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Since the diversity of urban transport modes and the growth of public transport demands recently, it is essential to consider the
multiple mode options in the network capacity problem. This paper derives a comprehensive network capacity model from a
single-mode transportation network with only route choice to a multimodal transportation network with both mode choice
and route choice. To avoid biases in the evaluation of the multimodal network capacity, two characteristics of the multimodal
transportation system are considered in modeling and formulating the problem: (1) the mode interaction between cars and
buses is explicitly reflected when they share the same link; (2) the correlation of travel alternatives (modes or routes) is
measured by developing a combined modal split and traffic assignment (CMSTA) problem, in which the nested logit (NL)
model is employed to account for mode similarity in mode split, while the path-size logit model (PSL) is employed to account
for route overlapping in traffic assignment. Numerical experiments demonstrate the characteristics of the new model. It also
shows how planning schemes or management strategies affect the multimodal transportation network capacity via a real
network case.

1. Introduction

With the rapid urbanization in the newly-developing cities
around the world, limited land and resources restrict the
growth of supply capacity of the urban transportation sys-
tem [1–3]. Most transportation networks were designed or
managed for efficient and economical purposes, in which
the transportation projects are supposed to use money, time,
goods, etc. carefully and without wasting any. Economical
design is preferred when the budget is of concerned [2, 4].
However, in consideration of the unexpected natural and
man-made disasters, “plan some more” is needed to provide
adequate spare capacity to make our transportation net-
works robust and resilient. To be more specific, sufficient
capacity is vital for transportation networks when facing
the planned and unplanned disruptions [5]. Spare transpor-
tation network capacity can prevent disruptions to cut off
the critical lifelines in modern society, which can damage
regional and national economic competitiveness and make

peoples’ lives difficult. On the other hand, an efficiency-
priority design may cause the paradox of reducing network
throughput Yang and Bell [6]. This finding suggested that
consider the capacity-oriented analysis is another notable
aspect of transportation network design and evaluation.

In the literature [5, 7–9], the transportation network
capacity is defined to quantify the network-wide residual
capacity with explicit consideration of travelers’ destination,
mode and/or route choice behaviors as well as congestion
effect and level of service. In the literature, the transportation
network capacity model was first derived in the road net-
work. It can be regarded as an extended problem of the clas-
sical max-flow min-cut theorem by considering the travelers’
realistic choice behavior in the passenger transportation net-
work [10]. Wong and Yang [11] used a bilevel programming
to characterize the reserve capacity of a traffic signal control
network. Following that, Gao and Song [12] modified the
Wong and Yang’s reserve capacity model by using O-D spe-
cific multipliers. Similar modifications such as the ultimate
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capacity model [13], and the practical capacity [9, 13], which
assume the entire or partial O-D distribution is a variable
with respect to the O-D travel costs. Besides, Wang et al.
[14] proposed a logit-based stochastic user equilibrium with
elastic demand (SUE-ED) for the estimation of the network
throughput. However, the reserve capacity model is still a
straightforward measure for network capacity estimation,
and has been used in the literature [5, 15–17]. The reserve
capacity is more suitable for the capacity estimation of a
developed region where the O-D demand pattern will not
vary too much.

With the development of the urban multimodal trans-
portation system, it will be more meaningful to consider
the multiple modes in the transportation capacity studies.
Both Cheng et al. [18] and Xu et al. [5] consider the mode
choice in the capacity assessment of the urban transporta-
tion systems. They only considered the competition between
cars and rail transit, in which the passenger flow on the rail-
way is independent of the traffic flow on the road network.
Recently, Zheng et al. [19] explored the flexibility of the mul-
timodal network capacity, which is measured by using a
nested-logit (NL) based network capacity model. Liu et al.
[20] modeled the multimodal network capacity problem by
considering the second-best constraints. Ye et al. [21]
proposed a bilevel programming model that can help to
determine the location and capacity of the transfer infra-
structure in the multimodal transportation system. Zhang
et al. [22] proposed a network capacity model that considers
the residual queues and the impact of the connected auto-
mated vehicles. Nevertheless, the above multimodal network
capacity models did not consider the effects of mode similar-
ities and flow interactions.

