectory data collected from the ADAS equipped on the sample probe vehicles.
Such vehicle trajectory data are used firstly to estimate the distance headway between the vehicles on a specific road section, and
the postprocessed distance headway data are finally used to estimate the spatiotemporal traffic density. *e innovation aspect of
the proposedmethodology in this study is that traffic density can be estimated in high accuracy only with a small size of data points
in support of ADAS. On the other hand, existing density estimation method requires a large number of probe vehicles and its
numerous data sets including either the global positioning system data or the dedicated short-range communication data. To
verify the proposed methodology, a two-step evaluation is performed: the first step is a numerical evaluation that estimates the
spatiotemporal traffic density based on the simulated vehicle trajectory data, and the second step is an empirical evaluation that
estimates the density based on the real-road data in both peak and nonpeak periods. Beyond the methodology development, this
study verified the estimation reliability of traffic density under various traffic conditions based on the sampling rate of ADAS-
equipped vehicles. Consequently, the traffic density estimation error decreased as the sampling rate increased. Estimation ac-
curacy of 90% or higher was observed in all scenarios when the sampling rate was 50% or higher. It indicates that fairly accurate
traffic density estimation is feasible using probe vehicles that correspond to half of the vehicles driven on the road. *erefore, this
practical approach is expected to mitigate the burden of density estimation, particularly in future road systems in which ADAS
and autonomous vehicles are prevalent.

1. Introduction

Drivers on the freeway can be stressed under uncertain
traffic conditions due to changes in speed, congestion, and
risk of accidents [1]. *ey need to accurately perceive the
traffic conditions of the road to maintain a smooth traffic
flow and keep safety. Traffic density, which is a common
indicator of traffic conditions on the roads, can be defined as
accurately perceiving the traffic car at a specific time within a
unit interval [2]. It is also considered the most important

macro indicator because it is directly related to traffic de-
mand on the road [3]. Traffic density is also used as a major
measure of the effectiveness of a continuous traffic flow since
it can adequately represent the characteristics of a traffic flow
[2].

Since it is difficult to collect traffic density on the roads,
photos or videos are typically used, or traffic volume, speed,
and occupancy collected by detectors are commonly used for
estimating traffic density [2]. Traffic information collected by
detectors is largely distinguished into point-based detection
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and section-based detection according to the spatial range
[4]. A point-based detection system generates traffic in-
formation by collecting information from the speed of ve-
hicles passing through a specific point and their passing time
at the point where a detector is installed. However, the point-
based detection system requires high maintenance costs and
is less accurate, which may result in a discrepancy in ac-
curacy depending on travel time estimation methods.
Moreover, the reliability of traffic density estimation during
traffic congestion becomes low due to fixed point-based
detection [5]. A section-based detection system calculates
the time taken by a vehicle to pass through the starting and
endpoints of a specific section. However, the equipment
used in a section-based detection system is expensive and
may occasionally omit data collection as information is
collected intermittently [6].*erefore, an effective and direct
traffic density estimation methodology is needed to over-
come the drawbacks of conventional detection systems and
to be put into practical use in the field.

Advanced driver assistance systems (ADAS) data can
collect traffic situation information during actual driving. In
recent years, the importance has been emphasized due to an
increased number of vehicles equipped with this system.
According to recent reports on supply prediction of ADAS,
the share of ADAS-equipped vehicles will reach 71% globally
and the number of vehicles equipped with ADAS is expected
to be around 83,905,000 in 2030 [7, 8]. *e amount of
collected data will sharply rise as with the rising number of
ADAS-equipped vehicles, and the utilization of the ADAS
data will gradually increase accordingly. *is device assists
drivers by recognizing and judging traffic situations during
driving using advanced sensors such as LiDAR and radar,
Global Positioning System (GPS), and communications
intelligence video equipment. Such an advanced system can
measure the distance between preceding vehicles in real-
time and can estimate spatiotemporal traffic density based
on the spacing measurement of the road. *erefore, the
ADAS is utilized in this study in order to estimate traffic
density with a high level of accuracy. By estimating traffic
density using the ADAS data, the drawbacks of a conven-
tional detection system such as high system maintenance
cost, spatial constraints, and low reliability during conges-
tions can be resolved.

*is study aims to develop a spatiotemporal traffic
density estimation method using the capability of ADAS
data. *is study uses a microscopic traffic simulation model
to develop the traffic density estimation methodology and
evaluate the performance under various traffic conditions
situations. Furthermore, the proposed methodology is
verified based on the distance headway collected from the
ADAS-equipped vehicles under the simulation environ-
ment. Evaluation and validation of the ADAS distance
headway-based traffic density estimation are performed
using a hypothetical simulation road network and real road
data.*e distance headway data and trajectory data collected
from probe vehicles equipped with ADAS are used to
measure the total travel time of vehicles. Traffic density is
estimated according to the changes in the sampling rate of
ADAS-equipped vehicles, estimation time, and section size.

