
Research Article
Trajectory Clustering in an Intersection by GDTW

Lei Gao ,1,2 Lu Wei ,1 Jian Yang ,1,2 and Jinhong Li 1,2

1Beijing Key Lab of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing 100144, China
2School of Information Science and Technology, North China University of Technology, Beijing 100144, China

Correspondence should be addressed to Lei Gao; gaolei@ncut.edu.cn

Received 23 May 2022; Revised 23 June 2022; Accepted 30 June 2022; Published 8 August 2022

Academic Editor: Eneko Osaba

Copyright © 2022 Lei Gao et al.&is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

GPS trajectory data in intersections are series data with different lengths. Dynamic time wrapping (DTW) is good to measure the
similarity between series with different lengths, however, traditional DTW could not deal with the inclusive relationship well
between series. We propose a unified generalized DTW algorithm (GDTW) by extending the boundary constraint and continuity
constraint of DTW and using the weighted local distance to normalize the cumulative distance. Based on the density peak
clustering algorithm DPCA using asymmetric GDTW to measure the similarity of two trajectories, we propose an improved
DPCA algorithm (ADPC) to adopt this asymmetric similarity measurement. In experiments using the proposed method, the
number of clusters is reduced.

1. Introduction

With the development of intelligent and connected vehicle
technology, tremendous vehicle trajectory data is increasingly
available in many applications, such as urban traffic planning
and management, traffic analysis, etc. Mining and analyzing
vehicle trajectory data are of great significance for intelligent
transportation, point of interest recommendation, and location-
based services [1]. Trajectory clustering can explore different
spatial-temporal features of vehicle trajectory data and has been
a research hotspot in recent years [2, 3].

Many studies have been attempted for vehicle trajectory
clustering. How to define and measure trajectory distance
appropriately is quite a challenging work. &ere are three
main distance metrics used in the existing literature, i.e.,
Euclidean distance, shape-based distance, and warping-
based distance. Traditional clustering methods using Eu-
clidean distance often lead to inaccurate results because of
different lengths of trajectories. To overcome this limitation,
the warping distance is used in several methods. Besides,
shape-based distances, such as Hausdorff and Frechet dis-
tances could also apply to trajectories. On the other hand,
deep learning-based methods have shown an impressive
ability to process multidimensional sequence data [4–6].

Our work is similar to that presented in paper [7],
however, we focus on improving the DTW algorithm and
clustering algorithm. We propose a unified generalized
DTW algorithm called GDTW. Moreover, we propose a
clustering algorithm called ADPC by improving DPCA to
adopt the asymmetric similarity measurement.

In our application scenario, namely a road intersection,
some short trajectory is included by a long trajectory. &us,
the short trajectory is a subsequence of a long trajectory. We
assume that the short trajectory and long trajectory have the
same pattern, which means belonging to the same cluster,
and the long trajectory can represent a short trajectory. In
similarity measurement, this inclusive relationship should
be considered. &erefore, we generalize DTW to match this
pattern and propose a clustering algorithm to adjust the
generalized DTW.

Dynamic time warping is a classic dynamic program-
ming algorithm to measure the similarity between series
with different lengths. It is first proposed in the last century.
At that time, the research hotspot is reducing computation
complexity and constrained search area [8]. At the begin-
ning of the 21st century, research on the lower bound
function and other techniques to accelerate DTW in the
application is popular [9–11]. From beginning to end,
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improving the calculation efficiency in the application is
always the key spot of DTW-related research. However, on
the other hand, there is research on a variety of DTW to
generalize its formation [12, 13], and our work about DTW
is in this area.

&e clustering is also a widely studied area. &ere are
many classic algorithms, from k-means FCM to GMM, from
graph-based hierarchical algorithms to spectrum clustering,
and various density-based algorithms. &e density-based
clustering methods can automatically acquire the number of
clusters and form clusters of arbitrary geometric shapes.
&ere are several classic density-based algorithms, such as
mean-shift [14], DBSCAN [15], and DPCA [16]. Based on
DPCA, we introduce an asymmetric distance clustering
algorithm to find the superinclusive trajectory of each
cluster.

In this paper, we proposed a method for an unsupervised
clustering of vehicle trajectories at intersection areas. &e
contributions of this work are as follows:

(1) We proposed a generalized DTW algorithm to
calculate the similarity between two trajectories that
can handle trajectories with inclusion relationships.
First of all, we extend the definition of DTW by the
concept of the matched scheme. &en, we general-
ized various conditions of DTW among boundary
and continuity conditions. We summarized the scale
of the problem for each generalized condition for
DTW.

(2) We proved the validity of generalized DTW and
proposed a unified algorithm to calculate all kinds of
generalized DTW, and we proved that this unified
algorithm’s complexity is the same as traditional
DTW’s dynamical programming algorithm. &en,
we use asymmetric GDTW as the similarity mea-
surement to match the inclusive relationship be-
tween trajectories.

(3) We discussed different normalization methods for
cumulative DTW and proposed a weighted nor-
malization method. To adopt the proposed gener-
alized asymmetric DTW as distance measurement,
we also proposed a clustering algorithm ADPC,
which is based on DPCA. &is proposed clustering
algorithm can extract the local max trajectories as the
cluster representative.

2. Methodology

In this section, we first give the traditional dynamic time
warping’s definition in a matched scheme formation and
describe the traditional DTW’s conditions in this matched
scheme formation. Second, we define the generalized DTW
conditions. &ird, we evaluate the scale of the problem for
generalized DTW. Fourth, we give the definition and prove
the recursive formation of various generalized DTW, and we
propose a unified dynamical programming algorithm to
calculate generalized DTW. Fifth, we give a unified nor-
malization for generalized DTW. Sixth, based on DPCA, we

propose an asymmetric distance density peak clustering
algorithm to adopt the generalized DTW.

2.1. Matched Scheme for Traditional DTW. In this part, we
recall the traditional DTW and proposed a concept named
matched scheme. We use matched scheme to define the
traditional DTW and its three conditions.

&e dynamic time warping (DTW) is used to measure
the similarity of two series with different lengths. Supposing
there are two series a � [a1, a2, ..., aM] and
b � [b1, b2, . . . , bN], ai, bj ∈ R2 are the elements of series a
and series b, respectively. &e DTW distance between series
a and series b is defined as (1).

dtw(a, b) � minP 􏽘
(i,j)⊂P

δi,j
⎛⎝ ⎞⎠, (1)

where δi,j is the direct local distance between the ith element
of series a and the jth element of series b. &e local distance
could be measured by any distance measurement, e.g., the
Euclidean distance δi,j � 2

‖ai−bj‖. In this formation, it is ob-
vious that δi,j ≠ δj,i.

In (1), P � [(i1, j1), (i2, j2), . . . , (iK, jK)] is the matched
index pair sequence, for each pair (i, j) ∈ P means that the
index values of the element are about series a and b, re-
spectively, and there is no same index pair, namely
(iu, ju)≠ (iv, jv), where u≠ v. &e matched index pair se-
quence is denoting the matched pair of elements between the
two series. &erefore, the matched index pair sequence P
could be assumed as a matched scheme. &e DTW is to find
a matched scheme P to minimize (1) among all valid
matched schemes.

