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The purpose of this paper is to deal with the perception variance problem in regret model by scaling perception variance and
relaxing the distribution assumption of the random error term, which are corresponding to the attribute and alternative
differences, respectively. Specifically, the power coefficient in regret function can capture individual perception variance of
specific attributes and latent class structure is used to analyze individual heterogeneity of alternative differences by defining
weight function. Accordingly, perceiving behaviors of individuals are analyzed in depth and generating absolute and relative
behavior interpretation and asymmetric property. The proposed models are estimated and analyzed using GPS data of taxis in
Guangzhou, and bicycle household surveys are collected in Tel Aviv metropolitan area. The results show both significant
effects of attributes on drivers’ and cyclists’ route choice behavior and identification of different types (absolute or relative) of
perceiving attribute and alternative regret differences of the two travelers by incorporating the ratio of length between chosen
route and the shortest route.

1. Introduction

Perception variance is a traditional problem in transportation
planning and route choice modeling firstly introduced with
respect to trips of different lengths [1], which is generated by
the logit model that assumes the unobserved terms have inde-
pendent and identical Gumbel distribution. Therefore, it also
exists in the regret model using logit structure [2]. However,
it is more complicated in regret function, because not only
the alternative part can have perception variance stemming
from logit model but also within the regret function, the max
operator or logarithmic transformation does, which is identi-
fied by attribute perception variance.

For now, there are some researches using Weber’s law
and psycho-physical mapping function to generate the non-
identical perception variance to solve the problem of linear
mapping variance in regret problem [3]. Based on this the-

ory, we explore the two types of perceptions that are alterna-
tive- and attribute-based. Note that the idea of regret is
incorporated into the same discrete choice framework of
random utility maximization which is driven by the contri-
butions in large measures [4, 5]. Therefore, this paper pro-
poses the methods to deal with the perception variance
problem in regret function by exploring the previous
methods used in utility analysis.

1.1. Literature Review

1.1.1. Behavior Consideration. There are mainly three ways
for analysts to capture heterogeneous perception variance
of individuals. The first one is to use multinomial probit
route choice model, by assuming the covariance between
unobserved error terms of alternative routes [6]. However,
this model does not have a closed-form mathematical for-
mulation, and it is computationally burdensome, especially
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for regret function using the max operator with nonsmooth
likelihood function or logarithmic transformation with com-
plex calculation compared with linear mapping for utility.
What is more, when the choice sets are comprised of exten-
sive routes, it cannot work efficiently.

The second one is to explicitly scale the perception vari-
ance by individual OD pair, which allows the perception var-
iance to increase and decline according to the specific
attributes, in general to the travel distance, such as multino-
mial logit model with scaling, the C-logit model with scaling,
path-size logit model with scaling, the paired combinatorial
logit model with scaling, and so on [7–10]. This method
can be incorporated in the regret function to generate non-
identical perception variance, which will be discussed later
as attribute perception differences.

Finally, the third one is to relax the homogeneous per-
ception variance assumption, such as Weibull and Fréchet
distribution [11], which constitute generalized extreme
value distribution based on parameters to capture the
shape and underlying properties as a complex and flexible
distribution [12, 13], which is called multinomial multipli-
cative model (MNM). Under the independence assump-
tion, the models have the alternative-specific nonidentical
perception regard to the trips with different attributes.
This way will be used as alternative perception differences
and discussed later. However, they have the limitation of
insensitive to any arbitrary scale changing on the regret
of the alternatives [8, 14].

It should be noted that the actual magnitude of the per-
ception variance should be determined on a case-specific
basis. Accordingly, the application situation using regret
based model should be previewed.

1.1.2. Regret Model Development. Traditionally, regret can be
generated when one or more nonchosen alternatives outper-
form the chosen one in terms of the corresponding attri-
butes. For the deterministic part, there are some different
versions. The original formulation makes use of two max
operators across attributes and alternatives in Equation (1),
which means regret only depends on the worst nonchosen
alternative in the choice set [5], while the classical model is
given by Equation (2) as a smoothed approximation of the
original model [4]. Rsum was proposed to avoid the emer-
gence of regret in the domain where regret does not actually
exist caused by the logarithmic part of the Rlog function
[15], which is listed as Equation (3).

R maxni =max
j≠i

〠
m

max 0, βm xnjm − xnim
� �� �" #

, ð1Þ

R logni =〠
j≠i
〠
m

ln 1 + exp βm xnjm − xnim
� �� �� �

, ð2Þ

Rsumni =〠
j≠i

〠
m

max 0, βm xnjm − xnim
� �� �" #

: ð3Þ

In Equations ((1)–(3)), xnjm − xnim is the difference in
attribute value if alternative j performs better than i in terms

of attribute m. Parameters βm in equations above are to be
estimated from observed choices for attribute m.

What is more, in traffic network design, regret theory
can also be incorporated into the user equilibrium problem,
generating new VI formulation and behavior interpretations
[16, 17]. In these years, regret based models have been devel-
oped considering psycho-physical mapping, asymmetric
impact of perception, attribute difference tolerance, error
generation and so on [3, 18–21]. However, of the most regret
formulation in the previous researches, the perception vari-
ance cannot be considered both on attribute and alternative
level, which is one of the motivations of this research to pro-
pose the hybrid model using latent class in Section 2.3.

1.1.3. Application Consideration. Route choice modeling is
mainly based on discrete choice theories [22], which is to
identify the behavior of travelers perceiving the correspond-
ing attributes and their preferences. This can help that, when
faced with serious traffic problems, such as congestions, pol-
lutions and infrastructure constructions, urban planners,
and administrations can make management on the aggre-
gate level.

Traditionally, there is a handful of literature on problems
of car route choice modeling using regret based models
[23–26]. However, as the popularity of bike sharing nowa-
days, several bicycle route choice models have been pro-
posed using either survey (i.e., Onderzoek Verplaatsingen in
Nederland (OVIN)) [27] or GPS data [28–30]. As we all
know, there are significant differences between drivers and
cyclists route choice behavior on perceiving attributes and
alternatives.

Therefore, it is necessary to propose new regret models
considering nonidentical perception variance to compare
the two types of traveler’s behavior. According to our best
knowledge, there are no previous studies focusing on this
topic.

1.2. Contributions. Motivated by the above issues, this paper
aims to deal with the perception variance problem in regret
function by proposing an analytical framework. The main
contributions are twofold.