To properly model the multimodal transportation net-
work capacity problem, it is necessary to consider the com-
plexities involved in a multimodal transportation system,
such as the mode attractiveness, which has a significant
influence on mode share, the correlation among private
and multiple public transport modes, and the vehicle inter-
action between private cars and public buses sharing the
same roadway space. In short, the network capacity models
developed to date are inadequate for estimating multimodal
transportation network capacity assessment. Specifically, in
the multimodal system, the physical separate modes can be
simply considered as independent choice alternatives in
mode split. However, some other travel modes, such as
buses, may share the same physical links with the car mode,
or even have interactions with car flows on the travel costs
[23]. Adding the dependent modes could have an impact
on the capacity of the original system. For the systems with
more than two modes (either dependent or independent),
except for the effect of sharing physical components, other
external factors also cause correlations among different
travel modes. For example, the public transport priority pol-
icy may correlate buses and subway; the travelers’ attitude to
traffic congestion may correlate bus and auto, which are
both ground transportation. Empirically, the correlation of
travel modes, referred to as mode similarity, affects the travel
mode choice probabilities, and further influences the evalu-
ation of the network capacity.

Furthermore, modelling travelers’ behavior is another
key to obtain an applicable and credible network capacity
assessment for the multimodal urban transportation system.
However, traditional multimodal equilibrium models did
not consider this very well. The multimodal equilibrium
problem belongs to the combined modal split and traffic
assignment (CMSTA) model, which provides behavioral
richness and computational tractability for characterizing
the mode choice and route choice of travelers. The CMSTA
model was first proposed by Florian and Nguyen [24] in
which the transit mode was treated as exogenously given.
Then, considering the mode split in the equilibrium process
endogenously was presented as either variational inequality
(VI) or fixed point (FP) formulations [25–27]. Further, the
multinomial logit (MNL) model is used to characterize both
mode choice and route choice behavior [28, 29]. However,
the MNL model does have the issue of independence from
irrelevant alternatives (IIA), which causes it cannot capture
the effect of mode similarity and the route overlap in the
urban multimodal transportation network [30, 31].

In this study, we model the multimodal transportation
network capacity problem by considering multimodal choice
options. The contributions of this study are as follows:

(i) To develop a newCMSTAmodel that characterizes the
correlation of travel modes and routes in the assess-
ment of multimodal transportation network capacity

(ii) To demonstrate the multimodal network capacity
model for investigating how transportation planning
or management strategies change the mode share
rates and further affect the network-wide capacity

These improvements can help the administrators to better
evaluate the network capacity of multimodal transportation
systems. More specifically, an alternative CMSTA model will
be conducted and adopted in the network capacity problem
to capture multimodal behavior. The CMSTA model consists
of a NL model in the phase of mode split and a path-size logit
(PSL) model [32] in the phase of traffic assignment. Also, we
provide an alternative MP formulation for the CMSTAmodel,
in which the dual variables are referred to as the expected per-
ceived costs (EPC) of the travel modes and the corresponding
terms in objective function can be related to the entropy max-
imization theory. Thus, benefiting from the proposed multi-
modal network capacity model, this study be able to archive
the two following goals of the network capacity assessment:

(i) How the effect of mode similarity and route overlap
affects the network-wide capacity via the travelers’
EPC of each subsystem in the multimodal transpor-
tation system

(ii) How transportation planning (e.g. adding a new link
or new mode) and management strategies (e.g. rais-
ing the attractiveness of public transport) influence
the multimodal transportation network capacity

On behalf of the above motivation, the remainder of this
paper is organized as follows. The next section introduces
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the multimodal network capacity problem, and then develop
the formulation of the multimodal network capacity prob-
lem with the CMSTA model as its lower-level problem. In
Section 3, a solution algorithm to the multimodal network
capacity problem is provided based on the sensitivity analy-
sis of the CMSTA model. Section 4 provides numerical
examples to demonstrate the proposed model and remark-
able findings.