For the traditional DTW, the matched scheme must satisfy
the three conditions mentioned below.

2.1.1. Monotonic Condition. Let k ∈ [2, 3, . . . , K], for each
matched index pair (ik, jk) of amatched schemeP, must satisfy
ik−1 ≤ ik and jk−1 ≤ jk. &e monotonic condition means both
index values in the matched index pair are monotonically
increasing and there is no inverse matching.

2.1.2. Continuity Condition. Let k ∈ [2, 3, . . . , K], for each
matched index pair (ik, jk) of amatched schemeP, must satisfy
ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1. Continuity condition indicates
the limitation on the growing amount of both index values for
each matched index pair.

2.1.3. Boundary Condition. Let
P � [(i1, j1), (i2, j2), . . . , (iK, jK)], which must satisfy
(i1, j1) � (1, 1) and (iK, jK) � (M, N). Condition (i1, j1) �

(1, 1) means both of the first elements of series a and series b
must be matched, and we call it the front boundary condition.
Condition (iK, jK) � (M, N) means both of the last elements
of series a and series bmust be matched, and we call it the back
boundary condition. &e boundary condition of traditional
DTW meets both front and back boundary conditions.
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&erefore, (1) can be explained as the traditional DTW
that can find the lowest cumulative local distance among all
matched schemes that meet monotonic, continuity, and
boundary conditions. We call matched schemes that meet all
these three conditions as DTW-matched schemes. &e
number of DTW-matched schemes saw an exponential
increase with the length of the series. It is not realistic to
iterate all matched schemes to find the solution. In practice,
the DTW is calculated by dynamic programming.

Definition 1. &e DTW distance can be calculated recur-
sively by equation (2)

Δi,j � min Δi−1,j,Δi,j−1,Δi−1,j−1􏼐 􏼑 + δi,j, (2)

where δi,j is the same as (1), and it denotes the direct local
distance between the ith element of series a and the jth el-
ement of series b. Δi,j denotes the DTW distance between a’s
subseries a1...i � [a1, a2, . . . , ai] and b’s subseries
b1...j � [b1, b2, . . . , bj], and it has dtw(a, b) � ΔM,N. When
i< 1∨j< 1, it means the index pair does not exist. &erefore,
let the nonexistent local distance Δi,j � ∞.

For example, there are two-dimensional trajectory series
a and b.

As shown in Figure 1, trajectory series a has 6 sampling
points, and trajectory series b has 14 sampling points. &e
matched pairs in the DTW context are linked by a dotted
line. In this paper, we call the figure that is similar to Figure 1
a matched pairs diagram.

In Figure 2, the y axis is the index of the element of series
a, and the x axis is the index of the element of series b. In this
paper, we call the figure that is similar to Figure 2 a cu-
mulative distance diagram. Each grid (x, y) is represented the
partial cumulative DTW distance Δy,x by different gray
depth levels.&e path from the left bottom to the upper right
is linked by eachmatched indexes pair is the search path.&e
start point and end point of the search path represent the
boundary condition of DTW. &e step of the search path
represents the continuity condition of DTW, which is not
greater than one on both of y and x axes. &e monotonic
condition of DTW is intuitively shown by the direction of
the search path. In fact, DTW is to find a search path from
the left bottom to the upper right in the cumulative distance
diagram.

It must be aware that although DTW could measure the
similarity between the two series, DTW is not exactly a
distance. DTW is symmetric, namely dtw(a, b) � dtw(b, a).
However, DTW is not an identity, because in most cases, it is
hard to say that series a is series b when dtw(a, b) � 0. DTW
does not meet triangle inequality, namely, there may exist
three series, namely a, b, and c, having
dtw(a, b) + dtw(b, c)< dtw(a, c). &erefore, DTW is not
suitable to calculate a transitive similarity between many
series by accumulating them.

2.2. Generalized DTW Conditions. &e traditional DTW
needs to meet three conditions, which are monotonic,
continuity, and boundary. In this paper, we keep the

monotonic condition and generalize DTW by removing the
boundary condition and extending the continuity condition.

First of all, we introduce some new generalized condi-
tions. Let P � [(i1, j1), (i2, j2), . . . (iK, jK)] be a matched
scheme.

We divide the boundary condition into four parts.

(1) &e left-front-boundary condition, which must meet
i1 � 1. It means the first element of series a (left
series) must be in the first match pair, which is the
start point of the search path of the cumulative
distance diagram.

(2) &e right-front-boundary condition, which must
meet j1 � 1. It means the first element of series b
(right series) must be in the first match pair, which is
the start point of the search path of the cumulative
distance diagram.

(3) &e left-back-boundary condition, which must meet
iK � M. It means the last element of series a (left
series) must be in the last match pair, which is the
end point of the search path of the cumulative
distance diagram.

(4) &e right-back-boundary condition, which must
meet jK � N. It means the last element of series b
(right series) must be in the first match pair, which is
the end point of the search path of the cumulative
distance diagram.
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Figure 1: Spatial distribution and matched pairs diagram of DTW
between two series a and b.
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Figure 2: &e cumulative local distances and search path diagram
of DTW between two series a and b.
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When meeting both left and right front boundary
conditions, we call it to meet the left-boundary condition.
Whenmeeting both left and right back boundary conditions,
we call it to meet the right-boundary condition. When
meeting both left and right boundary conditions, it must
meet the original boundary condition. When meeting only
one of the left or right boundary conditions, we call it
meeting the half-boundary condition.

&e relationship between these boundary conditions is
shown in Table 1. &e boundary condition of traditional
DTW needs to meet all four generalized boundary condi-
tions. &e four new generalized boundary conditions are a
partition of the original boundary condition, respectively. In
application, the partition of boundary conditions can make
partial matching between series.

We extend the continuity condition and divide it into
two parts. Let k ∈ [2, 3, ..., K] and (ik, jk) be any matched
index pair of a matched scheme P, except the first match
pair. For any number n ∈ N,

(1) &e left-n-step continuity condition, which must
meet ik − ik−1 ≤ n and jk − jk−1 ≤ 1. Compared with
the continuity condition of DTW, the left n-step
continuity condition extends the growth amount of
index value for each matched index pair of series a
(left series) to n from the original 1. It would lead to
some elements of series a to not be in the matched
scheme, which means those elements would be
neglected. In the application, we can use this feature
to ignore some outliers.

(2) &e right-n-step continuity condition, which must
meet ik − ik−1 ≤ 1 and jk − jk−1 ≤ n. &e formation of
the right n-step continuity condition is similar to the
left n-step continuity condition. It only just neglects
some elements of series b.

We also give a full-match condition and can divide it into
two parts. Let | i{ }| and | j􏼈 􏼉| be the cardinal of sets in matched
scheme P for the two series, respectively.