(1) From the behavioral and methodology aspects, both
attribute and alternative differences are incorporated
into the regret model using latent class structure to
capture nonidentical perception variance, which
can generate absolute and relative behavior interpre-
tation and asymmetric property helping us to ana-
lyze the behavior of decision makers

(2) From the application aspects, the proposed regret
route choice models are used to automobile and
bicycle behavior modeling, the former one using
GPS data of taxis in Guangzhou and the latter one
using bicycle household surveys collected in Tel Aviv
metropolitan area. Accordingly, some separable and
comparable findings are obtained

Figure 1 shows the basic structure of this paper as a sum-
mary of above. The remainder of the paper is organized as
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follows. Section 2 presents the regret choice model consider-
ing attribute and alternative differences and the hybrid latent
class structure. Case studies of automobile and bicycle are
provided in Section 3 and Section 4, respectively. Section 5
provides the comparison results of behavior between drivers
and cyclists and conclusions are presented in Section 6.

2. Model Specification

In this study, we develop choice models within the structure
of random regret minimization, which are derived as
follows.

The route choice problem can be described in terms of a
set of alternative routes in the choice set Cn of individual n,
characterized by a nonempty set of m attributes. The set of
attributes may be identical for the different routes or maybe
specific. The decision makers will obtain a certain level of
regret for each alternative route j ∈ Cn, which are denoted
by Rnj. Regret-based model assumes that they prefer the
route that has the minimum regret, that is:

PR i Cnjð Þ = P Rni < Rnj,∀j ≠ i
� �

: ð4Þ

Rni is the function of observed and unobserved alterna-
tive attributes and individual characteristics, which is com-
prised of deterministic part structured with observed
variables of alternatives and random error term indicating
the perception variance.

Rnj = f R rnj, εnj
� �

: ð5Þ

In the real choice setting, for instance, a decision maker
experiences one route costing him 100 minutes, while the
nonchosen route travel time is 95 minutes. He would feel a
certain small amount of regret. However, when he travels
for 10 minutes and the nonchosen route is 5 minutes, he

would have a sporting chance feeling a large regret. Accord-
ing to the traditional regret function, he will get the same
regret. It is the model which can only capture absolute differ-
ences of attributes that is insensitive to a shift that leads to
the problematic results.

To overcome the inability to account for the perception
variance, here we introduce two types of methods according
to the introduction.

2.1. Attribute Specific Difference. According to the intro-
duction, the first method we can use here is to scale per-
ception variance. Intuitively, xnjm − xnim should be
replaced by xnjm/xnim. However, this can generate two
more questions. On the one hand, the relative difference
is insensitive to an arbitrary scale, which can also have
unreal results in some situations. On the other hand,
because of the same sign within attributes in general, rela-
tive differences are always positive. Therefore, these values
always fall into the same area of regret model curve, either
all are regret domain or rejoice domain, which lost the
important properties of regret model, such as compromise
effect and asymmetric marginal effect [31]. Considering
the ratios of relative differences of two attributes are recip-
rocal, we can subtract them by one to generate the two
values opposite to each other, which has the same effect
of the absolute difference. Here we propose the new for-
mulation of regret model in Equation (6).

Rni =〠
j≠i
〠
m

ln 1 + exp βm

xnjm
xnim

− 1
� 	
 �� 	

: ð6Þ

From this viewpoint, it has two specifications, xnjm −
xnim and xnjm/xnim − 1, corresponding to absolute and rel-
ative differences, respectively. However, in real world, no
decision maker perceives the attribute difference according
to the only one rule, either absolute or relative perception.
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Figure 1: Ideas and basic structure of this research.
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Then a natural way of better representing travelers’ behav-
ior and improving model fits is to develop some hybrid
models, which consider absolute and relative attribute dif-
ferences, simultaneously.

Here the power coefficient α that varies from 0 to 1 is
used to capture the perception variance of decision makers.
See the Equation (7) as follows.

Rni =〠
j≠i
〠
m

ln 1 + exp βm

xnjm − xnim
xnimð Þα

� 	
 �� 	
: ð7Þ

It should be noted that when the value of attribute is
nonpositive, the denominator may not be a real number.
To avoid this, the data can be first normalized to a specific
range.

To be concrete, when α approaches one, it means the
decision maker is more likely to perceive the relative differ-
ence of this attribute. When α approaches zero on the con-
trary, decision maker is more likely to perceive the
absolute difference of this attribute. However, if we assume
a fixed value of α, different decision makers will have the
same perception variance on the attribute. To make the
model more applicable, it should be noted that perception
values can vary as a function of the size of attributes among
different decision makers. Traditionally, when the size or
intensity of attribute is small, individuals tend to perceive
more absolute differences than relative ones of attributes
between alternatives, which can be expressed in terms of
the low-level of α. As the intensity of attribute increases to
the middle part of the range, the bigger part of the relative
difference can be perceived by decision makers and repre-
sented by a value of the power coefficient closing to one.
Finally, when the size of the attribute becomes too large,
individuals’ perception of attribute differences becomes
absolute, implying that the value of α becomes smaller again.
This can help us elaborate on the power coefficient by using
a mapping function incorporated into the regret function,
which depends on the size of the attribute of the specific
alternative.

It should be noted that for one thing, the mapping func-
tion should be truncated by the range of power coefficient,
that is, zero to one. For another, in real settings, individual
perception variance around the middle point may be asym-
metric, which means that the curve of the power coefficient
should be skewed on the left or right side of the middle
point. For now, we propose the final regret function which
is asymmetric and can capture relative and absolute differ-
ences of attributes.

αnim = exp X − eX−1
� �

,

X = γm xnim − δmð Þ,
ð8Þ

Rni =〠
j≠i
〠
m

ln 1 + exp βm

xnjm − xnim

xnimð Þexp γm xnim−δmð Þ−eγm xnim−δmð Þ−1½ �

 ! ! !
:

ð9Þ

From this viewpoint, the differences between two sim-
ple exponential and linear functions are used here to cap-
ture the asymmetry of perception variance around the
middle point. What is more, two adjusting parameters
are added on the independent variable in order to affect
the shape of asymmetry. δm is named shift parameter to
reflect the level of attribute and γm is named scale param-
eter to capture the arbitrary scale of attributes. Figure 2
shows the relationship between adjusted independent var-
iables and the asymmetric differences. The two curves
intersect at the point (1,1), and they generate negative dif-
ferences anywhere else according to Equation (8). How-
ever, as the adjusted independent variable increases, the
difference grows exponentially, while in the other part of
the curve, the difference grows linearly.

What is more, in Figure 3, the relationship between
power coefficient and attribute intensity can be described.
It should be noted that we assume the shift parameter is
fixed at 5. Therefore, the middle point for each curve can
be calculated easily, which corresponds to the biggest value
of the power coefficient as one. Generally, the middle point
is equal to 1/γm + δm, which is affected by the two parame-
ters. And in the light of the relationship, firstly, scale param-
eter γm decides the degree of asymmetry. When it is
estimated as positive, individuals’ perception is more sensi-
tive (reflected by the larger scope on the curve) to the attri-
bute larger than the middle point with the curve skewed
on the right side of the point. Otherwise, when it is estimated
as negative, the graph is skewed to the left as the more sen-
sitive part. What is more, if it is close to zero, the shape of
the curve is going to be symmetric and flat, however, the
power coefficient is approaching the reciprocal of the natural
logarithm, which means that decision makers perceive larger
relative part of the attribute with little absolute effect.

