
Research Article
Efficiency and Reliability Analysis of Self-Adaptive Two-Stage
Fuzzy Control System in Complex Traffic Environment

Mingzhi Wang,1 Xianyu Wu ,2 He Tian,1 Jie Lin,2 Meimei He,2 and Liuqing Ding2

1Laboratory for Traffic and Transport Planning Digitalization, Transport Planning and Research Institute Ministry of Transport,
Beijing, China
2Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,
Beijing Jiaotong University, Beijing, China

Correspondence should be addressed to Xianyu Wu; wuxy@bjtu.edu.cn

Received 30 November 2021; Revised 24 December 2021; Accepted 11 January 2022; Published 27 January 2022

Academic Editor: Wenxiang Li

Copyright © 2022MingzhiWang et al.-is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a self-adaptive, two-stage fuzzy controller is established to realize the real-time online optimization of traffic signal
timing plan, which takes multimodels of transportation as the research object to analyze the reliability of the control system at the
isolated urban intersection. In this system, the first stage calculates traffic urgency degree for all red phases and selects the red
phase with maximum traffic urgency degree as the next green phase. -e second stage determines whether to extend or terminate
the current signal phase. Aiming at the problems of the parameters of membership functions empirical settings and insufficient
response to the real-time fluctuation in traffic flow, the controller introduces an improved hybrid genetic algorithm to solve it and
enable the controller to self-learn. Finally, a microsimulation platform is constructed based on the VISSIM and Python language to
evaluate the efficiency and reliability of the controller under complex actual traffic conditions. Results showed that the average
delay time per vehicle is reduced by 14.59%, while the average number of stops per vehicle is reduced by 0.71% compared with the
traditional control method. Results indicate that the traffic signal timing plan generated by the controller can efficiently improve
the intersection traffic capacity and has good efficiency and reliability under the condition of medium saturation and
unsteady flow.

1. Introduction

At present, with the development of shared mobility and
traffic detection techniques theories, many scholars in the
field of urban traffic engineering are paying more attention
to the collaborative optimization of multi-transport models
in traffic safety [1–3], traffic operation efficiency and re-
liability [4, 5], and environmental protection [6–8]. Driven
by the rapid development of the mobile Internet and the
sharing economy, dockless bike-sharing systems have
grown in popularity in China [9]. For example, in Beijing,
the total daily average of cycling trips has reached 5.6
million by 2020, up from 4.62 million in 2017, surpassing
the trips by bus and subway and becoming the third-largest
way of travel after walking and car [10]. In addition, in the
face of congested traffic, people are more likely to choose to
use dockless bike-sharing to complete short-distance travel

[11]. Shared mobility has led to more walking, and cycling
trips significantly changed intersections’ traffic flow
structure and brought new challenges to the intersection
signal timing optimization. -erefore, considering the
travel needs of bicycles and pedestrians in the process of
signal timing optimization has become an important re-
search content. At the same time, with the emergence of
new detection technologies such as microwave radar and
high point video, it is possible to analyze the efficiency and
reliability of signal timing control systems in the real
environment.

In some developing countries, such as China and India,
the most signalized intersection’ control mode is fixed-time
or actuated control due to complex traffic flow and lack of
effective observation data [12]. As the fixed-time control
cannot respond to the real-time change of traffic demand,
vehicle actuated control is better than fixed-time control.
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-ough it can optimize the timing scheme of signalized
intersections according to the real-time traffic demand, the
setting of critical parameters relies on urban traffic engi-
neers’ personal experience [13]. In the past few decades, to
address these deficiencies, a variety of adaptive signal control
systems have been proposed by Gartener [14], Lin and
Cooke [15], Kronborg and Davidson [16], and Lin and
Vijayakumar [17]. Because of its excellent real-time and
robustness, fuzzy control has become one of the most
common intelligent control methods.