(1) &e left-full-match condition, which must meet
| i{ }| � M, means each element of series a (left series)
must be in the matched scheme.

(2) &e right-full-match condition, which must meet
| j􏼈 􏼉| � N, means each element of series b (left series)
must be in the matched scheme.

When meeting both left and right full-match conditions,
we call it meeting the dual-full-match condition. When
meeting one of the left or right full-match conditions, we call
it meeting the half-full-match condition.

&e relationship between various generalized conditions
is shown in Table 2, which let n-step greater than one. In
application, the half-full-match condition should be met to
let the DTW make sense in most cases. When only meeting
the one left- or right-half condition, the generalized DTW is
not symmetric.

2.3. 0e Scale of Problem for GDTW. In this paper, we
generalized dynamic time warping to extend its application
range by eliminating some conditions. However, along with
the elimination of conditions, the number of valid matched
schemes will be increased, leading to an increase in the scale
of the problem. &e number of traditional DTW-matched
schemes is approximate e(N− 1)(e− 1) when M�N. In an ex-
treme case, when all conditions are removed, the structure
can be assumed as a binary graph between series a’s M
elements and series b’s N elements, and there are 2M×N

matched schemes.
Let Ndtw(M, N) be valid matched schemes of traditional

DTW for series a with M elements and series b with N
elements. By eliminating some conditions, the generalized
DTWhas a different number of the matched schemes, which
are expressed as No bA(M, N)NoeA(M, N) NobB(M, N)Noe

B(M, N)Nob(M, N)Noe(M, N)N obeA(M, N)N

obeB(M, N)Nobef(M, N)NobAeAB(M, N)NobBeAB(M, N)N

obe(M, N). We would explain the meaning and give the
calculation equation for these matched schemes,
respectively.

Ndtw(M, N) is symmetric

Ndtw(M, N) � Ndtw(N, M). (3)

NobA(M, N) is the opened begin boundary condition
for series A, which means the matched scheme could
ignore some elements in front of series a. NoeA(M, N) is
the opened end boundary condition for the series, which
means the matched scheme could ignore some elements in
the tail of series a. NobB(M, N) and NoeB(M, N) are
similar to NobA(M, N) and NoeA(M, N), except those for
series b.

Table 2: &e relationship between various generalized conditions.

Half condition name Condition Left-
full

Right-
full

Left-boundary i1 � 1∧iK � M Meet
Right-boundary j1 � 1∧jK � N Meet
Left-n-step-
continuity ik − ik−1 ≤ n∧jk − jk−1 ≤ 1 Meet

Right-n-step-
continuity ik − ik−1 ≤ 1∧jk − jk−1 ≤ n Meet

Table 1: &e relationship between various boundary conditions.

Condition name Condition

Boundary condition
Front Left i1 � 1

Right j1 � 1

Back Left iK � M

Right jK � N
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NobA(M, N) � NoeA(M, N)

� Ndtw(M, N) + 􏽘
M−1

i�1
Ndtw(i, N)

� 􏽘
M

i�1
Ndtw(i, N),

NobB(M, N) � NoeB(M, N)

� Ndtw(M, N) + 􏽘

N−1

j�1
Ndtw(M, j)

� 􏽘
N

j�1
Ndtw(M, j),

(4)

NobA(M, N)NoeA(M, N)NobB(M, N)NoeB(M, N) is asym-
metric. From fd3(3) and (4), we have the following:

NobA(M, N) � NoeA(M, N)

� NobB(N, M)

� NoeB(N, M).

(5)

Nob(M, N) and Noe(M, N) are symmetric upon re-
moving front or back boundary conditions, respectively.&e
symmetric feature Nob(M, N) � Noe(M, N) can be deduced
by (5).

Noe(M, N) � NoeA(M, N) + NoeB(M, N) − Ndtw(M, N),

Nob(M, N) � NobA(M, N)NobB(M, N) − Ndtw(M, N).

(6)

NobeA(M, N) means the left-boundary condition is re-
moved but meets the right-full condition, namely every
element of series b must be in the matched scheme. In
application, when series b is a subsequence of series a, this
form of generalized DTW could be zero.&e NobeB(M, N) is
the same as NobeA(M, N) but meets the left-full condition
instead of the right-full condition.

NobeA(M, N) � 􏽘
M

i�1
􏽐
i

k�1
Ndtw(k, N)

� 􏽘
M

i�1
NoeA(k, N)NobeB(M, N) � 􏽘

N

j�1
􏽘

j

k�1
Ndtw(M, k)

� 􏽘

N

j�1
NoeB(M, k). (7)

From (5) and (7), we have NobeA(M, N) � NobeB(N, M),
and it proved that they are asymmetric. Nobef(M, N) is
symmetric.

Nobef(M, N) � NobeA(M, N) + NobeB(M, N)

− Ndtw(M, N).
(8)

NobAeAB(M, N) and NobBeAB(M, N) are GDTWwith the
opened begin boundary condition based on removing the
back-boundary condition.

NobAeAB(M, N) � 􏽘
M

i�1
Noe(i, N),

NobBeAB(M, N) � 􏽘
N

j�1
Noe(M, j).

(9)

Nobe(M, N) removed all boundary conditions, and we
have the following:

Nobe(M, N) � NobAeAB(M, N) + NobBeAB(M, N)

− Noe(M, N).
(10)

&e number of matched schemes can be seen as the
search path count in the cumulative distance diagram. We
compared the numbers of different generalized DTW with
various sizes of series a and b.

As shown in Figure 3, the growth proportion is stable for
various size ratios of series. &e scale of the problem is linear
growth between generalized DTW.

2.4. Generalized DTW. In this part, we introduce the re-
cursive formation for generalized DTW. &en, we give the
recursive equation for each type of generalized DTW. Also,
we propose a unified algorithm to calculate all these gen-
eralized DTW.

Let au...i � [au, au+1, ..., ai] denote the subsequence of
series a, which is from the uth element to the ith element. Let
bv...j � [bv, bv+1, . . . , bj] denote the subsequence of series b,
which is from the vth element to the jth element. Let Du,v,i,j

denote the traditional DTW between the subsequence series
au. . .i and bv. . .j. &e traditional DTW ΔM,N between series a
and b can be denoted as D1,1,M,N. &e recursive (2) can be
rewritten.

Definition 2. &e generalized formation of recursive cal-
culation for DTW distance.

Du,v,i,j � min Du,v,i−1,j, Du,v,i,j−1, Du,v,i−1,j−1􏼐 􏼑 + δi,j. (11)

In (11), Du,v,i,j must meet the monotonic condition,
which is 1≤ u≤ i≤M and 1≤ v≤ j≤N. When the mono-
tonic condition is not met, it means the search path in the
cumulative distance diagram does not exist, thus letting the
nonexistent DTW Du,v,i,j � ∞.

&e Open-End DTW for series a and b are denoted,
respectively, by DoeA

M,N and DoeB
M,N, and it is obvious that,

D
oeA
M,N � min1≤i≤MD1,1,i,N

� min1≤i≤MΔi,N,

D
oeB
M,N � min1≤j≤ND1,1,M,j

� min1≤j≤NΔM,j.