Here we should note that we only use the Rlog function
because it is the classical regret model and it has a continu-
ous function for easy estimation. What is more, the analo-
gous form has been put forward in the previous research
[3, 32]. The pointcuts of the two researches are different.
This research considers the relative difference in contrast
to the traditional absolute difference, while another one
incorporates psycho-physical effects and nonlinear represen-
tation of the perception of attributes, which considers the
magnitude of attributes.

2.2. Alternative Specific Difference. The second method used
in this research to overcome the drawback of inability to
account for perception variance is to assume that regret is
structured with multiplication of deterministic part with
random error term [33]. Traditional multinomial logit
model cannot handle the perception variance issue because,
assumingly, each alternative has the same perception vari-
ance of π2/6θ, where θ is the scale parameter. However, if
we assume the random error term has Weibull or Fréchet
distribution, which is called multinomial multiplicative
model (MNM), it can handle the issue because the percep-
tion variance is the function of the attribute and its shape
and location parameters, which is shown as follows (only
for Weibull distribution):
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σs
ið Þ2 = xsi

Γ 1 + 1/βsð Þð Þ

 �2

Γ 1 +
2
βs

� 	
− Γ2 1 +

1
βs

� 	
 �
,

ð10Þ

where Γ() is the gamma function, s denotes the specific
choice set, i is the alternative, xsi denotes the corresponding
attribute and βs is the shape parameter. For the derivation
details, refer to ([8, 12].

As regret is always positive and decision maker chooses
route that has the minimum regret, we use only one form
of MNM model, that is, assuming the random error terms
have Weibull distributions (see the appendix). The probabil-
ity function is listed as follows:

P i Cnjð Þ = R−λ
ni

∑jR
−λ
nj

=
1

1 +∑ j≠i
Rnj

Rni

 !−λ : ð11Þ

Here we should note that the shape parameter ofWeibull
distribution (scale parameter of regret) can be estimated
which is different from the situation under the utility func-
tion. What is more, in MNM model, we do not need to
transform the attribute because the logarithmic form of
regret can guarantee the positive property of regret. It is
another reason for us to use Rlog in Equation (9) rather than
other functions. Figure 4 shows the relationship among the
probability, shape parameter and relative difference of
regret. If the ratio of two regret greater than one, which
means alternative i is better than alternative j, the probability
of choosing alternative i becomes large as the increase of the
shape parameter. If the ratio of two regret smaller than one,
which means alternative i is worse than alternative j, the
probability of choosing alternative i becomes large as the
decrease of the shape parameter. What is more, the probabil-
ity of choosing the alternative i becomes large as the increase
of the ratio of two regret with the same shape parameter.
However, the growth rate at the scope of the ratio near
one, which means that the alternative i becomes better from
worse than alternative j gradually, is going to be large as the
increase of shape parameter. When the regret of alternative j
is many times larger than that of alternative i, the probability
varies from 0.5 to 1 with the increase of shape parameter.
Under this condition, the larger the shape parameter, the
more decisive the individual is.

However, from the view of behavior according to the
Equation (11), it can only capture relative differences of
alternatives. Although it can handle the perception issue, it
is insensitive to a shift (level of regret). Therefore we need
to recall the general regret model that captures absolute dif-
ferences of alternatives. For the identifiable scale parameter,
here we use μRRM [34]. The specification is as follows:

Rni =〠
j≠i
〠
m

ln 1 + exp
βm

μ
Δxnjm↔nim

� �
 �� 	
,

Pni =
e−μRni

∑ je
−μRnj

=
1

1 +∑j≠ie
−μ Rnj−Rnið Þ :

ð12Þ

Here Δxnjm↔nim means aforementioned asymmetric
absolute and relative differences in Equation (9). The scale
parameter varies from zero to infinite. When it reaches zero,
the log-likelihood of the μRRM approaches P-RRM (using
Rsum) and approaches RUM when it becomes large.

From the view of asymmetry, according to Figure 5, a
simple binary route choice scenario is used here. The regret
of the second route is fixed at 5, while regret of the first one
varies from zero to ten. On the basis of the shape of curves,
it can be found that logit model capturing absolute differ-
ences of alternatives is symmetric, which means that the
increase and decrease of independent variable from the
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middle point can generate the same effect on the chosen
probability, while the multiplicative model reflects the differ-
ent changing rates at the both side of the middle part, which
represents relative differences of alternatives. What is more,

as the shape parameter increases, the property of asymmetry
is going to vanish.

Therefore, in the next subsection, a hybrid method is
used here to combine the two models according to the
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behavior interpretation, that is, one is symmetric and reflects
absolute effects and the other is asymmetric and captures
relative differences.

2.3. Latent Class Model for Absolute and Relative Alternative
Differences. To analyze individual heterogeneity of alterna-
tive differences, here we use the latent class model for the
sake of convenience instead of proposing a new formulation
combining both multinomial logit and multinomial multi-
plicative models. According to the several literatures
[35–38], the latent class model used in this research is shown
as follow:

Pni = 〠
S

s=1
wns Pni sjð Þ: ð13Þ

The probability of individual n choosing alternative i is
comprised of the sum of probability this decision maker
belonging to class s multiply the probability of choosing
alternative i conditional on the individual belonging to this
class. The conditional probability takes the familiar MNL
and MNM forms in Equation (12) and Equation (11). And
the class weight can be written as the function of a vector
xn of sociodemographic and trip-related variables associated
with the traveler n. Traditionally, the multinomial logit for-
mulation is used here.

wns =
exp βsxnð Þ
∑kexp βkxnð Þ : ð14Þ

In this research, we have two different classes, MNL and
MNM models. So the combined probability is:

Pn i Cnjð Þ =wMNL × PMNL i Cnjð Þ +wMNM × PMNM i Cnjð Þ
=wMNL

ð
Ri

∂FMNL R1,⋯, Rkð Þ/∂RijRi=Rk ,∀k
dRi

+wMNM

ð
Ri

∂FMNM R1,⋯, Rkð Þ/∂RijRi=Rk ,∀k
dRi

=
ð
Ri

wMNL∂FMNL R1,⋯, Rkð Þ½

+wMNM∂FMNM R1,⋯, Rkð Þ�/∂RijRi=Rk ,∀k
dRi

=
ð
Ri

∂F R1,⋯, Rkð Þ/∂RijRi=Rk ,∀k
dRi,

ð15Þ

where F denotes the cumulative distribution functions of the
different distributions.