Fuzzy control was introduced into the traffic control
field in 1977 by Pappis and Mamdani [18]. Since then,
single-level, two-level, and three-level fuzzy controllers
have been proposed one after another [19–22]. However, as
the parameters are pre-defined by experts and unable to
change, this fuzzy controller is non-responsive to the real-
time fluctuation of traffic demand and disability to learn
[23]. To solve the problems above, Henry et al. [24],
Bingham [25], Rida et al. [26], and Xu et al. [27] introduce
heuristic algorithm, such as reinforcement learning, neural
network, and ant colony to optimize fuzzy controller pa-
rameters according to the historical traffic data. -e sim-
ulation result indicates this adaptive fuzzy controller is
more effective than a traditional fuzzy controller, but the
performance of these traffic signal control methods needed
large and valid sample sets. Genetic algorithm (GA) has
been widely used with the ability of global search and does
not depend on experiential knowledge and a large amount
of historical traffic flow data [22, 28]. In light of this, Liu
and Zuo [29] take a four-phase isolated signalized inter-
section as a research object and uses a genetic algorithm to
optimize fuzzy rules and membership functions of the
fuzzy control. Shahsavari et al. [30] take the total length of
traffic queue and pedestrian queue in all phase of isolated
intersection as optimization goals, construct a fuzzy multi-
objective optimization model, and use a genetic algorithm
to optimize the cycle time of the traffic light systems. Yu
et al. [31] established a multi-objective optimization model
with traffic capacity, average parking delay, and exhaust
emissions as optimization goals and used genetic algo-
rithms to optimize the signal cycle time and effectively
green light time. However, in the above study, the traffic
flow distribution is generally assumed to obey a particular
traffic arrival distribution, which does not reflect the
fluctuation of actual traffic demand. In addition, pedes-
trians and non-motor vehicles are also almost not taken
into account. Except that, the simulation experiment
designed in the existing research has the disability to reflect
actual vehicle driving behavior and mixed traffic flow
characteristics.

-e aim of this paper was to take the travel needs of non-
motor vehicles, pedestrians, and motor vehicles into account
during the optimization process of signal timing scheme. In
addition, this paper introduces a hybrid genetic algorithm to
make the signal control strategy have the ability of auton-
omous learning. At the same time, to verify the efficiency
and reliability of this control system, the simulation pa-
rameters of the platform are calibrated according to the
actual vehicle trajectory data.

2. Research Scope and Model Structure

2.1.ExperimentalTest Intersection. -e plan of the signalized
isolated intersection is shown in Figure 1. As the intersection
has through-left movement, this paper selects a split-phase
to control the intersection. Since there is a dedicated right-
turn lane at this intersection, right-turn traffic flow is not
considered in the research.

As shown in Figure 1, each approach has one microwave
radar and many cameras to detect the vehicles’ status in-
formation of each lane, such as cross ID, latitude, and
longitude, with an average sampling interval of 80 milli-
seconds. According to the trajectory data, vehicles’ temporal
and spatial distribution characteristics can be obtained [32],
making it possible to get the real intersection traffic flow
information and analyze the driving characteristics of
drivers.-e daily file size of high-precision track data used in
the research is about 1G, and about 8 million track point
records are generated.-e primary data attributes are shown
in Table 1.

Due to the complexity of the real environment, possible
packet loss during data transmission, buffer data overflow
and on-board equipment and roadside unit failure, there will
be problems in the collection of high-precision track data,
such as missing field values, missing track information, and
change of track ID. At the same time, roadside parking, bad
weather, or temporary traffic control may also cause the
obtained high-precision trajectory data to fail to reflect the
normal operation state of vehicles at the intersection, so the
data need to be preprocessed before use. Data cleaning work
has been done in a previous work [33], and hence the details
are not included to avoid redundancy.

2.2. Self-Adaptive Two-Stage Fuzzy Control Algorithm.
-e primary process of the self-adaptive two-stage fuzzy
control algorithm is as follows: (1) set a minimum green time
to a phase until the remainder of the green time is 1 s; (2)
calculates the red urgency and green urgency of different
approaches according to the real-time motor vehicle, non-
motor vehicle, and pedestrians traffic flow data; (3) select the
red phase with greatest phase urgency as the next candidate
phase; (4) comparing the selected red phase urgency with
green phase urgency, decided whether to extend or termi-
nate the current signal phase; (5) if the length of the green
phase exceeds maximum green duration, then terminal the
current signal phase, otherwise, continue; (6) according to
the evaluation of the scheme, decided whether to optimize
the parameters of membership functions; (7) if the simu-
lation time does not reached, skip to (2) and continue.