2. Formulation of the Multimodal Network
Capacity Problem

For the multimodal transportation system, the network
capacity can be evaluated by finding the largest multiplier
μ applied to a given O-D demand matrix that can be allo-
cated to the multimodal transportation network without vio-
lating the capacity of any individual element from any travel
mode. The product of the largest multiplier μ and the given
O-D demand produces the maximum demand that can be
allocated to the multimodal network. The value of multiplier
μ hence indicates whether there is spare capacity to carry
additional travel demand or not. In other words, the capacity
of a multimodal network is bound by the lowest capacity of
all travel modes.

Figure 1 illustrates the principle of the multimodal net-
work capacity. As it shows, the travel demand grows like
water flowing into the transportation system. The multi-
modal transportation network is represented as several con-
nected containers. Each container represents a subnetwork
of a travel mode. The multimodal system will be overflowed
when the demand of any travel mode reaches its capacity.
Furthermore, the net travel impedance [31] of each mode
(evaluated by EPC of the mode minus its attractiveness) is
another key factor to the total capacity. On one hand, the
multimodal interactions and correlations influence the EPC
of each travel mode; on the other hand, the travelers’ prefer-
ence determines the attractiveness of the modes. Thus, the
choice of travel mode is the result of a trade-off between
attractions and EPC. With the net travel impedance, the
network-wide mode split can be decided, which further
impacts the multimodal transportation network capacity.
As Figure 1 shows, the net travel impedance determines
the relative height of the container bottom, and further
affects which mode will be filled in by the growing demand
first. This implies modelling mode choice is the essence to
the assessment of the multimodal network capacity problem.
In the practical applications, the characteristics of the
multimodal travel modes can be obtained by utilizing
the advanced traffic information technology for calibrat-
ing the parameters in the multimodal network capacity
model [2, 33].

Thereby, aiming to evaluate the capacity of transporta-
tion systems with multiple travel modes, a capacity model
for multimodal transportation network will be formulated
in this section. The model will be mathematically formulated
as a bilevel program, in which the upper-level problem aims
to maximize the total travel demand by all modes and the
lower-level problem regulates the flow pattern in the multi-
modal transportation system. Specifically, the lower-level

mathematical program (MP) is formulated as a combined
mode split and traffic assignment (CMSTA) problem, in
which the total travel demand is given under the capacity
constraints from the upper-level model. In the CMSTA
model, a nested logit (NL) model will be adopted to model
the mode similarity, while the path-size logit (PSL) model
is used to account for route overlapping.

2.1. Upper-Level Model. Based on the concept of reserve
capacity for transportation network [5, 11], the upper level
of the multimodal network capacity model will be formu-
lated as a flow maximization problem:

max
μ

μ ð1Þ

s:t:vma μð Þ ≤ φm
a C

m
a ,∀a ∈ A,m ∈M, ð2Þ

qmrs μð Þ ≤Qm
rs ,∀m ∈M, r ∈ R, s ∈ S, ð3Þ

where vma is the traffic flow on link a by mode m; φm
a is

the maximum flow-to-capacity ratio on link a by mode m;
Cm
a is the capacity of link a serving mode m; Qm

rs is the capac-
ity of travel mode m between O-D pair (r, s), which can be
related to the maximum rate of the transit service, such as
buses or subway. Note that the constraints (2) and (3)
exhibit nonlinear relationships, as the link flows and
mode-specific O-D demands are implicit functions of the
multiplier μ, of which the relationships are given in the
lower-level problem of the bilevel model.