*e practical meaning of the sampling rate is the proportion
of ADAS vehicles among all vehicles in the mixed traffic flow
for which the traffic density is to be estimated. Finally, the
accuracy of the estimated traffic density values is evaluated
based on mean absolute percentage error (MAPE) and root
mean square error (RMSE). *rough this study is expected
to estimate traffic density using a generalized definition
calculated from the total travel time of vehicles during the
unit time in a spatiotemporal diagram [9].

*e rest of this paper is organized as follows. In Section
2, the distinction of this study is deduced based on the review
of previous related studies. In Section 3, the spatiotemporal
traffic density estimation method of a continuous flow using
the data collected by the sample ADAS vehicle is explained.
Section 4 deals with the application of the methodology
through a numerical evaluation using a hypothetical net-
work, as well as analysis results. Section 5 describes the
verification of the methodology on real roads using an
empirical evaluation. Lastly in Section 6, the study results are
summarized, and the future direction is proposed for ef-
fective traffic density prediction methods.

2. Literature Review

Previous studies on traffic density estimation were generally
performed using the traffic information collection devices
installed on roads. Various density estimation methods have
been proposed, including input-output analysis using traffic
flow values and occupancy measurements [10]. Kim et al.
proposed an in-out counting method in which the number
of vehicles that remained between two points during the
measurement time is detected by selecting the ramp section
of a continuous flow as the estimation section. *e results of
such a method showed that estimation error tended to in-
crease when the traffic volume or the measurement time
interval increased [11]. Park et al. proposed a method using
CCTV images. It is a method that directly counts the
number of vehicles in the video by generating a panoramic
image spanning over 1 km by coordinating eight CCTV
images. *is research examined the problems of conven-
tional traffic density estimation methods using actual data
and proposed an appropriate collection period [12]. How-
ever, the overlapping of images was not considered, and the
collection period was proposed only for smooth traffic flows.
Park et al. suggested an alternative to the conventional traffic
density estimation method that employs CCTV images by
estimating it using aerial photographs [13]. However, this
method cannot collect data continuously and only provides
analysis results at a specific time or section. Using aerial
photographs or images and videos taken from high elevation
areas for collecting data has its limitation in continuous
measurements due to various constraints such as weather
and expense. Kim et al. estimated Traffic density using the
vehicle trajectory information from a radar detector and the
point data from a Vehicle Detection System (VDS) installed
500m before the radar detection. It was estimated using the
time moved in the x-axis direction within the density es-
timation section of the vehicle trajectory data, length of the
estimation section, and data collection time, and traffic
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density was calculated using the VDS data to compare the
two methods. *e results showed that the error is significant
due to the difference in the space mean speed when density is
20 (veh/km/lane) or greater [14]. *is study has significance
in that it estimated traffic density based on the vehicle
trajectory information but has a limitation in that it per-
formed the estimation only at a specific point.

On the other hand, in recent years, most studies on traffic
density estimation used data from a probe vehicle due to the
limitations of existing collection equipment. Seo et al. ob-
tained the sample data by operating a probe vehicle for an
hour on a section of an urban expressway that circulates
Tokyo spanning over 11 km, excluding the tunnel, and es-
timated the density. Map-matching was performed using the
collected GPS data of each probe vehicle, and the road space
was detected using the MonoEye camera. Approximately
28% error resulted when the error rate of estimate value was
analyzed using the root mean square percentage error
(RMSPE) [15]. *is study proposed a method for calculating
traffic density using the data of a probe vehicle, but the
accuracy of estimation in various traffic conditions was
unknown since the sample rate and the spatiotemporal area
for traffic density estimation were fixed. Nam et al. estimated
it based on the data from a radar sensor installed on a probe
vehicle using NGSIM. *e estimation error was analyzed
according to different sampling rates at 1%, 5%, 10%, and
25% [16]. However, the limitation of this method is that the
estimation period was set to 15min. Herring et al. proposed
a model for estimating a traffic flow using the data of a probe
vehicle. *e accuracy was improved by approximately 35%
compared to the existing method when the accuracy of the
model was verified using the GPS data collected from 500
taxis in San Francisco. *e traffic flow was estimated using
the mean travel speed [17]. On the other hand, the sampling
rate of all the vehicles was not considered since a fixed
number of probe vehicles were applied, and the estimation
was limited to a specific time and section. Yang et al.
proposed a method for estimating the traffic density based
on the vehicle group information extracted through a
tracking-based filtering algorithm, as well as the driving
information and radar sensing data of a probe vehicle. *e
results provided an estimation accuracy that was 70% or
higher in a continuous flow [18]. However, the limitation of
actual application in large-scale sites remained. Qiu et al.
proposed a method for estimating average density of a
section on expressways using the loop detector data and the
sample IntelliDrive information provided in real-time.
When the proposed methodology was used to estimate the
traffic density of Berkeley Highway using NGSIM, the es-
timation error was reduced compared to using the loop
detector data [19]. However, the changes in the sampling
rate were not considered, and the entire road was estimated
rather than for a unit section.