2.3. Structure of Self-Adaptive Two-Stage Fuzzy Controller.
Figure 2 shows the structure of the self-adaptive two-stage
fuzzy controller. As we can see from the figure, the controller
has two main components: (1) two-stage fuzzy controller,
which includes four parts: red urgency judgment module,
pedestrian urgency judgment module, green urgency judg-
ment module, and decision module; (2) parameter optimi-
zation module based on improved hybrid genetic algorithm.
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2.4. Computation of the Queue Lengths. When the phase is
red, the queue lengths in the approach direction i are
expressed as

Qi � Qri + 
t

j�1
qij, (1)

where Qi is the queue lengths of an approach direction i; Qri

is the number of remaining vehicles when the phase is
switched to red phase; t is the duration of the red phase of
approach direction i; and qij is the amount of arriving ve-
hicles of approach direction i duration interval.

When the phase is green, the queue lengths in the ap-
proach direction i are expressed as

Qi � Qgi + 
t

j�1
qij − 

t

j�1
qij
′, (2)

where qij
′ is the number of vehicles through stop-line of

approach direction i duration interval and Qgi is the number
of remaining vehicles when switched to the green phase.

3. Design of Self-Adaptive Two-Stage
Fuzzy Control

3.1. First Stage. Since the first stage has three fuzzy inputs,
theoretically, the number of rules necessary for gathering all
the possible input combinations for the three-term fuzzy
controller is 5 × 5 × 5 � 125. In practice, the design of a fuzzy
controller with so many fuzzy control rules will occupy a
large amount of memory and long processing time [34, 35].
-erefore, this study divided the first stage into three sub-
modules modules, namely: red urgency judgment module,
pedestrian urgency judgment module, and green urgency
judgment module, each with two fuzzy inputs and one
output variable.

In these sub-modules, phase urgency on each approach
direction is determined by the maximum red/green urgency
and pedestrian urgency. For example, if approach direction i

is in red and its red urgency is 2.3, and pedestrian urgency is
2.2, then i would have a phase urgency of 2.3 and is named
red urgency. -e calculation process of the urgency of each
submodule is shown below.

3.1.1. Red Urgency Judgment Module. In this module, the
input variable is the queue length of motor vehicles r, the red
phase duration time tr. -e output variable is urgency Ur.
-e domain of qr is (0, 16), the linguistics are {Very Few
Vehicles, Rarely Few Vehicles, Medium Vehicles, Rarely
More Vehicles, Very More Vehicles}, short as {VFV, RFV,
MV, RMV, VMV}. -e domain of tr is (0, 120), the lin-
guistics are {Very Short Time, Rarely Short Time, Medium
Time, Rarely Long Time, Very Long Time}, short as {VST,
RST, MT, RLT, VLT}. -e domain of Ur is (0, 4), the
linguistics are {Very Low, Low, Medium, Height, Very
Height}, short as {VL, L, M, H, VH}.

With linguistic descriptions of qr, tr as input, the ur-
gency in red direction, Ur, is determined by the fuzzy rules
given in Table 2. For example, if tr is VSF, and qr is VFV,
then Ur is VL.

3.1.2. Pedestrian Urgency Judgment Module. In this module,
the input variable is the traffic flow of non-motor and pe-
destrian on each approach direction qp, the phase duration
time is tp, and the output variable is urgency Up. -e
domain of qp is (0, 60), the linguistics are {Very Few Pe-
destrians, Rarely Few Pedestrians, Medium Pedestrians,
Rarely More Pedestrians, Very More Pedestrians}, short as
{VFP, RFP, MP, RMP, VMP}. -e domain of tp, Up is (0,
120) and (0, 4), respectively. -e linguistic subsets of tp, Up

are same as red urgency judgment module.-e rules of these
modules are shown in Table 3.

3.1.3. Green Urgency Judgment Module. In this module, the
input variable is the number of remaining vehicles qg, and
green extension time tg. -e domain and terms of each
variable are shown in Table 2. -e domain of qg, tg, Ug is
(0, 16), (0, 120), (0, 4), respectively. -e linguistic subsets of
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Figure 1: Intersection plan.

Table 1: Introduction of the source data.

Field name Attribute description
Time Unix timestamp, in millisecond
crossID Intersection ID
Sequence Track serial number
trackID Track ID, unique for a short time
entryRoad Entry road direction
exitRoad Exit road direction
objectType Object type: 0 unknown, 1 motor
vehicleType Vehicle type: 1 car, 2 truck, etc
plateNumber Plate number
N EPSG:32650—WGS 84/UTM
E EPSG:32650—WGS 84/UTM
Z EPSG:32650—WGS 84/UTM
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each variable are the same as the red urgency judgment
module. -e rules of these modules are shown in Table 4.