2.2. Lower-Level Model. This section develops the combined
NL-PSL model for the CMSTA problem. Before formulating
the NL-PSL model, we start with a generalization of the
stochastic user equilibrium model with elastic demand
(SUE-ED). Using the excess demand formulation to trans-
form the elastic demand into a modal split [31]; the com-
bined model with bimodal choice is further obtained.
Figure 2 illustrates the idea of developing the bimodal
demand model based on the elastic (excess) demand model.
In this stage, we consider both independent modes and
dependent modes which are corresponding to using separate
networks (e.g., car and metro) or shared networks (e.g., car
and bus), respectively. Hence, the issue of multimodal inter-
action can be figured out.

2.2.1. Elastic Demand Model for Car Network. This section
presents a formulation of the single-modal elastic demand
model with the logit-based SUE. The earliest elastic demand
model was presented to incorporate with the standard user
equilibrium (UE) [31]. Unlike the UE model assuming the
O-D travel demand is fixed, the elastic demand model
relaxes the fixed O-D demand assumption by considering
it as a function of the minimum O-D travel costs. A demand
function is consequently defined, in which the amount of O-
D demand, qrs, is decreasing with respect to the O-D travel
cost, πrs, i.e.,

qrs =Drs πrsð Þ,∀r ∈ R, s ∈ S: ð4Þ
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With its inverse function, i.e., πrs =D−1
rs ðqrsÞ, the equilib-

rium of O-D demands is often described as the balance of
supply and demand at the network level [31]. When the
UE model is extended to the SUE model, the minimum O-
D cost, πij, is replaced by the EPC of the O-D pair, wij,
which is consistent with the SUE travelers’ choice behavior
based on the extreme value theory. The SUE-ED model
can be formulated as the following MP by assuming the
logit-based random utilities [34].

min
f rsk ,qrsð Þ

〠
a

ðva
0
ta xð Þdx −〠

rs

ðqrs
0
D−1
rs vð Þdv + 1

θK
〠
rs

〠
k

f rsk ln f rsk −〠
rs

qrs ln qrs

 !
, ð5Þ

s:t:〠
k

f rsk = qrs,∀k ∈ Krs, r ∈ R, s ∈ S, ð6Þ

va =〠
rs

〠
k

f rsk δ
rs
ak,∀a ∈ A, ð7Þ

Growing network demand

Car network Bus network Metro network

Maximum demand (multimodal network capacity)

Current demand

Metro
demand

Spare 
capacity 
of metro

Network travel impedance Mode split
(Maximal)

Multimodal demand

Shared network Separate network

Public transportMultimodal
interaction &

correlation

Make correction to 
expected perceived 

cost (EPC)

Car demand

Spare capacity of road (binding)

Bus demand

Spare capacity of bus

Spare capacity

DO

Bus mode

Metro mode

Car mode

Net travel
impedance

Expected 
perceived cost

Attractive
-ness

Determine mode 
attractiveness

Impact multimodal
network capacity 

Travelers'
preference Like Don't like Neutral

= Expected perceived 
cost–attractiveness

Bus Metro

Car Bu
s

M
et

ro

Ca
r

Capacity limit

Figure 1: Concept of the network capacity analysis for multimodal transportation system.

Total O-D
demand

Travel
Not 

travel

Route 1 2 k...

Total O-D 
demand

Car Metro

Route 1 2 k

Car Bus

Route 1 2

Total O-D 
demand

k

Shared
network

Separate
network

... ...

(a) Elastic demand (b) Separate network (c) Share network

(Excess demand)

Develop bi-mode model

Figure 2: Similar structures for elastic demand model and bimodal models.