What is more, this latent class model seems like the
CoRUM models proposed in the literature [37, 38]. It is a
sum of absolutely continuous functions characterized by
the same expected value. However, Equation (13) is mixed
by CDFs of an additive and a multiplicative random regret
with error term which have different expected values. There-
fore, this model can capture different behavior interpreta-
tions of perceiving alternative differences by decision
makers.

3. Case Study of Automobile

Here we use two case studies to test the proposed regret
models and illustrate the behavior interpretation of automo-
bile users and bicycle users in this section and the next sec-
tion, respectively.
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3.1. Data Description. GPS data of taxis in Guangzhou is
used to analyze drivers’ route choice behavior. Guangzhou
is the comprehensive transportation hub and is one of four
first-tier cities in China. It has eleven districts. This study
uses only main urban area of Guangzhou, covering nearly
500 square kilometers, as shown in Figure 6. The data was
collected from four weeks in 2014 with GPS devices being
used for monitoring and management but not for naviga-
tion. Here a total of 2489 observations from 292 OD pairs
are used. The statistics on the attributes of the chosen alter-
native are shown in Table 1.

It should be noted that the unit of Length is km.
Artery Road means that the ratio of the length of the arte-
rial road compared to the total length of route. To over-
come the overlapping problem, path size factor is
calculated by comparison of the degree of independence
of alternatives. Accordingly, the path size correction can
be added to the regret function in order to consider trav-
elers’ perception correlation when paths overlap. The path
size term is given by:

PSni = ln 〠
a∈Γi

La
Li

1
∑j∈Cn

δaj
, ð16Þ

where La is the length of link a; Li is the length of route i;
δaj is the link-path incidence dummy, being equal to one
if route j uses link a and zero otherwise. For the behavior
interpretation of the sign of βps, it should be noted that
regret function enters into the probability with the oppo-
site value compared with the utility, that is, regret minimi-
zation theory. Actually, the expected sign of it should be
positive to indicate that when this route is more indepen-
dent than others, the path size correction is approaching
one and the regret diminishes and vice versa.

What is more, Figure 7 presents the distribution of the
relative differences of length between chosen route and the
shortest route, which shows that nearly 61% of decision
makers chose the shortest path, while 57 observations chose
the route more than 5 times longer than the shortest path.
However, there is a small group of people who chose a much

Origin

Destination

Route 1
Route 2
Route 3
Frequently used links

Figure 6: The overall perspective of study area and an example route choice set between an OD pair.

Table 1: Statistics on the attributes.

Eigenvalues Length Traffic light Artery road Path size Shortest path

(L) (TL) (AR) (PS) (SP)
Max. 48.04 36.00 1.00 -0.02 18.64

Min. 0.50 0 0.01 -3.45 0.47

Mean 5.26 3.57 0.75 -1.20 4.30

SD. 4.64 4.04 0.30 0.68 2.88
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longer route than the shortest one, even some are 10 or 20
times. For more information about the data, please check
our previous research [21].

3.2. Route Choice Set Generation. Here we use the heuristic
enumeration method to generate alternative routes between
OD pairs [39]. Then we set the maximum size of choice set
to 40 considering the automobile travelers’ ability to process
route choice information. Then, the maximum, minimum,
and average numbers of trips observed between an OD are
35, 5, and 9, respectively, and the maximum, minimum,
and average numbers of different routes observed between
an OD are 14, 1, and 4, respectively [40].

3.3. Model Specifications. According to the proposed struc-
tures of model shown in Section 2, and the available data
described above, various specifications of different models
have been estimated. Considering the coefficient signifi-
cances, finally, the regret function specifications and latent
class structure are shown as follows:

Ri =〠
j≠i
ln 1 + exp βL × ΔLnj↔ni

� �� �
+〠

j≠i
ln 1 + exp βTL × ΔTLnj↔ni

� �� �
+〠

j≠i
ln 1 + exp βAR × ΔARnj↔ni

� �� �
+〠

j≠i
ln 1 + exp βps × ΔPSnj↔ni

� 
� 

,

Platent,i =
1

1 + exp θ × Li/SPð Þ − ηð Þ × PMNL i Cnjð Þ

+ exp θ × Li/SPð Þ − ηð Þ
1 + exp θ × Li/SPð Þ − ηð Þ × PMNM i Cnjð Þ,

ð17Þ

where Li is the length of route i; SP denotes the shortest path
length among all alternatives under certain conditions. TLi is

the number of traffic lights on the route i; and ARi is the
ratio of the length of the artery road compared to the total
length of route i. PSi is the path size correction to account
for the overlapping problem. Δxnjm↔nim means the corre-
sponding hybrid relative and absolute differences of attribute
m. (For the function about absolute alternative differences,
that is the μRRM model, the regret scale parameter μ is
included in this expression instead of the coefficient for sim-
plicity.) θ and η are parameters that need to be estimated.
What is more, the probability of different models that cap-
ture alternative specific differences (MNL and MNM) are
shown in Equations (11) and (12). It should be noted that
in the Equation (9), the denominator part xnim should be
positive. Therefore, we need to normalize the path size cor-
rection into positive.

Here we should explain our consideration of variables
included in the function. Firstly, route length is selected
rather than travel time because it is easy for travelers to esti-
mate length than time. Secondly, we expect that travelers
will choose routes that have fewer traffic lights to avoid
stops. What is more, according to the artery roads, we expect
that people would prefer to maximize the proportion of
them for higher travel speed and less congestion.

3.4. Parameter Estimation and Behavioral Analysis. This
research uses maximum likelihood equation to estimate the
parameters related to the attributes:

β
!
= arg max LL βð Þð Þ = arg max 〠

n

〠
i

yni × ln P ni β
!���� 	� 	 !

, ð18Þ

where yni equals 1 if the alternative i is chosen by decision
maker n, and 0 otherwise. All of these estimations in this
study are done in MATLAB. The estimation results of these
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models are shown in Table 2, including estimates, t-values,
final log-likelihoods and Bayesian information criterion
[41]. The following are some analyses of the results.

3.4.1. Route Choice Behavior. Based on the signs of the esti-
mated parameters, it can be found that the results are corre-
sponding to our real-world settings. Drivers prefer to travel
on shorter paths with fewer traffic lights indicated by both
coefficients of length (L) and traffic light (TL) having nega-
tive signs. However, they are willing to drive on the artery
road, indicated by the parameters associated with artery
road (AR). As the level of road becomes higher, the limited
velocity is going to increase and their driving experience is
more comfortable compared to the low-grade road with
more stops and delays. The positive sign of path size (PS)
indicates that when one route is more independent than
others, the path size correction approaches one and the
regret diminishes and vice versa.