(12)

In (12), the Open-End DTW for series a is just to find the
minimum value in the cumulative distance diagram’s right
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edge. On the other hand, the Open-End DTW for series b is
just to find the minimum value in the cumulative distance
diagram’s top edge. &e computation complexity is the same
as traditional DTW. DoeA

M,N ≠DoeB
M,N are asymmetric but have

DoeA
M,N � DoeB

N,M.
&e Open-Begin DTW for series a and b is denoted,

respectively, by DobA
M,N and DobB

M,N, and it is obvious that,

D
obA
M,N � min1≤u≤MDu,1,M,N,

D
obB
M,N � min1≤v≤ND1,v,M,N.

(13)

Equation (13) only gives the relationship between DobA
M,N

and subsequence DTW Du,v,i,j. Furthermore, from (11) and
(13), DobA

M,N can be expressed as follows:

D
obA
M,N � min1≤u≤M min Du,1,M−1,N, Du,1,M,N−1, Du,1,M−1,N−1􏼐 􏼑 + δM,N􏼐 􏼑

� min1≤u≤M min Du,1,M−1,N, Du,1,M,N−1, Du,1,M−1,N−1􏼐 􏼑􏼐 􏼑 + δM,N

� min

min1≤u≤MDu,1,M−1,N

min1≤u≤MDu,1,M,N−1

min1≤u≤MDu,1,M−1,N−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + δM,N

� min

min1≤u≤M−1Du,1,M−1,N

min1≤u≤MDu,1,M,N−1

min1≤u≤M−1Du,1,M−1,N−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + δM,N

� min D
obA
M−1,N, D

obA
M,N−1, D

obA
M−1,N−1􏼐 􏼑 + δM,N.

(14)

&e recursive end margin for DobA
M,N is DobA

1,j � Δ1,j, which
is the same as traditional DTW using the cumulative dis-
tance. On the other hand, because of
DobA

i,1 � min1≤u≤MDu,1,M,1 � Du,1,M,1 � δi,1, the computation
complexity is less than traditional DTW using local distance.

DobB
M,N has the same recursive formation as DobA

M,N, and
therefore, Open-Begin DTW’s recursive formation is as
follows:

D
obA
M,N � min D

obA
M−1,N, D

obA
M,N−1, D

obA
M−1,N−1􏼐 􏼑 + δM,N,

D
obB
M,N � min D

obB
M−1,N, D

obB
M,N−1, D

obB
M−1,N−1􏼐 􏼑 + δM,N.

(15)

Equation (15) has the same recursive formation as
traditional DTW, and the only difference is the recursive
end margin DobA

i,1 � δi,1 and DobB
1,j � δ1,j. Also, the

computation complexity is the same as traditional DTW,
and in fact, it is a little less than the traditional DTW
because the start margin is not a cumulative distance.
DobA

M,N ≠DobB
M,N are asymmetric but have DobA

M,N � DobB
N,M.

Also, there is another formation. Let M′ denote series a’s
reverse sequence aM′

� [aM, aM−1, . . . , a1]. Let N′ denote
series b’s reverse sequence bN′

� [bN, bN−1, . . . , b1]. We have
DobA

M,N � DoeA
M′,N′ and DobB

M,N � DoeB
M′,N′.

&e Open-Begin-End DTW for series a and b are
denoted, respectively, by DobeA

M,N and DobeB
M,N, and it is obvious

that,

D
obeA
M,N � min1≤u≤i≤MDu,1,i,N,

D
obeB
M,N � min1≤v≤j≤ND1,v,M,j.

(16)

In (16), DobeA
M,N can be expressed as follows:
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Figure 3: Number of matched schemes between different generalized DTW.
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D
obeA
M,N � min1≤u≤i≤MDu,1,i,N

� min1≤u≤Mminu≤i≤MDu,1,i,N.
(17)

Because of (11)’s definition, when u> i, the monotonic
condition is not met and Du,v,i,j � ∞, having
minu≤i≤M Du,1,i,N � min1≤i≤MDu,1,i,N. &us,

D
obeA
M,N � min1≤u≤Mmin1≤i≤MDu,1,i,N

� min1≤i≤Mmin1≤u≤MDu,1,i,N.
(18)

Furthermore, when u> i, having
min1≤u≤MDu,1,i,N � min1≤u≤iDu,1,i,N . &erefore,

D
obeA
M,N � min1≤i≤Mmin1≤u≤iDu,1,i,N

� min1≤i≤MD
obA
i,N .

(19)

DobeB
M,N has the same recursive formation as DobeA

M,N.
&erefore, the Open-Begin-End DTW can be expressed by
DobA

M,N and DobB
M,N, respectively.

D
obeA
M,N � min1≤i≤MD

obA
i,N ,

D
obeB
M,N � min1≤j≤ND

obB
M,j.

(20)

Equation (20) has the same form as (12) of DoeA
M,N and

DoeB
M,N, except for replacing Δi,NΔM,j with replacing

DobA
i,N DobB

M,j. &erefore, the computation complexity is the
same as traditional DTW. DobeA

M,N ≠DobeB
M,N are asymmetric but

have DobeA
M,N � DobeB

N,M.
&e symmetric Open-End DTW for series a and b is

denoted by Doe
M,N and is defined as follows:

D
oe
M,N � min D

oeA
M,N, D

oeB
M,N􏼐 􏼑

� min min1≤i≤MΔi,N,min1≤j≤NΔM,j􏼐 􏼑.
(21)

Equation (21) is showing the symmetric property with
Doe

M,N � Doe
N,M. Compared to (12), the symmetric Open-End

DTW is just to find the minimum value in the cumulative
distance diagram’s right and top edge. &e computation
complexity is the same as traditional DTW.

&e symmetric Open-Begin DTW for series a and b is
denoted by Dob

M,N, and for Doe
M,N, it defined as

D
ob
M,N � min D

obA
M,N, D

obB
M,N􏼐 􏼑. (22)

From (15) and (22), we have the following:

D
ob
M,N � min

min D
obA
M−1,N, D

obA
M,N−1, D

obA
M−1,N−1􏼐 􏼑 + δM,N

min D
obB
M−1,N, D

obB
M,N−1, D

obB
M−1,N−1􏼐 􏼑 + δM,N

⎛⎜⎝ ⎞⎟⎠

� min
D

obA
M−1,N, D

obA
M,N−1, D

obA
M−1,N−1

D
obB
M−1,N, D

obB
M,N−1, D

obB
M−1,N−1

⎛⎝ ⎞⎠ + δM,N

� min

min D
obA
M−1,N, D

obB
M−1,N􏼐 􏼑

min D
obA
M,N−1, D

obB
M,N−1􏼐 􏼑

min D
obA
M−1,N−1, D

obB
M−1,N−1􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ δM,N.