-e research uses the Gaussian fuzzy membership
function to describe all parameters and uses the center of
gravity method to de-fuzz output results.

f(x, μ, σ) � e
− (x− μ)2/2σ2( ),

Z �
 xf(x)d(x)

 f(x)d(x)
,

(3)

where μ represents the membership function center; σ de-
notes the membership function width; and x indicates the
element; and f(x) is the membership function.

3.2. Second Stage. -e decision module takes Ur and Ug as
an input variable, and the output variable Dc represents
whether to extend the green time or deliver the right of way
to the selected phase (Pr). -e domain of Dc is (0, 1). It is
divided into two linguistic subsets {No, Yes}, abbreviated as
{N, Y}. -e rules of these modules are shown in Table 5.

3.3. ParameterOptimizationModule. To enable the two-stage
fuzzy controller have autonomous learning ability, this
paper uses a hybrid genetic algorithm to optimize the
membership function of the fuzzy variable and uses a
rolling horizon to set the parameters of these membership
functions [28, 36]. -e framework of the module is shown
in Figure 3. Furthermore, the process of parameter opti-
mization is as follows: (1) Detect real-time traffic flow
during the control time horizon, evaluate the scheme, and
decide whether to optimize membership functions’ pa-
rameters. If so, go to step 2; otherwise, end. (2) Optimize
the parameters of μ in membership function by hybrid
genetic algorithm (HGA) based on historical traffic flow
data. (3) Update the μ parameters of the fuzzy controller in
time, according to the optimized membership function. (4)
Repeat the above process until the simulation time is
reached.

Table 2: Fuzzy rules for the red urgency judgment module.

Ur
qr

VFV RFV MV RMV VMV

tr

VST VL VL VL L M
RST VL VL L M H
MT L M M H VH
RLT M H H VH VH
VLT VH VH VH VH VH

Table 3: Fuzzy rules for the pedestrian urgency judgment module.

Up
qp

VFP RFP MP RMP VMP

tp

VST VL VL VL L M
RST VL VL L M H
MT L M M H VH
RLT M H H VH VH
VLT VH VH VH VH VH
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judgement module

Figure 2: -e diagram of adaptive two-stage fuzzy controller.

Table 4: Fuzzy rules for the green urgency judgment module.

Ug
qg

VFV RFV MV RMV VMV

tg

VST L M H VH VH
RST L L M H VH
MT VL L L M H
RLT VL VL L L M
VLT VL VL VL L L
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As shown in Figure 3, this study uses floating-point
coding to encode the chromosome and sets a limited value
range for each control parameter to avoid the generation gap
phenomenon so that no fuzzy rules are activated after the
parameters were input. For example, if the parameters of μ′
are the kth element in the linguistic sets of qr, as the domain of
qr is (0, 16), so the range of μ′ is ((k − 1)∗ (16 − 0/5 − 1) −

2, (k − 1)∗ (16 − 0/5 − 1) + 2). -e fitness value of C,
denoted by f(C), is computed by

f(C) �
1

(1 + d)
, (4)

where d is the average delay time per vehicle obtained by the
simulation platform.

Start (k=0)

Population initialization

Meet the termination 
principle?

Fitness calculation: Store-and-
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i = M?k = k+1

No

Yes

The best solution

Output results

End (Update parameters 
of the fuzzy controller)
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Selection operator
(Roulette Wheel selection)
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Select two 
individuals

Select one 
individuals

Select one 
individuals

Reproduction

i = i + 1

Mutation

Select one 
individuals

Crossing

Select one 
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Replace old population with 
newly generated population

Pc PmPr

Figure 3: Framework of the parameter optimization module.

Table 5: Fuzzy rules for the decision module.

Dc
Ur

VL L M H VH

Ug

VL Y Y Y Y Y
L N Y Y Y Y
M N N Y Y Y
H N N N Y Y
VH N N N N Y
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-e parameters of Pr, Pc, Pm are calculated by

Pr �
f(i)


k
n�1 f(C)

,

Pc �

Pc1 ×
1

Pc1 − Pc1(  + N
, N1 ≥N2,

0.9, N1 <N2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Pm �

Pm1 ×
1

Pm1 − Pm1(  + N
, N1 ≥N2,

0.2, N1 <N2,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

N � exp
N1 − N2( 

N3 − N2( 
 ,

(5)

where k is the number of individuals; f(i) is fitness value of
individual of i; Pr is select probability; Pc is crossing
probability; Pc1 is the minimum crossing probability, 0.2;
Pc2 is the maximum crossing probability, 0.9; Pm is mu-
tation probability; Pm1 is the minimum crossing probability,
0.01; Pm2 is the maximum crossing probability, 0.2; and
N1, N2, N3 are the rank index of minimum, average, and
maximum fitness, respectively.