4 Journal of Advanced Transportation



f rsk ≥ 0,∀k ∈ Krs, r ∈ R, s ∈ S, ð8Þ
0 < qrs ≤ μ∙�qrs,∀r ∈ R, s ∈ S, ð9Þ

where f rsk is the flow on route k between O-D pair (r, s);
θK is the scale parameter of the multinomial logit (MNL)
model associated with stochastic route choice; δrsak is the
link/route incidence parameter, and equal to 1 if route k
(from r to s) travels through link a; 0 otherwise. f�qrsg is
given as a prescribed O-D matrix for the computation of
network capacity, while the multiplier μ is determined in
the upper-level problem. μ∙�qrs is the maximum potential
demand that can be raised from r to s, as the O-D demand
must be finite when the EPC drops to zero. To fulfill this
property, a typical definition of demand function employs
the negative exponential function, which has been adopted
in Xu and Chen [34], Yang [35] and Sun et al. [36]. Besides,
taðvaÞ is the link travel time function for link a, and is
assumed strictly increasing and once continuously differen-
tiable in its traffic flow va.

Remark 1. Note that the objective function of the SUE-ED
model in Eq. (5) is organized as three separate terms. The
first two terms are associated with the measure of total net-
work congestion and elastic demand, respectively. These two
terms are the same as the classical elastic (or variable)
demand model for deterministic user equilibrium [31]. The
last term is associated with the entropy maximization for
stochastic equilibrium. The entropy maximization term is
derived as follows.

Following the entropy maximization for trip distribution
in Sheffi [31], the entropy of O-D demand is associated with
the number of possible combinations resulting from each
route choice decisions:

Y
rs

qrs!Q
k f

rs
k !

=
Q

rsqrs!Q
rs

Q
k f

rs
k !
: ð10Þ

By using the logarithmic transformation and Stirling’s
approximation (i.e., ln ðx!Þ ≈ xðln x − 1Þ), the entropy maxi-
mization is equivalent to

max 〠
rs

ln qrs!ð Þ −〠
rs

〠
k

ln f rsk !ð Þ ≈max 〠
rs

qrs ln qrs − 1ð Þ −〠
rs

〠
k

f rsk ln f rsk − 1ð Þ

=max 〠
rs

qrs ln qrs −〠
rs

〠
k

f rsk ln f rsk + −〠rsqrs +〠
rs
〠

k
f rsk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

= max 〠
rs

qrs ln qrs −〠
rs

〠
k

f rsk ln f rsk ⟶
equivalent to

min〠
rs

〠
k

f rsk ln f rsk −〠
rs

qrs ln qrs:

ð11Þ

It is worthy to note that the O-D demand qrs is a func-
tion of the O-D travel cost in elastic demand model. Thus,
the entropy maximization term in Eq. (5) is obtained. In
addition, θK is the dispersion parameter that is associated
with the perceptions travel costs of the travelers.

Based on Maher [37], the elastic demand model assumed
the O-D travel demand is endogenous, which generates a

flexible O-D pattern compared with the standard UE model
with fixed O-D demand. With the upper-limit of demand for
each O-D pair, the gap between the maximum and the equil-
ibrated demand can be regarded as the portion of travelers
that do not choose to travel on the network. This portion
of travel demand is also referred to as the excess demand,
denoted by ers. The objective function of the elastic demand
model represented with excess demand can be given by

min
f rsk ,ersð Þ

〠
a

ðva
0
ta wð Þdw +〠

rs

ðers
0
Wrs vð Þdv + 1

θK
〠
rs

〠
k

f rsk ln f rsk

−
1
θK

〠
rs

〠
k

f rsk

 !
ln 〠

l

f rsl

 !
,

ð12Þ

where WrsðersÞ equals to D−1
rs ðqrsÞ by definition, and ∑k

f rsk + ers = μ∙�qrs. Besides, the above objective function sub-
jects to the constraints (7) and (8) and the nonnegative con-
straint, ers ≥ 0 (∀r, s).

It is worth to mention that, for a single modal network,
alternative routes can be introduced by adding new links.
However, in some cases, the total network capacity may
not increase as expected, which is known as “network capac-
ity paradox”, see Yang and Bell [6] for details. Hence, our
study suggests that adding alternative modes could be a
better option if the decision-makers need to promote the
transportation system capacity. The formulation for the
multimodal network assignment will be derived in the
remaining subsections.