Based on the literature review on traffic density estimation
methodology, traffic density information, which is difficult to
collect directly, has been estimated using the data collected by
detectors. Existing detection systems, however, require high
maintenance costs, have low reliability during congestions, and
occasionally omit traffic information. *us, various studies on

estimation have been conducted in the past to overcome such
drawbacks. Previous studies on traffic density estimation using
traffic information collection equipment proposed themethods
of using video information, photograph information, or radar
detectors. *ese methods have limitations of being difficult to
obtain continuous data or estimating traffic density of a specific
point or section. For resolving the problems of these detection-
system-data-based methods, a few studies employed the data
obtained from probe vehicles. Previous studies that used probe
vehicles analyzed the estimation accuracy only from specific
sampling rates, thus failing to reflect various traffic conditions
and actual driving trajectories of vehicles. Moreover, the
spatiotemporal size of the estimation target is limited to a
specific time and section. To overcome the limitation of pre-
vious studies and conventional estimation methods based on
detection systems, this study estimates the spatiotemporal
traffic density of a continuous flow using the distance headway
data and vehicle trajectory data obtained from ADAS. Fur-
thermore, estimation accuracy in diverse traffic conditions is
proposed through an accuracy analysis of estimation according
to the changes in the sampling rate and estimation space and
time.

3. Methodology

3.1. Overall Methodology. *e spatiotemporal traffic density
of a continuous flow is estimated using the distance headway
data of nearby vehicles and driving trajectory data collected
from the sampled ADAS-equipped vehicles. *e method-
ology processes by two steps: estimation of spatiotemporal
traffic density using driving trajectory and distance headway
data of ADAS-equipped vehicles collected through simu-
lation, and traffic density error estimation based on unit
space and time of traffic density estimation and sample rate
of ADAS-equipped vehicles. First, the driving trajectory data
of each vehicle is collected using PTVVISSIM 2020, which is
microscopic traffic simulation software. Mobileye ADAS,
which is currently commercially available, scans roads using
camera sensors, records roadside properties such as road
signs and lanes, and estimates mobility information such as
traffic volume and distance headway [20]. Driving trajectory
data and distance headway information could be collected
from ADAS; thus, these data are extracted from the VISSIM
simulation environment to be used for traffic density esti-
mation. Sampled ADAS-equipped vehicles are extracted
through random sampling without replacement, and the
extracted driving trajectory data are processed to measure
the distance headway data of nearby vehicles. *e distance
headway is divided into front-vehicle and side-vehicle
headways, where in front-vehicle distance headway is the
distance from the front end of the preceding vehicle in the
same lane to the front end of the following vehicle. However,
side-vehicle distance headway is the distance from the front
center of the preceding vehicle to the front center of the
following vehicle in a different lane. In the evaluation sce-
narios, front-vehicle distance headway information is used
for the one-way one-lane case, whereas both front-vehicle
and side-vehicle headway information is used for the one-
way two-lane case. Second, the traffic density estimation
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methodology based on ADAS distance headway is evaluated
through a numerical evaluation. Lastly, the applicability in
real roads is verified through an empirical evaluation using
the data of actual expressways.

3.2. Spatiotemporal Traffic Density Estimation. ADAS can
collect distance headway data using various sensors, in-
cluding cameras, radars, and LiDAR, but the performance
varies depending on sensors and products. Herein, the
measurement range of distance headway was set to 250m
based on the detection specifications of Mobileye ADAS,
which is most commonly used in the global ADAS market
with a market share of 70% [21]. *e distance headway
information was generated using the vehicle position and
lane information based on the driving trajectory data of each
vehicle through a simulation. (1) is for calculating the dis-
tance headway from the preceding vehicle in a simulation.
*e generalized definition method used for traffic density
estimation in this study involves calculation through the
total travel time that the vehicles consumed during the unit
time in the time-space diagram [9]. *is method has an
advantage of a sample analysis since unit time and unit
distance can be used instead of a specific point or section.
Furthermore, traffic density can be estimated without spatial
constraints since the estimation is based on driving tra-
jectory data and distance headway data. *e generalized
definition and density estimation method are further
explained in (3) and Figure 1.