(23)

&erefore, we have the recursive formation as follows:

D
ob
M,N � min D

ob
M−1,N, D

ob
M,N−1, D

ob
M−1,N−1􏼐 􏼑 + δM,N. (24)

Equation (24) is symmetric and has Dob
M,N � Dob

N,M.
Compared to (15), the symmetric Open-Begin DTW has the
same formation. &e difference is the recursive end margin
Dob

i,1 � δi,1 and Dob
1,j � δ1,j, which means the start margin is

not the cumulative distance. &erefore, the computation
complexity is the same as traditional DTW, and the cal-
culated quantity is a little less than asymmetric Open-Begin
DTW’s, which is a little less than traditional DTW.

&e symmetric Open-Begin-End-half-Full DTW for
series a and b is denoted by D

obef

M,N, and it is defined as follows:

D
obef
M,N � min D

obeA
M,N, D

obeB
M,N􏼐 􏼑. (25)

Because of DobeA
i,j ≠DobeB

i,j , there is no recursive formation
same as traditional DTW. Hence, it must search both
asymmetric Open-Begin-End DTW for series a and series b.
&erefore, the computation complexity is two times the
traditional DTW.

&e asymmetric Open-Begin-for-series-A-End-for-se-
ries-A-BDTW is denoted byDobAeAB

M,N . On the other hand, the
asymmetric Open-Begin-for-series-B-End-for-series-A-B
DTW is denoted by DobBeAB

M,N . &ey are defined as follows:

D
obAeAB
M,N � min min1≤u≤i≤MDu,1,i,N,min1≤u≤Mmin1≤j≤NDu,1,M,j􏼐 􏼑,

D
obBeAB
M,N � min min1≤v≤j≤ND1,v,M,j,min1≤v≤Nmin1≤i≤MD1,v,i,N􏼐 􏼑.

(26)

From equation (17)–(19), we have the following:

D
obAeAB
M,N � min min1≤i≤MD

obA
i,N ,min1≤j≤ND

obA
M,j􏼐 􏼑,

D
obBeAB
M,N � min min1≤j≤ND

obB
M,j,min1≤i≤MD

obB
i,N􏼐 􏼑.

(27)

Intuitively, DobAeAB
M,N and DobBeAB

M,N search the minimized
value in the cumulative distance diagram’s right and top
margin, and the element was calculated by DobA

i,N and DobB
M,j,

respectively.&eir symmetric formation of Open-Begin-End
DTW is denoted by DobABeAB

M,N and defined as follows:
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D
obABeAB
M,N � min D

obAeAB
M,N , D

obBeAB
M,N􏼐 􏼑. (28)

From (27), we have the following:

D
obABeAB
M,N � min

min1≤i≤MD
obA
i,N ,min1≤j≤ND

obA
M,j

min1≤j≤ND
obB
M,j,min1≤i≤MD

obB
i,N

⎛⎜⎝ ⎞⎟⎠

� min
min1≤i≤M min D

obA
i,N , D

obB
i,N􏼐 􏼑􏼐 􏼑

min1≤j≤N min D
obA
M,j, D

obB
M,j􏼐 􏼑􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠.

(29)

From (22), we have the following:

D
obABeAB
M,N � min min1≤i≤MD

ob
i,N,min1≤j≤ND

ob
M,j􏼐 􏼑, (30)

DobAeAB
M,N , DobBeAB

M,N , and DobABeAB
M,N do not meet the half-full-

match condition and are hard to make sense of in the ap-
plication. We mention them just for completeness. &ey
have the same formation as Doe

M,N, except with different
cumulative distances. &erefore, the computation com-
plexity is the same as traditional DTW.

&e left-n-step continuity DTW for series a and b is
denoted byDnA

M,N, whichmeans the growth step for series a is
expanded to n from 1. Its recursive formation is defined as
follows:

D
nA
M,N � min

min1≤d≤nD
nA
M−d,N

min0≤d≤nD
nA
M−d,N−1

⎛⎝ ⎞⎠ + δM,N. (31)

On the other hand, the right-n-step continuity DTW for
series a and b is denoted by DnB

M,N, which means the growth
step for series b is expanded to n from 1. &e recursive
formation is the same as DnA

M,N, and it is defined as follows:

D
nB
M,N � min

min1≤d≤nD
nB
M,N−d

min0≤d≤nD
nB
M−1,N−d

⎛⎝ ⎞⎠ + δM,N. (32)

In (31) and (32), for both DnA
i,j and DnB

i,j , when i< 1 or
j< 1 , it means the matched scheme does not exist, thus
having DnA

i,j � ∞ and DnB
i,j � ∞. It is obvious that they are

asymmetric, which is expressed by DnA
M,N ≠DnB

M,N. On the
other hand, same as other asymmetric DTW, it has
DnA

M,N � DnB
N,M. &e recursive formation is the same as tra-

ditional DTW, except for the needs to search 2(n − 1) more
elements for each step, and the computation complexity is as
traditional DTW.

We summarize all these generalized DTW by their
features, such as symmetric, half-full, local distance for start
margin, and whether search-all-end margin

In Table 3, the star marker (∗ ) means that the feature
cannot be ensured because of the symmetric feature. &e n-
step continuity DTW DnA

M,N and DnB
M,N can be combined with

other boundary-free DTW. &e symmetric front-back-
boundary free DTW Dobe

M,N needs to calculate both asym-
metric DobeA

M,N and DobeB
M,N.

&erefore, we proposed a generalized asymmetric
algorithm to calculate all these generalized DTW. &is

proposed algorithm’s structure is the same as traditional
DTW’s dynamic programming algorithm.

Algorithm 1 is the asymmetric generalized DTW Search
(AGDTW_Search). It is used to search the generalized DTW
for two series A and B.&e parameters oba, obb, oea, and oeb
are bool switchers to disable the boundary condition. &e
parameters istep and jstep control the moving step for
generalizing the continuity condition. Default 1 is equal to
traditional DTW’s continuity condition. In the traditional
DTW’s dynamic programming implementation, (1) it ini-
tializes the cumulative distance matrix and traceback matrix
and (2) forward passes to set each element of the cumulative
distance matrix and traceback matrix. After these two
processes, the cumulative distancematrix is generated.&en,
the traditional DTW just chooses the last element of both
matrices as the end position of the matched scheme.

&e differences between AGDTW and traditional DTW
are in the three following aspects: (1) the initialization of
cumulative distance matrix, depending on parameter oba
and obb whether set. AGDTW would initialize the cumu-
lative distance matrix’s first column or first row by local
distance instead of the cumulative distance. (2) In the for-
ward pass process, the back-search range depends on pa-
rameter isetp and jsetp, which are to control the continuity
condition. (3) After the forward pass process is over, the
whole cumulative distance matrix is generated, depending
on parameters oea and oeb whether set. &e end position of
the matched scheme is searched in the cumulative distance
matrix’s last column and last row.