However, by comparing the magnitude of coefficients
between MNL part and MNM part, it can be found that
the absolute values of the latter part are larger than that of
the former part. This indicates that, when individuals con-
sider and perceive the relative differences of alternatives,
they are more deterministic to choose the best route that
has the minimum regret according to the specific attribute.

3.4.2. Attribute-Specific Behavior Interpretation. In Figure 8,
there are four subplots corresponding to the four variables
showing the power coefficients of all individuals (2489
observations). In each subplot, one curve is MNL part and
the other one is MNM part. According to the asymmetry
and absolute or relative perception behavior, there are some
distinctions shown as follows.

From the perspective of absolute and relative behavior,
firstly, Figure 9 shows the average power coefficient of each

independent variable with both MNL part and MNM part.
For instance, the average travel length of the individuals
from Table 1 is 5.26 kilometers and the corresponding shape
parameter and shift parameter from Table 2 are 0.123 and
23.4, respectively. According to the Equation (8), the power
value 0.103 of length (L) in MNL part can be generated. The
same calculation can be used to obtain other values. It can be
easily found that for length (L) and path size (PS), decision
makers are more likely to perceive absolute differences of
attributes within regret function, regardless of either MNL
part or MNM part. While for the traffic light (TL), in the
MNL part, it is not obvious that people consider which
behavior rule to choose, or both absolute and relative differ-
ences. For MNM part, it is a very clear process of perceiving
relative differences. What is more, when travelers think
about artery road (AR), they always consider the relative
effects of attributes. This implies that people will not be
attracted by only one or two more main roads compared
with other routes. In other words, artery roads always appear
simultaneous in their chosen routes if possible.

Secondly, Figure 8 shows all 2489 individuals’ behavior
according to the relative and absolute differences of attri-
butes. Only the length (L) curve can be generated
completely. That is to say, it comprises both the left and
right part from the middle point. For one thing, the travel
length of route varies from 500 meters to 48 kilometers while
the middle point is near 30 kilometers. For another, it is dif-
ficult for analysts to actually depict how the travelers per-
ceive path length, which is the dominant variable in most
route choice situations. However, aggregate results can help
us to generate general interpretations. There is a trend that
individuals perceive absolute differences of length under
low intensity. As the length increases, people focus more
attention on the relative difference. For automobile is a
mode with high driving and traveling capability, the absolute

Table 2: Estimation results.

Latent class Estimates (t − value)

MNL part

βL -0.151 (-6.95)
γL 0.123 (3.95)

MNM part

β’
L -1.029 (-3.78)

γ’L -0.131 (-4.32)

δL 23.4 (12.2) δ’L 38.5 (9.98)

βTL -0.031 (-3.23)
γTL 0.049 (2.98)

β’
TL -0.034 (-3.23)

γ’TL -0.043 (-1.78)

δTL 15.2 (3.12) δ’TL 25.23 (3.29)

βAR 0.392 (4.30)
γAR 1.20 (5.44)

β’
AR 4.312 (1.78)

γ’AR 1.049 (2.12)

δAR 0.523 (1.99) δ’AR 0.502 (2.45)

βps 0.015 (2.29)
γps 1.01 (2.98)

β’
ps 0.023 (2.11)

γ’ps -0.921 (-2.93)

δps 0.579 (2.10) δ’ps -3.25 (-4.38)

μ 5.30 (10.22) λ 1.20 (12.50)

Weight function η -1.96 (-3.39) θ 1.01 (2.89)

Model fits

Null LL -2973.35

Final LL -2323.98

ρ
−2 0.209

BIC 4867
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difference acts as the leading role in the small network while
the relative difference plays the dominant part in the large
network. This finding is in line with the results reported by
previous researches [8, 42].

Thirdly, the other three variables, traffic light (TL),
artery road (AR), and path size (PS) capture only one side
of the whole graph, either left or right side of the middle
point. It should be noted that as the traffic light is a discrete
variable, the curve seems sparser than other curves. There-
fore, it is not obvious that which behavior rule for people
to perceive according to traffic light. For instance, in the
MNL part, the average power coefficient is 0.459, however,
most points locate at the above of this value as the result
of traffic light in most cases is near five. For MNM part of
the traffic light and two parts of the artery road, individual
always perceive relative differences as the same results with
the above discussion. According to the path size (PS), abso-
lute part dominates because overlapping problem can be
observed absolutely, such as this route has fewer common
links than another route. The relative difference is just gen-
erated by calculating path size corrections; however, decision
maker cannot take it in this way.

From the perspective of asymmetric, it can be found
from both the sign of shape parameters of variables and
the shape of the curves in Figure 8. For perceiving path
length, the MNL part and MNM part generate the opposite
trend. The increasing speed of power coefficient with length
is faster in the high-level attributes than low-level in MNL
part, while slower of the high-level in MNM part. Although

individuals consider relative differences in the large network,
they are more sensitive in the domain part, which is the right
side of the curve when considering absolute differences of
alternatives and left side when perceiving relative differences
of alternatives. The alternative specific difference is discussed
later in the next part because length is incorporated in
weight function as the variable.

The other six curves of three variables only capture one
side of the whole graph. For traffic light (TL) and path size
(PS), both parts locate at the insensitive area of the graph
meaning that individuals are more deterministic and less
changeable when they are faced with the best route accord-
ing to these two variables. In this dataset, decision makers
seem not to change their behavior rules, either absolutely
or relatively. For artery road (AR), both shape parameters
are positive and both parts locate at the insensitive area.
However, the asymmetry is not significant compared with
the above two variables, that is to say, the shape of the two
curves is analogous. People have the same perceiving behav-
ior considering the main road rate of the alternative routes.

3.4.3. Alternative-Specific Behavior Interpretation. Although
individuals can only perceive attributes of alternatives and
regret (or utility) is used by analysts of systematically model-
ing, it is useful in dealing with the questions of alternative
behavior rules (absolute and relative alternative differences)
and asymmetric property.

From the perspective of absolute and relative behavior,
the relationship between the weight of latent class and the

MNL part
MNM part

1.2

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1
Po

we
r c

oe
ffi

cie
nt

Length (km)

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Po
we

r c
oe

ffi
cie

nt

1.20

Artery road
Po

we
r c

oe
ffi

cie
nt

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

–4 –3 –2 –1 0

PS

10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

Po
we

r c
oe

ffi
cie

nt

0

Traffic light

Figure 8: Scatter plots of individual power coefficients of different variables.