H �

������������������������

3.6∗ lp − la􏼐 􏼑􏼐 􏼑
2

+ Lp − La􏼐 􏼑
2

􏽲

. (1)

H � headway
lp � lane number of the preceding vehicle
la � lne number of theADAS probe vehicle
Lp � location of the preceding vehicle
La � location of theADAS probe vehicle
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􏽐
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k � generalized density
tn � travel time in section of the nth vehicle

3.3. Error Estimation. For finding traffic density estimation
error per sampling rate of the ADAS-equipped vehicles, probe
vehicles were extracted through random sampling without
replacement. *is method has the advantages of generating

various distance headway information and preventing du-
plicated extraction. As shown in Figure 2, the sampling rate is
calculated based on the ratio of ADAS-equipped vehicles
among the entire traffic volume, and, therefore, the sampling
rate can affect traffic density estimation. *e sampling rate
was increased by 10% from 10% to 90% for each scenario.
MAPE shows the error between the ground-truth value and
the estimated value as a percentage, a comparison can be
made in terms of relative error, and outliers can be corrected.
MAPE was used for the estimated value of traffic density
calculated per sampling rate since a residual comparison is
possible by comparing the error rate between the ground-
truth value and the estimated value per sampling rate. In
addition, RMSE, which can represent the error between the
ground-truth value and the estimated value as a numerical
value, was used because MAPE cannot provide actual nu-
merical values. For microscopic analysis of a traffic flow, error
estimation was performed according to the changes in unit
section and unit time of traffic density estimation. Traffic
density estimation was performed by dividing the entire
spatiotemporal domain into a certain interval. And the es-
timation error was suggested by comparing the ground-truth
value and the estimated value of traffic density estimated
according to the size of the divided spatiotemporal domain.
*rough this, the effects of the size of the unit section and unit
time on traffic density estimation were identified.
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Figure 1: Spatiotemporal traffic density estimation using gener-
alized definition.
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4. Numerical Evaluation

In this study, an arbitrary road on a hypothetical networkwas set
to apply and verify the traffic density estimation methodology
through a numerical evaluation. For estimating traffic density in
single-lane and multiple-lane situations, two scenarios were
designed where scenario 1 used a one-way one-lane setting,
while scenario 2 used one-way two-lane settings.*e simulation
was performed for 4,200 s for two scenarios in which the analysis
was performed for 3,600 s excluding the first 600 s during which
a traffic flow had not been formed in the network. *e section
length of a hypothetical network was 1km; the ratio of a pas-
senger vehicle to a Heavy Goods Vehicle (HGV) to the bus was
set to 90 : 5 : 5 according to the status of vehicles traveling on
expressways reported by Korea Expressway Corporation [22].
Design speed and traffic volume of scenario 1 and scenario 2
were set separately to assume that a relatively stable traffic flow
without congestions is given Level of Service (LOS) D, while a
traffic flow that is delayed for an extended period due to a light
congestion factor of LOS E [23]. Detailed explanations on the
design conditions are provided in Table 1.

Errors were predicted using MAPE and RMSE for the
ground-truth values and estimated values of traffic density
according to the sampling rate of the ADAS-equipped vehicles
based on the simulation results for each scenario.*e spatial unit
of traffic density was set to 300 seconds, which is the standard for
providing traffic information, and the temporal unit was

estimated by dividing the entire section of 1km into 100m units.
When the comparison was made with the ground-truth value of
traffic density, MAPE and RMSE were 64.23% and 11.39 (veh/
km/lane) at 10% sampling rate of ADAS-equipped vehicles,
respectively, which are significantly large. However, MAPE was
less than 10%, and RMSE was below 2 (veh/km/lane) when the
sampling rate was increased to 50%, thus showing fairly accurate
traffic density estimation results. It can be inferred that the
number of vehicles observable within the spatiotemporal traffic
density estimation section increases as the sampling rate in-
creases. In scenario 1 designed with one-way one lane, the traffic
density estimate became similar to the ground-truth value as the
sampling rate of ADAS increased. Figure 3 shows the spatio-
temporal traffic density estimates at 10–30% sampling rate
where the variation in the estimation accuracy and the ground-
truth value of spatiotemporal traffic density was the greatest in
scenario 1. *e ground-truth value of traffic density had high
density in space and time; the estimated traffic density according
to the sampling rate was low at the lowest sampling rate of 10%
but similar to the ground-truth value of traffic density as the
sampling rate increased. MAPE and RMSE per sampling rate in
scenario 1 are presented in Table 2.