In algorithm 1 AGDTW_Search, the first row is the
initialization of the cumulative distance matrix and trace-
back matrix. &e 2nd to 6th rows are the forward pass
processes, which are used to set all elements of the cumu-
lative distance matrix D and traceback matrix K. &e 7th to
12th rows are used to search the end position of the matched
scheme.

Algorithm 2 is Init_cumulative_and_trace_matrix. It is
used to initialize the cumulative distance matrix D and
traceback matrix K. &e 1st and 2nd rows have generated two
empty matrices for D and K. From the 3rd to 7th rows,
initialize the two matrices as removing the front-boundary
condition, which directly uses the local distance to set the
start edges of the cumulative distance matrix D, and all
elements of the traceback matrix are set to (0,0), which
means the traceback end. From the 8th and 13th rows, the
first column and first row of D from the local distance to
cumulative distance are adjusted, depending on the pa-
rameters oba and obb whether set. In the meantime, the
traceback matrix K would be adjusted accordingly.

When the execution of algorithm 1 AGDTW_Search is
completed, we get the cumulative value alone. In practice, we
need to trace back to get the index pair of the matched
scheme.

Algorithm 3 is Trace_back_index_pair_list. It is the same
as traditional DTW’s path traceback process. We trace
back K starting from the position index pair (iend, jend),
which returned from algorithm 1 AGDTW_Search. &e 5th
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row means the traceback end condition is index pair (0,0).
&e 8th row means the idx_pair_list needs to be reversed
because the traceback process is from the end position to the
start position. Finally, we generated the index pair list of the
matched scheme. Furthermore, we can get the local dis-
tances of all index pairs.

Trace_back_index_pair_list
Input: iend, jend: end index pair of matched scheme

K: traceback index matrix
Return: idx_pair_list: index pair list of matched
scheme

(1) idx_pair_list� []
(2) i, j� iend, jend
(3) while True:
(4) idx_pair_list.append([i, j])
(5) if i� � 0 and j� � 0
(6) break
(7) i, j�K[i, j]
(8) idx_pair_list.reverse()
(9) return idx_pair_list

2.5. Normalization of Cumulative Distance. &e generalized
DTW search process is to find a matched scheme P that
minimizes the cumulative DTW value under some specific
conditions.&e cumulative DTW value is the sum of all local

distances of this matched scheme P. Let the matched scheme
P � [(i1, j1), (i2, j2), . . . , (iK, jK)]. We define dk � δik,jk

and
denote the local distance of P’s kth index pair ((ik, jk)), which
is the local distance between the ikth element of series A and
jkth element of series B. &erefore, we define the local dis-
tance sequence of the matched scheme P as
d � [d1, d2, . . . , dK].

&e cumulative DTW value can be expressed as follows:

dsum � 􏽘

K

i�1
di. (33)

In application, it is hard to directly use the cumulative
DTW because of the various sampling frequencies between
different trajectories. More sampling amount would lead to
more matched index pairs and a greater cumulative distance,
even if each local distance is small.

&erefore, the cumulative distance is needed to be
normalized to solve this problem.&e basic normalization is
average, which is expressed as follows:

davg �
1
C

􏽘

K

i�1
di. (34)

&e normalization parameter C of the average nor-
malized distance can use a different value, such as series A’s
length M, series B’s length N, the max length of matched
scheme M+N− 1, the actual length of the matched scheme
K, or the max(M, N). Each type of average normalization

AGDTW_Search
Input: A, B: two series

istep, jstep: n-step for series A and B, default 1
oba, obb, oea, oeb: boundary-free switcher

Return: dtw: cumulative DTW value
iend, jend: end index pair of matched scheme
D, K: cumulative distance & traceback index matrix

(1) D, K � Init_cumulative_and_trace_mat (A, B, oba, obb)
(2) for i in 1 . . . A.length-1
(3) for j in 1. . . B.length-1
(4) imin, jmin � find min in D[i-istep. . .i, j-jstep. . .j]
(5) D[i, j]�D[imin, jmin] + local_distance(A[i],B[j])
(6) K[i, j] � (imin, jmin)
(7) iend, jend �A.length-1, B.length-1
(8) if oea
(9) iend, jend � index of minimal in D’s last column
(10) if oeb
(11) iend, jend �A.length-1, index of minimal in D’s last row
(12) dtw�D[iend, jend]
(13) return dtw, iend, jend, D, K

ALGORITHM 1: (AGDTW_Search).
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parameter would lead to a minor effect on the final nor-
malized result. In general, it is reasonable to set C to the
length of matched scheme K.

Overall, the average normalization prefers lower results.
Assume a matched scheme with K pairs, and only one local
distance is nonzero and has a very large value. When K is big
enough, the average normalization value is close to zero,
which means the two series are very close. However, in fact,
there is an extremely different element in these two series.
&e average normalization ignored this difference. &ere-
fore, the average normalization prefers to make a lesser
result, which is not good for reflecting an extremely different
element between the two series.

On the contrary, there is max normalization, which is
expressed as follows:

dmax � max1≤i≤K di( 􏼁. (35)

Max normalization is choosing the max distance among
all matched pairs. It is sensitive to the extreme local distance
difference position between the two series. Accompany with
the DTW search process, it first finds the minimal cumu-
lative distance among all possible matched schemes, then
finds themaximal local distance among all index pairs of that
minimal cumulative distance matched scheme.

On the contrary, to average normalization, max nor-
malization is sensitive to an extreme position. &erefore, we
propose weighted normalization to balance the average and
max normalization. &e weighted normalization is
expressed as follows:

dw � 􏽘
K

i�1
widi, (36)

where 􏽐
K
i�1wi � 1 and wi ≥ 0. For weighted normalization,

the greater the local distance, the larger the weight.
&erefore, weighted normalization can reflect the larger
difference among all matched pairs and is not too sensitive.
Weighted normalization with norm1 is expressed as follows:

dnorm 1 �
􏽐

K
i�1didi

􏽐
K
J�1dj

� 􏽘
K

i�1

di

‖d‖1
,

di �
‖d‖

2
2

‖d‖
1
1
.

(37)

For complementary, we propose norm-P weighted
normalization, which is expressed as follows:

dnormP � 􏽘
K

i�1

di
P

‖d‖
P
P

,

di �
‖d‖

P+1
P+1

‖d‖
P
P

.

(38)

From the definition, we have
davg ≤dnorm 1 ≤ dnorm 2...≤dnorm∞ � dmax. In this paper, we
use norm1 weighted normalization.

2.6. Asymmetric Distance DPCA Clustering. In this paper,
the similarity measurement for clustering is asymmetric
generalized DTW. We apply Open-Begin-End-boundary,
extend an n-step continuity for series A, and use norm-1
normalization for these cumulative distances. In the
matched scheme, series B must be fully matched. &is
measurement can match the pattern in which series A
contains series B. &erefore, the longest trajectory that
contains more short trajectories would have greater density.

We adjust DPCA to find the longest trajectory using
asymmetric generalized DTW. We name it asymmetric
density peak clustering (ADPC). Similar to the original
DPCA, ADPC’s most work is to calculate the local density
and minimal distance to other samples that have greater
density. &e main difference is how to calculate the minimal
distance.