2.2.2. Combined Model for Bimodal Network. In this subsec-
tion, the bimodal demand model will be developed based on
the formulation of the excess demand model. The cases of
independent modes and dependent modes are considered
by using separate network representation and shared net-
work representation, respectively.

(1) Separate Network. Based on the elastic demand model
with respect to the excess demand, Sheffi [31] extended the
UE model with elastic demand by replacing the demand
function with a binary logit function. In the bimodal model,
the excess demand is interpreted as the alternative travel
mode (for example, public transit) which is independent to
the original road network. The excess demand of the pri-
mary travel mode (for example, car) will transfer to the alter-
native mode. To properly balance the demand between the
two modes, extra parameters are introduced, such as the
EPC and the attractiveness of the alternative mode. A typical
formulation is given as follows:

Wrs qtrs
À Á

=
1
θM

ln
qtrs

qtotalrs − qtrs
+wt

rs −Ψt
rs

� �
, ð13Þ

where wt
rs is the expected O-D travel cost by public tran-

sit; Ψt
rs is the exogenous attractiveness of the transit mode;

qtrs is referred to as the demand of traveling by transit mode
(in place of the excess demand ers); θM is the scale parameter
for mode choice. Note that Ψt

rs is a constant that indicates
the attractiveness of transit mode: Ψt

rs > 0 means that the
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transit mode is more attractive than the car mode for O-D
pair (r, s) given the condition that the car and bus mode take
the same travel time.

Based on Eq. (13), the bimodal model can be formulated
by following the excess demand model by Eq. (12):

min
f rsk ,qtrsð Þ

〠
a

ðva
0
ta wð Þdw +〠

rs

ðqtrs
0

1
θM

ln
w

qtotalrs −w
+wt

rs −Ψt
rs

� �
dv,

ð14Þ

+
1
θK

〠
rs

〠
k

f rsk ln f rsk −
1
θK

〠
rs

〠
k

f rsk

 !
ln 〠

l

f rsl

 !
, ð15Þ

s:t:〠
k

f rsk + qtrs = qtotalrs ,∀r ∈ R, s ∈ S, ð16Þ

va =〠
rs

〠
k

f rsk δ
rs
ak,∀a ∈ A, ð17Þ

μ∙�qrs = qtotalrs ,∀r ∈ R, s ∈ S, ð18Þ

0 < qtrs ≤ qtotalrs ,∀r ∈ R, s ∈ S, ð19Þ
f rsk ≥ 0,∀k ∈ Krs, r ∈ R, s ∈ S: ð20Þ

In the bimodal model for separate network, the last two
terms of the objective function by Eq. (15) represent the
entropy optimization for stochastic route choices.

Proposition 1. Let πrs be the dual variable associated with
constraint (16), the optimal solution of πrs represents the
EPC by car mode from origin r to destination s. It is given by

wcar
rs = πrs = −

1
θK

ln〠
l

exp −θKc
rs
lf g ð21Þ

Proof. The Lagrange of the MP problem in Eqs. (15)–(20) is
given by

L f rsk , q
t
rs, πrs

À Á
=〠

a

ð〠
rs

〠
k

f rsk δ
rs
ak

0
ta wð Þdw +〠

rs

ðqtrs
0

1
θM

ln
w

qtotalrs −w
+wt

rs −Ψt
rs

� �
dv

+
1
θK

〠
rs

〠
k

f rsk ln f rsk −
1
θK

〠
rs

〠
k

f rsk

 !
ln 〠

l

f rsl

 !
+〠

rs

πrs qtotalrs −〠
k

f rsk − qtrs

 !

ð22Þ

Take the derivative to the route flow f rsk ,

∂L f rsk , qtrs, πrsð Þ
∂f rsk

= crsk +
1
θK

ln f rsk + 1ð Þ − 1
θK

ln〠
l

f rsl + 1
 !