4. Efficiency and Reliability Analysis

4.1. Simulation Environment

4.1.1. Structure of the Simulation Platform. -e proposed
control strategy was verified in a prevailing microscopic
traffic simulation environment, VISSIM. -e control
strategy and optimization algorithm are compiled on the
visual studio code platform and transmitted to the VISSIM
via the COM interface. At each step, according to the current
simulation information, the adaptive two-stage fuzzy con-
troller decided whether to terminate or extend the current
green signal phase and judgment whether to optimize the
membership function or maintain the status quo. -e
structure of the VISSIM simulation platform is shown in
Figure 4.

4.1.2. VISSIM Parameter Calibration. VISSIM simulation
software uses a large number of independent simulation
parameters to reflect real vehicle operation, traffic flow
characteristics, and driving behavior. However, these pa-
rameters are calibrated according to Germany and other
western countries’ measured data and may not be suitable for
China’s actual situation. As these parameters have an im-
portant impact on the simulation results, it is necessary to
calibrate the default simulation parameters according to the
actual situation of the intersection before the simulation. In
this study, the seven parameters that significantly impact the
simulation results are calibrated, including desired speed
distribution, maximum acceleration/deceleration, expected
acceleration/deceleration, average standstill distance, additive

part, and multiple parts of safety distance [37–39]. -e
specific calibration process can refer to the literature [33].

4.2. Experimental Design

4.2.1. Traffic Flow. -e traffic flow data of motor vehicles at
the intersection extracted based on high-precision trajectory
data are shown in Table 6. Data extraction work has been
done in a previous work [33], and hence the details are not
included to avoid redundancy.

Since trajectory data cannot obtain the traffic flow data of
non-motor vehicles and pedestrians, this study assumes that
the arrival rates of non-motor vehicles and pedestrians in
each approach direction obey Poisson distribution [40]:

P(x) �
λt

x
e

− λt

x!
, x � 0, 1, 2, . . . , (6)

where P(x) is the probability of x non-motor or pedestrian
arrival in t interval; λ is the average arrival rate per unit time,
0–0.4; and t is phase duration of current approach direction.

4.2.2. Traffic Flow Structure. -e traffic flow structure data
of motor vehicles at the intersection extracted based on
trajectory data is shown in Table 7.

4.2.3. Simulation Parameters Calibration. -e simulation
parameters are calibrated based on the intersection geometry
(Figure 1) and traffic flow characteristics. -e parameter
calibration results are shown in Table 8.

Self-adaptive two-stage 
fuzzy controller

VISSIM COM

VISSIM COM

Real traffic data Optimized signal timing 
plan in next phase

VISSIM network

Simulation result

Figure 4: -e structure of the VISSIM simulation platform.
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5. Results and Discussion

Figures 5–7 show the simulation results of fixed-time control
(FTC), traditional fuzzy control (TFC), and hybrid genetic
algorithm fuzzy control (HGAFC). Compared with FTC, the
average delay time per vehicle of HGAFC is reduced by
14.59%, and the average number of stops per vehicle is
reduced by 0.71%; the average delay time per vehicle of TFC
is reduced by 11.08%, and the average number of stops per
vehicle is reduced by 0.33%.

-e following inferences can be drawn based on
Figures 5–7:

(1) In the early morning, the effect of the control al-
gorithm is the same. -e reason is that when the
traffic flow of each approach of the intersection is
low, the vehicle queue length is short. -e fuzzy
control’s main influence factor is each phase’s red/
green light duration, and the fuzzy control is in a
fixed-time control state.

Table 7: Traffic flow structure.

Structure
Vehicle Nonmotor (%)

Car (%) HGV (%) Minibus (%) Nonmotor (%) Pedestrian (%)
WBL 93.1 3.1 3.8 60 40
WBT 98.1 1.0 0.9 60 40
SBL 83.9 4.5 11.7 60 40
SBT 85.4 5.5 9.1 60 40
NBL 88.1 4.2 7.7 60 40
NBT 88.1 4.6 7.3 60 40
EBL 90.8 3.2 6.0 60 40
EBT 83.1 8.5 8.4 60 40

Table 8: Simulation parameters.