Let D be the distance matrix among all trajectories. Dij is
norm-1 normalized asymmetric generalized DTW from the
ith trajectory to jth trajectory. As we use asymmetric DTW,
the distance matrix D is asymmetric, with Dij not equal to
Dji. When Dij is small, it means that the ith trajectory
contains the jth trajectory.

&e calculation of local density for each trajectory is the
same as DPCA, with a hyperparameter cutoff distance and
Gaussian kernel bandwidth. &e calculation of the minimal
distance to the greater density sample is a little different from
DPCA. To calculate the ith trajectory’s minimal distance, we
search it from all Dji, namely the jth column of matrix D.&e
minimal distance means the minimal distance from its
supertrajectories to itself. &e super trajectory mean density
is greater than itself.

Algorithm 4 is ADPC_make_decision_graph. It is to
calculate the local density list rho and minimal distance list
delta. After rho and delta are calculated, same as DPCA,
samples with greater rho and delta would be assumed as
cluster centers.

As we use asymmetric distance and DTW does not meet
triangle inequality, the process of allocating the sample to its
cluster is just only one pass and needs to consider the
difference between the two asymmetric distances.

Algorithm 5 is ADPC_allocate_sample. It needs two
thresholds to decide whether a sample belongs to a cluster.
&e distance from cluster center to all cluster members must
be less than the threshold thre_c2m. &e distance from all
cluster members to the cluster center must be less than
threshold thre_m2c. In the 13th row, when a sample does not
meet the threshold conditions, it would be set as the outlier.
In the 15th row, when allocating a sample to a cluster, we
consider both asymmetric distances by adding them. &en,
we assign the sample to a cluster in which the distance sum is
the least.

3. Experiment Results

In this section, we apply our proposed generalized DTW
algorithm to a real GPS trajectory dataset to illustrate the
ability to recognize the inclusive relationship between tra-
jectories. We compare different DTW normalization
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methods, and the asymmetric generalized DTW clustering
ADPC result is given.

&e experiment dataset is an intersection area GPS
trajectory dataset with 18,813 sampling points and 1654
trajectories, as shown in Figure 4.

&e trajectory data consists of samplings located by
longitude and latitude. When calculating two samples’ direct
local distance, we use the arc distance of the Earth. Let
p1 � (lon1, lat1), p2 � (lon2, lat2), and lon1, lat1, lon2, and lat2
be measured by radian, and the local distance δ is defined as
follows:

δ � R · arc cos cos lat1( 􏼁cos lat2( 􏼁cos lon1−lon2( 􏼁 − cos lat1( 􏼁cos lat2( 􏼁( 􏼁, (39)

where R is the average radius of Earth between lat1 and lat2,
which is defined as follows:

R �
1
2

��������������������������

RE cos lat1( 􏼁( 􏼁
2

+ RP sin lat1( 􏼁( 􏼁
2

􏽱

+

��������������������������

RE cos lat2( 􏼁( 􏼁
2

+ RP sin lat2( 􏼁( 􏼁
2

􏽱

􏼒 􏼓, (40)

where RE is Earth radius on the equator, which is ap-
proximately 6,378,137meters, and RP is the Earth radius on
the polar, which is approximately 6,356,725 meters. We use
this arc distance to reduce local distance variation by dif-
ferent latitudes and because of the use of the meter unit so
that it is good for setting the threshold intuitively later.

3.1. GDTW Comparison. For various generalized DTW, we
compare the results in the same trajectory pair. For the
boundary condition extending, we compared OBA, OBB,
OEA, OEB, OBEA, OBEB, OE, OB, and OBEF. Also, we
compared different gap steps for continuity condition
extending.

&e traditional DTW’s matching result is shown in
Figure 5. In traditional DTW, the start and end points for
both trajectory A and B are matched.

Next, we demonstrate the asymmetric generalized DTW
of the boundary condition extending. &ey are Open Begin
for series A (OBA), Open Begin for series B (OBB), Open
End for series A (OEA), Open End for series B (OEB), Open
Begin and End for series A (OBEA), Open Begin, and End
for series B (OBEB).

In Figure 6, DTW results with different generalized
boundary conditions are demonstrated. &e start or end
points for trajectories A and B are not matched necessary.
&erefore, it could be recognized as the inclusive relation-
ship between trajectories.
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Figure 4: Scatter of GPS trajectory for experiment dataset.
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Figure 5: Spatial distribution and matched pairs diagram of traditional DTW between two series a and b.
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For completeness, we demonstrate the symmetric form
of boundary condition generalization. &ey are Open End
(OE), Open Begin (OB), Open Begin End, and full-match on
a series (OBEF).

In Figure 7, DTW results in the symmetric form with
different generalized boundary conditions are demon-
strated. &e start or end points for trajectories A and B are
not matched necessarily.

Next, we compared DTW results for extending conti-
nuity conditions with different step gaps for series B. &e
compared step gaps are 3-step, 5-step, and 7-step.

In Figure 8, we compared different step results. &e
bigger the step gap, the lower the cumulative distance. When

the step is big enough to a critical value, because of the single
full-match condition, the cumulative distance is not reduced
more. Finally, we use OBEA5 as an asymmetric similarity
measurement, which is an open begin and end boundary and
5-step continuity for trajectory A, and it leads to assuming
series A as the supertrajectory.

3.2. Normalization Comparison. We compare the affection
of various normalization methods by different sampling
amounts for the same trajectories using traditional DTW.

In Figure 9, trajectory A is resampling in different
amounts. &e more the sampling amount, the bigger the
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Figure 7: Symmetric generalized DTW for boundary condition. (a) OE. (b) OB. (c) OBEF.
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cumulative distance. &e comparison for different nor-
malization results is shown in Table 4.

M is the sampling amount of trajectory A.K is the length
of the matched scheme, which represents the number of
matched pairs. &e sum is the cumulative distance for all
matched pairs. &erefore, it increases greatly along with the
sampling amount. Nmax is the max local distance among
matched pairs. It reflects the most difference between two
trajectories but lost most information and is seriously af-
fected by noise. Naverage is calculated by the sum dividing
K, which is an easy and good normalization, however, it

flattens the local difference. Nmedian flattens more and is a
little complex to calculate, just for comparison. Nnorm-1 is
good as Naverage and can distinguish the effect of greater
local distances. &erefore, we use Norm-1 normalization in
clustering.