In scenario 2 designed with two lanes in one way, the
error from the ground-truth value decreased as the sam-
pling rate increased as it did in scenario 1 when the traffic
density estimate was compared to the ground-truth value
according to the ADAS sampling rate using MAPE and
RMSE. MAPE and RMSE were 38.5% and 7.26 (veh/km/
lane) at a 10% sampling rate of ADAS vehicles, showing a
significantly large error. However, MAPE decreased to
6.67% and RMSE decreased to 1.75 (veh/km/lane) at the
sampling rate of 30%, which indicated that traffic density
can be sufficiently estimated at a 30% sampling rate. Fig-
ure 4 shows the traffic density estimation value at 10–30%
sampling rate and ground-truth traffic density value in
scenario 2. Estimated and ground-truth values of traffic
density become similar as the sampling rate increases.
MAPE and RMSE per sampling rate in scenario 2 are
presented in Table 3.

: ADAS Probe vehicle : Observable vehicle : Unobservable vehicle : Spatiotemporal density estimation space

(a) Sample rate: 10%

(b) Sample rate: 20%

Figure 2: Example of sample rate. (a) Sample rate: 10%. (b) Sample rate: 20%.
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*e numerical evaluation of the two scenarios showed
that the error in traffic density estimation decreases as the
sampling rate of ADAS increases. *e difference in the
estimation error of traffic density per scenario is shown in
Figures 5 and 6. It shows the scatter plot of estimated values

per sampling rate of scenarios 1 and 2 in which the x-axis
represents the estimated traffic density while the y-axis
represents the ground-truth value per sampling rate. Es-
timated and ground-truth values are similar, as the traffic
density values in the scatter plots are closer to a diagonal

Table 1: Scenario descriptions of numerical evaluation.

Classification Scenario 1 Scenario 2
Number of lanes One-lane Two-lane
Running time 4,200 s(burn-in-out: 600 s) 4,200 s (burn-in-out: 600 s)
Link length 1 km 1 km
Traffic volume 1,000 veh/h 2,000 veh/h
Vehicle ratio Passenger car : HGV : Bus� 90 : 5 : 5 Passenger car : HGV : Bus� 90 : 5 : 5
Speed 50–80 km/h 50–70 km/h
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Figure 3: Estimated traffic density by sample rate of scenario 1(numerical evaluation) (a) Ground truth of traffic density (b) Estimated
density at 10% sample rate (c) Estimated density at 20% sample rate (d) Estimated density at 30% sample rate.

Table 2: MAPE and RMSE comparison of scenario 1 (numerical evaluation).

Sample rate (%) 10 20 30 40 50 60 70 80 90
MAPE (%) 64.23 33.97 22.01 13.87 7.77 4.23 2.53 1.62 1.16
RMSE (veh/km/lane) 11.39 6.26 4.51 2.85 1.73 1.09 0.7 0.46 0.36
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line. In general, as the sampling rate increases, the traffic
density value approaches the diagonal, and the estimated
density tends to approach the ground truth of density.
However, it can be seen that estimated density is always
formed lower than the ground truth of density. *is is
because the estimated density uses only the driving tra-
jectories of vehicles that can collect data from the sample
ADAS vehicle, so it appears lower than the ground truth of
density using the driving trajectories of all vehicles. In each
sampling rate, the distribution is more widespread in
Figure 5 than in Figure 6. *is means that overall, the
estimation accuracy in Scenario 2 is higher than in Scenario
1. *is is because, at the same sampling rate, it is possible to
detect more vehicles in Scenario 2 with more traffic volume
than Scenario 1.

*e 1-km section was divided at the interval of 50, 100,
200, and 250m for estimating spatiotemporal traffic density,
while the entire period of 3,600 s was divided at the interval
of 200, 300, and 600 s. Table 4 shows the MAPE of the
estimated traffic density according to unit section and unit
time in scenario 1, whereas Table 5 shows the MAPE of
scenario 2. *e two tables signify that the accuracy of traffic
density estimation is affected by the set unit where the es-
timation error decreases as the section unit becomes greater.
In this study, road spaces are detected based on the distance
headway. *e number of vehicles for which the ADAS can
collect headway distance increases as the section unit be-
comes greater. *ere for, it can be seen that the estimation
error decrease as unit section increases. However, a spa-
tiotemporal unit that is too large may have low value in
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Figure 4: Estimated traffic density by sample rate of scenario 2 (numerical evaluation). (a) Ground truth of traffic density. (b) Estimated
density at 10% sample rate. (c) Estimated density at 20% sample rate. (d) Estimated density at 30% sample rate.