11Journal of Advanced Transportation



ratio of chosen route length with the shortest route length
using the estimated weight parameters η and θ is depicted
in Figure 10. Generally, we consider two different behavior
interpretations by using heterogeneous structures: MNL
and MNM. It is found that the ratio of chosen route length
with the shortest route length between OD pairs has a signif-
icant effect on the segmentations of the two parts.

There are mainly three parts divided by the changing
trends of the two curves. The horizon axis from left to right
means the variation of the ratio between chosen route length
with the shortest route length from small to large. The first
part is composed of 61% of individuals who chose the short-
est path, according to Figure 10. It is found that the absolute
part (MNL structure) is dominant in this area. It is obvious
that taking a little longer driving can also generate a great
deal of regret for these cases. Relative part of regret can only
hold a small fraction. As the ratio increases, the percentage
of absolute part declines and the relative part rises gradually,
which makes up the second part of the graph. However, the
absolute part is also larger than the relative part until the
ratio reaches 1.96, at which time the two parts have the same
weight. Under this division, there are nearly 30.6% of deci-
sion makers in the second part. As a whole, there are more
than 90% people in this dataset perceiving absolute regret
differences more than relative differences. This is in line with
the above discussion about attribute differences on length,
which shows the preference for absolute length differences
under low intensity and for relative length differences under
high intensity. When the ratio is further than 1.96 (8.4% of
the observations), drivers almost only consider relative dif-
ferences, since the weight of MNM part grows rapidly.

Therefore, under the small network or large network,
the people who choose the shortest path mainly consider
the absolute differences of alternatives. If the length of
the chosen path is two times larger than the shortest route

length, they are more likely to perceive relative alternative
differences.

From the perspective of asymmetric, according to Sec-
tion 2, in order to overcome the drawback of inability to
account for perception variance, MNM is used. As MNL
part is symmetric, therefore, the property of asymmetry is
captured only by the shape parameter λ, which is estimated
as 1.2. It should be noted that for one thing, only the people
who chose the path much longer than the shortest path can
have significant asymmetry. For another, according to
Figures 4 and 5, the slope of the probability curve is going
to be smaller and smaller when the ratio of two regrets of
alternatives increases from one. Therefore, the change of
regret (increase or decrease) generating the asymmetry is
more significant within the ratio range around one than
the large ratio range, which means that changes through
ratio one can obtain remarkable asymmetry.

4. Case Study of Bicycle

4.1. Data Description. The data was collected by household
surveys conducted on weekdays in 14 major cities in Tel
Aviv metropolitan area from December 2013 to June 2014.
The survey contained two main steps. Firstly, the surveyor
visited households and provided GPS data loggers for the
members older than 14 and they were instructed to carry
the devices for 24 consecutive hours. In order to ensure the
normal use of devices, they have enough battery for 24
hours. Secondly, the travelers were asked to retrieve the
GPS readings and complete the questionnaire about their
daily activities on the recording day. At the same time, the
GPS data was uploaded on the laptop computers to identify
the true travel information.

The overall sample included 8515 persons living in 2896
households. A total of 39952 trips were recorded. After
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Figure 9: Average power coefficient of each independent variable with both MNL part and MNM part.
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modifying gross errors in GPS, there were 516 bicycle trips
performed by 221 persons were correctly recorded.
Figure 11 shows the GPS points of this study. Figure 12 pro-
vides the distribution of route length that has been chosen by
cyclists, which shows that more than 80% of trip distances

are less than 2 km. Descriptions of the explanatory variables
are shown in Table 3. Table 4 presents the descriptive statis-
tics of the route chosen by each individual for later analysis.
More information can be found on the previous
research [28].
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4.2. Choice Set Generation. According to our survey, there
are nearly 3.8% bicycle facilities in the Tel Aviv city. And
then we omitted 2% network roads which prohibited the
travel of bicycle. We use three main methods: link elimina-
tion, link penalty, and simulation method in sequence.
Finally, for each OD pair, we get a total of 20 routes for
model estimation [28].

4.3. Model Specification. According to the proposed model
structure in Section 2, the observed regret function specifica-
tions of bicycle route choice and latent class structure in this
study are shown as follows.

Rni =〠
m

〠
j≠i
ln 1 + exp βm × Δxnim↔njm

� �� �
,

Platent,i =
1

1 + exp c + γLið Þ × PMNL i Cnjð Þ + exp c + γLið Þ
1 + exp c + γLið Þ

× PMNM i Cnjð Þ,
ð19Þ

wherem denotes the eight independent variables for the sake
of simplicity and Li is the length of route i (in the regret
function the unit of length is km while in the weight func-
tion the unit is m).
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Table 3: Descriptions of the explanatory variables.

Variables Descriptions

Length Total length of route (km)

Length A Total length of category A segments of route, i.e., bike paths (km)

Length C Total length of category C segments of route, i.e., urban arterials and highways (km)

Link Average of street length (m)

Dwell Number of dwelling units per meter along the route

Near Sea Total length of route segments passing along or up to 100m of the seashore (km)

Near Park Total length of route segments passing along or up to 100m near park (km)

lnPS Natural logarithm path size

Table 4: Statistics on the attributes of the route chosen by individuals.

Eigenvalues Length Length_A Length_C Link Dwell Near_Sea Near_Park lnPS

Max. 12.5 3.21 2.91 546.56 4.15 11.33 6.73 -0.08

Min. 0.2 0 0 26.68 0.01 0 0 -1.94

Mean 1.61 0.22 0.12 60.79 0.82 0.51 0.24 -0.56

SD. 1.50 0.42 0.36 27.75 0.72 0.92 0.54 0.26
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4.4. Estimation Results and Analysis

4.4.1. Route Choice Behavior. All parameters are successfully
and significantly estimated, and the results are presented
in Table 5. According to the signs of coefficients, cyclists
prefer to choose shorter routes generally. The positive sign
of Length A suggests that riders are more likely to extend
their trips on bicycle paths. While they dislike travel on
the urban arterials and highways for more safety and less
delay indicated by the parameters associated with Length
C. What is more, for Link, people prefer to choose streets
with more links, which is the characteristic of cyclists to
use low-level roads for travel propose with more residen-
tial areas, corresponding to the estimates associated with
Dwell.

Both Near Sea and Near Park have positive effects indi-
cating that riders enjoy experiencing a pleasant environment
along the seashore and park street. What is more, according
to the lnPS, people prefer to ride along the routes with many
independent links to avoid heavy traffics.

However, the absolute value of coefficients of MNM part
is smaller than MNL part except for Near Sea, which is dif-
ferent from the automobile case. This indicates that, when
individuals consider and perceive the absolute differences
of alternatives, they are more deterministic to choose the
best route that has the minimum regret according to the spe-
cific attribute.