3.3. ADPC Clustering. Before ADPC clustering, the simi-
larity matrix is calculated by GDTW (open begin and end
boundary and 5-step continuity for trajectory A, Nnorm-1
normalization) for 1654 trajectories. However, the

Init_cumulative_and_trace_matrix
Input: series A and B, oba, obb
Return: D: cumulative distance matrix

K: traceback index matrix
(1) allocate cumulative distance matrix D[A.length, B.length]
(2) allocate traceback matrix K with same size to D
(3) D[0, 0]� local_distance(A[0], B[0])
(4) for i in 1 . . . A.length-1
(5) K[i,0], D[i, 0]� (0,0), local_distance(A[i], B[0])
(6) for j in 1 . . . B.length-1
(7) K[0,j], D[0, j]� (0,0), local_distance(A[0], B[j])
(8) if not oba: # use cumulative distance for series A
(9) for i in 1 . . . A.length-1
(10) K[i, 0], D[i, 0]� (i− 1, 0), D[i− 1, 0] +D[i, 0]
(11) if not obb: # use cumulative distance for series B
(12) for j in 1 . . . B.length-1
(13) K[0, j], D[0, j] � (0, j− 1), D[0, j− 1] +D[0, j]
(14) return D, K

ALGORITHM 2: (Init_cumulative_and_trace_matrix).

a 40
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Figure 9: Spatial distribution and matched pairs diagram of DTW between two series a and b. (a) Original samplings for trajectory a, (b) 2
samplings for trajectory a, and (c) 40 samplings for trajectory a.
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calculation efficiency is not satisfactory. In our imple-
mentation by python, it takes 2 hours to calculate the
similarity matrix.

In ADCP clustering, the hyperparameter cutoff distance is
set to 15meters, andGaussian kernel bandwidth is also set to 15.

In Figure 10(a), there are 17 clustering centers in the
upper right area, which are divided by two dotted lines.
&e horizontal dotted line is the threshold for min-
distance δ, which is 30. &e vertical dotted line is the
threshold for local density ρ, which is 10. &e corre-
sponding trajectories of cluster centers are demonstrated
in Figure 10(b).

APDC is designed to find the maximum inclusive tra-
jectory as the cluster center, however, in reality, there are
some long singular trajectories that would be clustered as
centers. &erefore, the sample assignment procedure of
ADPC is worked to filter those singular cluster centers.

&e clustering result after sample assignment is shown in
Figure 11. &e subtitle like “p1 247 26” means the cluster
center 1, 247 is the trajectory sample’s serial number, and 26

is the number of trajectories belonging to this cluster. &e
long singular trajectories, such as p2 399 and p4 578 are
regarded as singular trajectories and are not assigned any
other trajectories.

3.4. Discussion. We use the arc distance of the Earth to
measure the local distance of two GPS sampling points. It
can reflect the truth distance better than the Euclidean
distance of the latitude and longitude, although the
improvement is minor.

We compared various GDTW proposed in this section
by the same two trajectories. It proved the validity of GDTW
and illustrated the asymmetric boundary-free DTW with 5-
step, which is good for recognizing the inclusive relationship
between the two trajectories.

By comparing various normalization methods, we
proved that Norm-1 is good to reserve more information on
difference, while, in the meantime, we reflect the similarity
as K average normalization.
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Figure 10: Decision graph and cluster center trajectories. (a) Decision graph. (b) Cluster center trajectories.
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p1 247 26 p2 399 1 p3 556 86 p4 578 1 p5 693 64

p6 710 5 p7 722 1

p8 743 95

p9 786 12 p10 965 4

p11 1011 6 p12 1088 24 p13 1244 2 p14 1363 71

p15 1394 57

p16 1519 3

p17 1640 56

Figure 11: Clustering results of ADPC.

Table 3: Generalized DTW.

GDTW
Local-distance Search-all-end Half-full

Symmetric
a b a b a b

DoeA
M,N No No Yes No No Yes No

DoeB
M,N No No No Yes Yes No No

DobA
M,N Yes No No No No Yes No

DobB
M,N No Yes No No Yes No No

Doe
M,N No No Yes Yes ∗ ∗ Yes

Dob
M,N Yes Yes No No ∗ ∗ Yes

DobeA
M,N Yes No Yes No No Yes No

DobeB
M,N No Yes No Yes Yes No No

Dobe
M,N ∗ ∗ ∗ ∗ ∗ ∗ Yes

DnA
M,N No No No No No Yes No

DnB
M,N No No No No Yes No No
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Trace_back_index_pair_list
Input: iend, jend: end index pair of matched scheme

K: traceback index matrix
Return: idx_pair_list: index pair list of matched scheme

(1) idx_pair_list� []
(2) i, j� iend, jend
(3) while True:
(4) idx_pair_list.append([i, j])
(5) if i� � 0 and j� � 0
(6) break
(7) i, j�K[i, j]
(8) idx_pair_list.reverse()
(9) return idx_pair_list

ALGORITHM 3: (Trace_back_index_pair_list).

ADPC_make_decision_graph
Input: D: normalized asymmetric generalized DTW

r: cutoff-distance
Return: rho: local density list

delta: minimal distance list.
(1) rho, delta� list[len(D)], list[len(D)]
(2) for i� 0. . .len(D)-1
(3) neighbors�D[i][D[I]<�r]4
(4) rho[i]� gaussan_kernel(neighbors)
(5) sortedidx� argsort(rho)
(6) for i� 0. . .len(D)-1
(7) r i� sortedidx[i]
(8) if i� � len(D)-1
(9) delta[ri]�D[:, ri].max()
(10) else:
(11) idx� sortedidx[i+ 1:end]
(12) delta[ri]�D[:, ri][idx].min()
(13) return rho, delta

ALGORITHM 4: (ADPC_make_decision_graph).

ADPC_allocate_sample
Input: D: normalized asymmetric generalized DTW

centeridxs: candidate cluster center index list
thre_c2m: threshold from center to member
thre_m2c: threshold from member to center

Return: centeridx_to_memberidxs. outlieridxs:
outlier index list.

(1) cm_mat�D[centeridxs,:]
(2) mc_mat�D[:, centeridxs]
(3) outlieridxs� []
(4) centeridx_to_memberidxs� dict((i, []) for i in centeridxs)
(5) for i� 0. . .len(D)-1:
(6) if i in centeridx_to_memberidxs:
(7) centeridx_to_memberidxs[i].append(i)
(8) continue
(9) br_c2m� cm_mat[:, i]< thre_c2m

ALGORITHM 5: Continued.
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In ADPC clustering, we use asymmetric DTW to acquire
the max inclusive trajectory as the clustering center and let it
as the representation of the cluster.&e result shows that our
sample allocation algorithm is good to distinguish noise.

4. Conclusions

&e conclusions can be summarized as follows:

(1) A unified DTW algorithm (GDTW) is proposed to
calculate the similarity between two trajectories and
can recognize inclusive relationships.

(2) To overcome the influence of unbalanced sampling
quantity on the trajectories, a weighted normaliza-
tion method is proposed.

(3) We use the generalized asymmetric DTW as a
similarity measurement and proposed a clustering
algorithm (ADPC). &is clustering algorithm can
extract the local max trajectories as cluster repre-
sentatives to reduce the number of clusters caused by
short trajectories.

&e limitation of this method is calculation efficiency. In
our implementation of GDTW, it takes 2 hours to calculate
the similarity matrix for 1654 trajectories. An improvement
on this limitation will be conducted in future work.
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