Table 3: MAPE and RMSE comparison of scenario 2 (numerical evaluation).

Sample rate (%) 10 20 30 40 50 60 70 80 90
MAPE (%) 38.53 16.23 6.67 3.20 1.81 0.90 0.31 0.17 0.02
RMSE (veh/km/lane) 7.26 3.45 1.75 1.09 0.65 0.45 0.19 0.12 0.02
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Figure 5: Scatter plot by sample rate of scenario 1 (numerical evaluation). (a) Scatter plot at 10% sample rate. (b) Scatter plot at 30% sample
rate. (c) Scatter plot at 50% sample rate. (d) Scatter plot at 90% sample rate.
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Figure 6: Scatter plot by sample rate of scenario 2 (numerical evaluation). (a) Scatter plot at 10% sample rate. (b) Scatter plot at 30% sample
rate. (c) Scatter plot at 50% sample rate. (d) Scatter plot at 90% sample rate.
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terms of providing traffic density information. *erefore, in
this paper, 300 seconds, the standard for providing traffic
information, was set as a unit time, and a total section of
1 km was divided into 100m and set as a unit space.

5. Empirical Evaluation

*is study also includes an empirical evaluation for verifying
the methodology using the data of real roads. *e spatial
range of the section on a real road selected for data collection
is an 8-km section from Hobeop Junction to Iljuk Inter-
change on Jungbu Expressway which connects Hanam and
Cheongju in Korea. *is section consists of two lanes in one
way, rest stop, and Icheon Interchange. *is particular
section was chosen since the road can be observed during
both free flow and congestion. *is section can be seen in
Figure 7. *e temporal range of the section on a real road
was set to June 12, 2019, a Wednesday––when the influence
of the day of the week is the least. Traffic density was es-
timated for two scenarios for peak hours (09 : 00–10 : 00) and
nonpeak hours (15 : 00–16 : 00). *e road section is 8 km
long, and the ratio of a passenger vehicle to HGV was set to
83.6 :16.4 based on the status of vehicles traveling on this
specific section reported by Korea Expressway Corporation
[22]. Detailed explanations on the scenario conditions are
provided in Table 6.

For a car-following model, Wiedemann 99 model was
used, which is suitable for implementing a continuous flow
[24]. *e model was calibrated by adjusting the parameters
of the car-following model, traffic volume, and speed. For
the verification, five-point detectors installed on the

selected road section were reflected in the simulation, and it
was verified whether the simulation accurately reflects the
respective road section by comparing the traffic volume and
speed collected by the detectors. *e analysis results
showed that the error rate of scenario 1 or the peak hours
was 0.7% while that of scenario 2 or the non-peak hours was
6.7%, which indicated that the simulation implemented the
actual road environment with high accuracy. Errors were
estimated using MAPE and RMSE for the ground-truth
value and the estimated value of traffic density according to
the sampling rate of the ADAS vehicles. *e range of
comparative analysis of traffic density was set within a
500m section at a 300 s interval. In scenario 1, which is
during peak hours, the estimated value and ground-truth
value became similar as the sampling rate increased. Fig-
ure 8 shows the estimation accuracy at a 10–30% sampling
rate where the variation in the estimation accuracy was the
greatest in scenario 1. *e estimated value of traffic density
according to the sampling rate has low traffic density at the
lowest sampling rate of 10% but tends to be similar to the
ground-truth value as the sampling rate increases. MAPE
and RMSE were 37.84% and 6.7 (veh/km/lane), respec-
tively, when the sampling rate of the ADAS vehicles was
10%. But, they decreased significantly to 5.19% and 1.04
(veh/km/lane), respectively, when the sampling rate was
30%. MAPE and RMSE per sampling rate in scenario 1 are
presented in Table 7.

*e error from the ground-truth value decreased as the
sampling rate increased when the traffic density estimation
error was analyzed according to the sampling rate for sce-
nario 2, which is nonpeak hours. Figure 9 shows the spa-
tiotemporal traffic density estimation values at the sampling
rate of 10–30% in scenario 2. Traffic density values were
below in all space and time due to being nonpeak hours, but
the estimated traffic density tended to exhibit a similar
pattern as the ground-truth value as the sampling rate in-
creased. MAPE and RMSE were 50.92% and 4.92 (veh/km/
lane) at a 10% sampling rate of the ADAS vehicles, which
significantly reduced to 15.52% and 1.58 (veh/km/lane),
respectively, when the sampling rate increased. MAPE and
RMSE per sampling rate in scenario 2 are presented in
Table 8.