4.4.2. Attribute-Specific Behavior Interpretation. First of all,
Figure 13 shows the average power coefficients of all vari-
ables like Figure 9 corresponding to the mean value in
Table 4. It can be found that people perceive absolute regret
differences of all attributes in this dataset. However, there are
some behavior findings shown as follows. The analysis can
also be divided into two parts.

From the perspective of absolute and relative behavior,
Figure 14 shows eight subplots corresponding to the esti-
mated variables. There are mainly three trends of different
curves. Firstly, both Length and Link capture absolute attri-
bute differences in most cases. What is more, as the value of
route length and average street length increase, the power
coefficients are going to decline, and the absolute effect is
more obvious. When riding between further OD pairs or
longer links, they are more likely to perceive absolute attri-
bute differences, such as considering an additional 200
meters rather than the ratio of length of new route with
the old route.

What is more, for the Length A, Length C, Dwell, Near
Sea, and Near Park, which are related to travel environ-
ment, all the power coefficients are close to zero, which
means that individuals perceive absolute attribute differ-
ences. For these variables can be directly observed, the abso-
lute difference is more intuitive than relative difference. For
instance, people just prefer to ride on bike paths and streets
along the seashore or close to the park, whereby dislike the
arterial roads regardless of either large or small network.
However, all these variables capture fewer absolute differ-
ences as the value of them increases except Length C.
Because the coefficients of these variables are all positive,

that is, people prefer these higher values no matter for
MNL part or MNM part. As the relative parts take more
weights, individuals generate less regret for specific attri-
butes. For the negative variable Length C, people perceive
absolute differences to generate more regret.

Finally, although lnPS capture absolute effect in most
cases, the MNL part locates at the left part of the middle
point while MNM part locates at the right side, which means
that as the increase of the path size, relative weight grows in
the former part and declines in the latter part. However,
both trends obtain less regret for individuals.

From the perspective of asymmetric, firstly, as the
important properties of road, Length and Link have the
opposite trend. The former one locates at the sensitive area
with the positive shape parameter meaning that individuals
perceive a rapid downward trend of power coefficient and
upward of regret, while the latter one has a moderate trend
of both values. Therefore, the total length of a route is more
influential in perceiving absolute regret than the average
length of streets.

What is more, the variables which are related to travel
environment have the positive shape parameter of both
MNL and MNM part and locate at the left side of the middle
points except Length C, which is the undesirable variable.
Decision makers have a faster upward or downward trend
of MNM part than MNL part except Near Park. This indi-
cates that people prefer changes (increase or decline) of bike
paths length, arterials and highways length, range of residen-
tial area, and link segment along the seashore. For the per-
centage of streets near park and near sea, the dominant
parts have the absolute perceiving meaning because people
do not always have a pleasant environment to cycle.

Finally, lnPS has the same trend of curve compared with
the automobile case. Specifically, it is more common for
cyclists to perceive absolute regret differences of the degree
in independence of routes.

4.4.3. Alternative-Specific Behavior Interpretation. In the
weight function of the latent class, both models incorporated
by the length and the ratio of chosen route length with the
shortest route length are estimated. Fortunately, they gener-
ate analogous results about coefficients (except constant c)
and relationship graph of perceiving absolute and relative
behavior. In this part, the chosen route length is used to ana-
lyze the behavior of cyclists, according to the results from
Table 5 and Figure 15. In the next section, the ratio is used
to compare both automobile and bicycle cases. It should be
noted that constant c is 2105 in the length weight function
and 1.10 in the ratio weight function.

From the perspective of absolute and relative behavior,
Figure 15 shows that the boundary of two domains locates
at the 2105 meters of the chosen route. In the left part,
cyclists are more likely to perceive relative alternative differ-
ences while in the right side, individuals consider absolute
differences. From Figure 12, it can be found that the CDF
curve of OD pair distances also becomes flatter around
2 km, and more than 80% of the bicycle trips are shorter
than 2 km, which means that cyclists prefer to consider rela-
tive differences by bike. What is more, as the length
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Table 5: Estimation results.

Latent class Estimates (t − value)

MNL part

Length -9.20 (-5.23)
γ1 1.12 (3.21)

MNM part

Length -6.04 (-4.20)
γ’1 1.01 (2.73)

δ1 -1.5 (-2.39) δ’1 -2.34 (-3.12)

Length A 7.43 (4.23)
γ2 0.35 (3.98)

Length A 2.74 (3.83)
γ’2 0.57 (3.21)

δ2 5.5 (4.23) δ’2 4.35 (2.54)

Length C -9.98 (-3.23)
γ3 -1.04 (-4.40)

Length C -6.87 (-2.98)
γ’3 2.43 (3.13)

δ3 -1.5 (-4.43) δ’3 -0.98 (-1.93)

Link -12.32 (-5.40)
γ4 -2.02 (-2.23)

Link -9.29 (-4.96)
γ’4 -0.20 (-3.23)

δ4 29.2 (9.34) δ’4 19.2 (5.44)

Dwell 3.21 (3.04)
γ5 3.20 (3.05)

Dwell 2.19 (5.48)
γ’5 1.23 (2.91)

δ5 4.21 (2.65) δ’5 5.12 (3.12)

Near Sea 1.96 (2.90)
γ6 2.34 (1.70)

Near Sea 2.75 (2.09)
γ’6 3.48 (2.25)

δ6 7.85 (4.32) δ’6 3.32 (2.91)

Near Park 5.23 (2.13)
γ7 0.98 (2.00)

Near Park 3.31 (4.27)
γ’7 3.34 (4.12)

δ7 4.01 (1.69) δ’7 10.35 (5.23)

lnPS 5.34 (1.99)
γ8 0.53 (2.21)

lnPS 4.20 (1.81)
γ’8 1.53 (1.95)

δ8 1.85 (3.31) δ’8 -3.14 (-1.98)

μ 0.98 (3.48) λ 3.12 (9.15)

Weight function c 2105 (9.21) γ -0.99 (-3.12)

Model fits

Null L-L -1346.00

Final L-L -812.12

ρ
−2 0.358

BIC 1949
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Figure 13: Average power coefficient of each independent variable with both MNL part and MNM part.
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increases, this effect vanishes when the chosen route length
is more than 2 km.

Because travel by bike is usually as the mode for the last
mile not for the whole commute, individuals should con-

sider the traditional problems of the small or large network
to choose whether take a bike or not when the length is
not long. However, the effect of an additional 200 meters
(absolute difference) after having ridden a long distance
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Figure 14: Scatter plots of individual power coefficients of different variables.
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(over 2105 meters in this dataset) will be even higher, which
is in line with our previous research using utility function.