Parameters Desired value
Duration of simulation 19.5 h
Green extension 2 s
Maximum cycle length 120 s
Amber time 3 s
All red time 2 s
Minimum duration of the WB/EB approach 21 s
Minimum duration of the SB/NB approach 13 s
-rough capacity per lane 1650 pcu/h
Left-turn/right-turn capacity per lane 1550 pcu/h
Simulation runs 20

Table 6: Traffic flow (pcu/15 minutes).

Time WBL WBT SBL SBT NBT NBL EBT EBL
0:00 6 18 6 2 5 4 35 9
0:15 3 22 4 4 3 3 26 4
0:30 9 14 1 2 2 3 16 6
. . . . . . . . . . . . . . . . . . . . . . . . . . .

7:30 8 134 22 0 3 16 75 39
7:45 5 199 28 5 13 14 87 60
8:00 14 236 33 14 28 16 102 85
8:15 26 245 45 13 32 26 136 100
8:30 12 206 49 16 31 16 130 132
8:45 18 230 36 12 24 20 128 110
9:00 15 181 38 17 10 11 130 54
9:15 14 161 37 13 10 17 117 41
9:30 14 147 19 10 6 24 119 40
9:45 9 156 20 5 2 9 78 29
. . . . . . . . . . . . . . . . . . . . . . . . . . .

19:00 1 34 15 1 2 5 22 4
19:15 7 36 19 3 0 0 45 8
19:30 4 20 16 4 3 0 2 0
In this table, WBL means westbound left, WBT means westbound through, and so on.
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(2) -e control algorithm can effectively reduce the
average vehicle delay and queue length during peak
hours. -e reason is that when the traffic flow at the
intersection is large, the queuing vehicles cannot get
through the parking line in the shortest green time,
and the queuing phenomenon begins to appear. -e
queuing length begins to affect the decision process
of the fuzzy controller, and the entrance lane with
long queuing begins to obtain the green light ex-
tension time, which fully reflects the flexibility and
superiority of fuzzy control over timing control.

(3) In the morning rush hour, the optimization effect of
fuzzy control on the intersection is weaker than in

another period, but it is still better than Fixed-time
control. -e reason is that when there is more traffic
flow at the intersection, the queue length of each
approach is longer. In this case, the queue length and
phase duration are the main influencing factors of
fuzzy control, but the phase duration occupies the
dominant position.

(4) Figures 5 and 6 show the changes of critical pa-
rameters in the fuzzy control system under different
real traffic conditions. In the simulation model, there
are 2911 phases in 54000 time steps, i.e., about 727
cycles. -e average cycle length of each cycle is 74
seconds, of which 152 cycles change, accounting for
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20.91% of the total cycles. It can be seen from the
simulation results that the larger the traffic volume at
the intersection, the more significant the signal cycle
change, which shows that the signal control strategy
generated by the algorithm can effectively adapt to
the real-time evolution of intersection traffic flow.

Among the 727 cycles, the maximum cycle length is
about 100 seconds, and the minimum is 72 seconds.
Each phase’s maximum green light time is also
within a reasonable range, and there are no extreme
cases, indicating that the genetic fuzzy control al-
gorithm has good reliability.
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6. Conclusion

In this study, a self-adaptive two-stage fuzzy controller is
proposed, which considers multiple modes of trans-
portation: motor, non-motor, and pedestrian. In order to

simulate the driving behavior characteristics and real-time
traffic flow fluctuation characteristics of vehicles in the real
environment, the simulation parameters of the VISSIM
simulation platform are calibrated through the intersection
vehicle high-precision trajectory data, and the vehicle traffic
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Figure 7: Average queue length curve of different approaches.
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information extracted based on the trajectory data is used as
the input of the simulation platform. -en, its control ef-
ficiency and reliability are evaluated based on the micro-
simulation platform. Results showed that the average delay
time per vehicle is reduced by 14.59%, while the average
number of stops per vehicle is reduced by 0.71% compared
with the traditional control method. In addition, by ana-
lyzing the effectiveness of signal control strategy under
different traffic conditions, it is found that the fuzzy con-
troller can only achieve a good control effect under medium
saturation or unbalanced traffic flow but has a poor control
effect under low or high saturation. -is paper researched
the optimization question of traffic signal timing in natural
traffic conditions, but the optimization module’s timeliness
was not, so it is best to introduce the traffic flow prediction
module in future research.
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