*e comparison of the two scenarios using an empirical
evaluation showed that the traffic density estimation accu-
racy was substantially higher for scenario 1. Figures 10 and
11 show the scatter plot of estimated values per sampling rate
of scenarios 1 and 2.When the two graphs are compared, the
distribution is generally more widespread in Figure 11 than
in Figure 10. *e traffic density estimation accuracy is
improved due to an increased number of sample ADAS
vehicles in scenario 1, which is peak hours when compared
to scenario 2, which is nonpeak hours.

Traffic density estimation error was analyzed according
to the changes in unit section and unit time for the empirical
evaluation. *e entire unit section of 8 km was divided into
250, 500, 1,000, and 2,000m, and the unit time of 3,600 s was
divided into 60, 120, 300, and 600 s to estimate traffic
density, which was compared with the ground-truth value
using MAPE. Table 9 presents the MAPE of traffic density

Table 4: MAPE by sample rate, unit section, and unit time of
scenario 1 (numerical evaluation).

Sample rate (%) △t (sec)\△d (m) 50 100 200 250

10%
200 65.00 64.19 62.88 61.07
300 65.59 64.23 62.23 61.84
600 65.61 64.82 63.43 61.22

20%
200 36.91 33.35 31.13 29.37
300 37.06 33.97 31.55 29.66
600 36.97 33.51 30.99 29.02

30%
200 23.38 22.23 20.14 18.37
300 23.33 22.01 19.98 18.31
600 23.58 22.31 20.09 18.63

Table 5: MAPE by sample rate, unit section, and unit time of
scenario 2 (numerical evaluation).

Sample rate (%) △t (sec)\△d (m) 50 100 200 250

10%
200 39.50 38.52 36.06 34.41
300 40.04 38.53 35.99 34.35
600 40.07 38.54 36.00 34.25

20%
200 17.46 16.21 13.68 12.55
300 17.82 16.23 13.71 12.58
600 17.65 16.03 13.46 12.26

30%
200 7.33 6.70 4.86 3.94
300 8.06 6.67 4.76 4.00
600 7.91 6.51 4.58 3.81
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Figure 7: Spatial range of the section on a real road selected for data collection (empirical evaluation).

Table 6: Scenario descriptions of empirical evaluation.

Classification Scenario 1 Scenario 2
Number of lanes Two-lane Two-lane
Running time 4,200 s (burn-in-out: 600 s) 4,200 s (burn-in-out: 600 s)
Link length 8 km 8 km
Traffic volume 2,696 veh/h 1,748 veh/h
Vehicle ratio Passenger car : HGV� 83.6 :16.4 Passenger car : HGV� 83.6 :16.4
Speed 80–100 km/h 80–100 km/h
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Figure 8: Continued.
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Table 7: MAPE and RMSE comparison of scenario 1 (empirical evaluation).

Sample rate (%) 10 20 30 40 50 60 70 80 90
MAPE (%) 34.84 13.32 5.19 2.26 1.02 0.45 0.39 0.36 0.22
RMSE (veh/km/lane) 6.7 2.42 1.04 0.52 0.26 0.15 0.14 0.11 0.09
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Figure 9: Continued.
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Figure 8: Estimated traffic density by sample rate of scenario 1 (empirical evaluation). (a) Ground truth of traffic density. (b) Estimated
density at 10% sample rate. (c) Estimated density at 20% sample rate. (d) Estimated density at 30% sample rate.
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Table 8: MAPE and RMSE comparison of scenario 2 (empirical evaluation).

Sample rate (%) 10 20 30 40 50 60 70 80 90
MAPE (%) 50.92 32.94 15.52 8.82 8.02 6.35 4.01 3.08 2.26
RMSE (veh/km/lane) 4.91 3.2 1.58 0.91 0.89 0.64 0.41 0.32 0.24
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Figure 9: Estimated traffic density by sample rate of scenario 2 (empirical evaluation). (a) Ground truth of traffic density. (b) Estimated
density at 10% sample rate. (c) Estimated density at 20% sample rate. (d) Estimated density at 30% sample rate.
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Figure 10: Scatter plot by sample rate of scenario 1 (empirical evaluation). (a) Scatter plot at 10% sample rate. (b) Scatter plot at 30% sample
rate. (c) Scatter plot at 50% sample rate. (d) Scatter plot at 90% sample rate.
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Figure 11: Scatter plot by sample rate of scenario 2 (empirical evaluation) (a) Scatter plot at 10% sample rate. (b) Scatter plot at 30% sample
rate. (c) Scatter plot at 50% sample rate. (d) Scatter plot at 90% sample rate.