From the perspective of asymmetric, as MNL part is
symmetric, therefore, the property of asymmetry is captured
by the shape parameter λ, which is estimated as 3.12. It
should be noted that only the people who chose the path
closing to the shortest path according to the length that
can obtain asymmetry, which is opposite to automobile trav-
elers. What is more, significant asymmetry can be generated
within the regret ratio changing through one, which, how-
ever, less obvious than automobile case. This implies that
individuals become more deterministic when they are faced
with some analogous routes by bicycle than by automobile.

5. Comparison of Case Studies

In Sections 3 and 4, two cases are used to test the hybrid
regret model. Goodness of fit of models can be guaranteed
with the behavior interpretation about asymmetry and rela-
tive and absolute differences perception. Some behavior
findings are shown as follows comparing drivers and cyclists.

Firstly, the most important and interesting finding is that
as the route length increases, individuals prefer to consider
relative regret differences when they travel by automobile
while cyclists are more likely to perceive absolute regret dif-
ferences. It should be noted that because the travel lengths of
the two modes vary dramatically, for automobile case from
0.5 km to 48.4 km with the mean length of 5.26 km while
for bicycle case from 0.2 km to 12.5 km with the average
route length of 1.61 km. It is inapplicable to directly compare
the length. Therefore, in the weight function, the ratio of the
chosen route length with the shortest length is used to cap-

ture the degree of absolute and relative alternative regret
differences.

As the common mode for travel, when the travel length
is not very long, travelers by car should consider the addi-
tional length of the route rather than large or small network
problem, which is captured by the absolute regret differences
of alternatives. If the length of the chosen path is two times
longer than the shortest route length, they are more likely to
perceive relative alternative differences to deal with the large
network perception problem. However, for the people travel
by bike, the last mile problem should be considered in the
short network because of the main purpose of cyclists. And
then the additional regret effect will be higher with the
increase of the length indicating the absolute behavior con-
sidering alternative regret.

Secondly, in the automobile case, it can be found that the
absolute values of the MNM part are larger than that of the
MNL part by comparing the magnitude of coefficients. This
indicates that, when individuals consider and perceive the
relative differences of alternatives, they are more determinis-
tic to choose the best route that has the minimum regret
according to the specific attributes. In the bicycle case, it
has the opposite results except Near Sea. Ceteris paribus,
absolute differences of alternative part of regret dominates
the behavior selection process.

Finally, according to the power coefficients of variables
about either whole individuals or average values, cyclists
are more likely to perceive absolute attribute differences than
drivers except considering route length which has complex
behavior interpretations. The bicycle seems like a simpler
way for people to take, to consider route regret and to per-
ceive differences than car, which are the characteristics of
absolute differences.
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Figure 15: Relationship between the weight of latent class and ratio or length.
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6. Conclusions

In this paper, we presented an analytical framework to deal
with the problem of identical perception variance in regret
model. From the methodology aspect, as indicated in the
introduction section, two methods (scaling perception vari-
ance and relaxing the error term distribution assumption)
can be incorporated in the regret-based model, which are
corresponding to the attribute and alternative specific differ-
ences. From the behavior aspect, perceiving actions of deci-
sion makers are analyzed in-depth, generating absolute and
relative behavior interpretation and asymmetric property.
Latent class structure is used to analyze individual heteroge-
neity of alternative differences by defining weight function,
while the power coefficient in regret function can capture
individual perception variance of specific attributes.

To test the proposed regret route choice models, we
applied two data sources. One is the GPS data of taxis in
Guangzhou to capture the behavior of drivers and the other
is bicycle household surveys collected in Tel Aviv metropol-
itan area. All parameters are successfully and significantly
estimated. Accordingly, some separable and comparable
findings can be obtained. More specifically, we have the fol-
lowing main observations from the comparison of two
datasets.

(1) As the route length increases, individuals prefer to
consider relative regret differences when they travel
by automobile while cyclists are more likely to per-
ceive absolute regret differences, as a result of the
real settings that compared with car trips, the bicycle
trips will cost much more physical effort

(2) MNM part is mainly larger than that of the MNL
part by comparing the magnitude of coefficients in
the automobile case. The opposite happens in the
bicycle case. This implies that for the importance of
alternative differences, cyclists and drivers perceive
striking differences

(3) According to the attribute perception variance
affected by the power coefficients, cyclists are more
likely to perceive absolute attribute differences than
drivers except considering route length which has
complex behavior interpretations

For further research, on the one hand, it is possible to
extend the model in a multimodal application, which needs
to collect data based on household survey or mobile phone
information. On the other hand, regret model can be
explored through the property of asymmetry, to overcome
the drawback that each exponential term depends on the
attributes of two or more alternatives [43].

Appendix

A. Different Functions of Three Extreme Value
Distributions under Maximum and
Minimum Theory

The three extreme value distributions (Gumbel, Weibull and
Fréchet distributions) are commonly used in transportation
research. We know that if a random variable X is Gumbel
distributed, then eX is Fréchet distributed and e−X is Weibull
distributed. Decision maker can have many choice strategies,
such as utility maximum and regret minimum. When faced
with both max and min policies and values with different
signs, the specifications will have a little variation.

Previous research has shown the framework of
comparative-statics exercises and effects on the choice prob-
ability and resulting distribution of the achieved utility and
value [13]. Here, for our research objectives, we illustrate
more details about different distributions of the two theories.
See Table 6 for details.

The grid which does not have any content means that
under this case, it cannot be calculated by this theory.
Although it seems that we can generate them by reversing
positions of two values, it cannot be true when alternatives
are more than two.

Table 6: Different calculations of three extreme value distributions under maximum and minimum theory.

Distribution
Case1 Case2

Specification Constrains
1 2 -1 -2

Gumbel
Max e1/e1 + e2 e2/e1 + e2 e−1/e−1 + e−2 e−2/e−1 + e−2 exp βvið Þ/〠exp βvkð Þ

β > 0
Min e−1/e−1 + e−2 e−2/e−1 + e−2 e1/e1 + e2 e2/e1 + e2 exp −βvið Þ/〠exp −βvkð Þ

Weibull
Max — — 1/1 + 0:5 0:5/1 + 0:5 −við Þ−β/〠 −vkð Þ−β

β > 0

vi⋯k < 0

Min 1/1 + 0:5 0:5/1 + 0:5 — — v−βi /〠v−βk β, vi⋯k > 0

Fréchet

Max 1/1 + 2 2/1 + 2 — — vβi /〠vβk β, vi⋯k > 0

Min — — 1/1 + 2 2/1 + 2 −við Þβ/〠 −vkð Þβ
β > 0

vi⋯k < 0
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Data Availability

The GPS data of taxis in Guangzhou used to support the
findings of this study have not been made available because
of privacy issues. The bicycle data are from previously
reported studies and datasets, which have been cited.
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