Table 9: MAPE by sample rate, unit section and unit time of scenario 1 (empirical evaluation).

Sample rate (%) △t (sec)\△d (m) 250 500 1,000 2,000

10%

60 37.06 35.23 34.47 32.22
120 36.43 34.49 32.21 30.01
300 36.02 34.84 31.55 27.16
600 35.89 33.49 30.87 25.56

20%

60 15.67 14.10 13.75 12.40
120 15.12 13.80 12.35 10.91
300 14.83 13.32 12.03 9.64
600 14.72 13.54 11.55 8.62

30%

60 6.51 5.81 5.38 4.72
120 6.23 5.40 4.56 3.90
300 6.13 5.19 4.40 3.21
600 6.06 5.07 4.15 2.60

Table 10: MAPE by sample rate, unit section, and unit time of scenario 2 (empirical evaluation).

Sample rate (%) △t (sec)\△d (m) 250 500 1,000 2,000

10%

60 53.07 52.14 51.03 49.23
120 52.51 51.48 50.08 47.84
300 52.12 50.92 49.24 46.85
600 51.88 50.66 48.70 45.56

20%

60 35.11 34.21 33.19 31.86
120 34.57 33.62 32.27 30.37
300 34.16 32.94 31.29 29.85
600 33.95 32.77 30.80 28.82

30%

60 17.50 16.62 15.79 14.75
120 17.05 16.12 15.03 13.49
300 16.72 15.52 14.05 12.54
600 16.51 15.43 13.86 11.58
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estimation of scenario 1, while Table 10 presents the MAPE
of scenario 2. *e two tables showed that the size of the unit
section influences the accuracy of traffic density estimation,
and the error decreases as the unit section becomes greater.

6. Conclusion

*is study proposed a spatiotemporal traffic density esti-
mation method of a continuous flow using the driving
trajectory and distance headway information collected and
sampled from the ADAS-equipped vehicles. While the
conventional traffic density estimation methods, including
video recordings and loop detectors, are difficult to measure
the density values or limited in terms of accuracy due to
either significant effort on data collection or limited de-
tection capabilities. However, the proposed methodology in
this study achieved high accuracy on traffic density esti-
mation using the driving trajectory data of the sampled
ADAS-equipped vehicles and front-vehicle distance head-
way. Moreover, the reliability of the proposed methodology
was validated by analyzing traffic density estimation errors
according to sampling rate, unit section, and unit time under
various traffic conditions.

To summarize the contributions of this study, first, this
study proposed a method for estimating spatiotemporal
traffic density using distance headway data and driving
trajectory data of the sampled ADAS-equipped vehicles.
And we confirmed its applicability as an alternative to
conventional traffic density estimation methods in terms of
the accuracy on traffic density estimation. *erefore, this
study proved the utility of ADAS data in terms of traffic
density estimation, since the sensors of ADAS are useful to
detect the distance headway from preceding vehicles and the
number of vehicles traveling on roads. Second, the meth-
odology was verified through a numerical evaluation for
which arbitrary road conditions were presumed, and the
applicability in real roads was also verified through an
empirical evaluation using the data of actual roads. *ird,
the errors in traffic density estimation were analyzed per
sampling rate of the ADAS-equipped vehicles. Conse-
quently, the error in traffic density estimation decreased as
the sampling rate of the ADAS-equipped vehicles increased
in each scenario, and the appropriate sampling rate that
improves accuracy was determined. *is implies that the
proposed methodology becomes even more reliable as the
share of ADAS-equipped vehicles increases in the future.
Fourth, it turned out that accuracy improves as the unit
section becomes larger by analyzing the error in traffic
density estimation according to the changes in unit section
and unit time. Driving trajectory data of a greater number of
vehicles can be collected as the unit section becomes larger
since the spatial characteristics of the road are detected based
on the distance headway data of the ADAS-equipped ve-
hicles. Such emphasis of this study implies that traffic density
data can be efficiently collected from real roads, and pre-
emptive traffic operation and management are feasible
through an analysis of congestion sections and collected
information. In addition, the proposed methodology can
also be utilized in traffic density estimation and traffic flow

analysis using the data collected from automated vehicles
(AVs) once they are further commercialized and the share of
AVs increases in the future. However, this study has a
limitation in that verification through data of actual ADAS-
equipped vehicles was not performed. In addition, the
analysis section was limited to specific road sections and
traffic conditions. *erefore, in future research, it is nec-
essary to consider various road geometries and traffic
conditions. And it is judged that it is necessary to verify the
methodology using actual ADAS data.
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