− πrs = 0,∀k, r, s

1
θK

ln
f rsk

∑l f
rs
l
= πrs − crsk

f rsk
∑l f

rs
l
= exp θK πrs − crskð Þf g

1 =〠
l

exp θK πrs − crslð Þf g ð23Þ

Thus,

1 = exp θKπrsð Þ〠
l

exp −θKc
rs
lf g ð24Þ

By rearranging,

wcar
rs = πrs = −

1
θK

ln 〠
l

exp −θKc
rs
lf g: ð25Þ

Note that πrs is the EPC from r to s.

(2) Shared Network. Different travel modes may not operate
on independent physical networks, such as the regular bus
and car. In such a case, the multiple modes share the same
physical network. The effect of sharing the same facilities
will certainly influence the flow pattern of the maximum
total demand. Here, we consider the modes of bus and car,
which share the same road network. The travel demand for
the two modes can be converted to the standard unit of
the traffic flow, i.e., passenger car unit. Therefore, the follow-
ing formulation is conducted.

min
f rsk ,qmrsð Þ

〠
a

ðva
0
ta xð Þdx −〠

rs

〠
2

m=1
Ψm

rsq
m
rs +

1
θM

〠
rs

〠
2

m=1
qmrs ln qmrs

+
1
θK

〠
rs

〠
2

m=1
〠
k

f rsmk ln f rsmk −
1
θK

〠
rs

〠
2

m=1
qmrs ln qmrs ,

ð26Þ

s:t:〠
m

qmrs = qtotalrs ,∀r ∈ R, s ∈ S, ð27Þ

〠
k

f rsmk = qmrs ,∀m ∈Mrs,∀r ∈ R, s ∈ S, ð28Þ

va =〠
m

PCEm

OCCm
〠
rs

〠
k

f rsmkδ
rs
a,mk,∀a ∈ A, ð29Þ

μ∙�qrs = qtotalrs ,∀r ∈ R, s ∈ S, ð30Þ
f rsmk ≥ 0,∀k ∈ Krs,m ∈Mrs, r ∈ R, s ∈ S, ð31Þ

where PCEm is the passenger car equivalent (PCE) factor
of mode m. OCCm is the average occupancy of mode m,
which is calculated as the average number of persons occu-
pying a vehicle of mode m. Note that, in the above formula-
tion, the link travel times of bus and car are assumed to be
the same. In Eq. (29), va denotes the traffic flow by integrat-
ing the car and bus flows, counted in passenger unit car. In
the bimodal model for shared network, the third term of
the objective function is associated with the entropy maxi-
mization of mode choices, which can be easily derived as
the route choice entropy in Remark 1. The fourth and fifth
terms are associated with the entropy maximization of
route choices.

6 Journal of Advanced Transportation



In the next stage, we incorporate the nested tree structure
of the NLmodel in the mode choice level to formulate the pro-
posed NL-PSL model, in which the PSL uses a path-size factor
to deal with the route overlapping problem (or route similar-
ity). For each formulation, the network capacity problem will
be resolved and discussed in the numerical section, and thus
the advantages of the nested structure for multimodal trans-
portation network will be shown.

2.2.3. CMSTA Model for Multimodal Network. In this sub-
section, the bimodal demand model will be generalized to
the multimodal case firstly, in which the multimodal interac-
tion and route overlapping issues are considered. Then, the
mode similarity issue will be handled by adopting a two-
level nested structure in mode choice.

(1) MNL Structure with Route Overlapping Consideration.
The derivation of the multimodal demand model is ready
by following the formulation of the bimodal demand model
for the shared network. Only need to change the upper limit
from 2 to |M| (the number of modes) in the summation of
the O-D demand by modes. Nevertheless, considering the
independently distributed assumption, i.e., route overlap-
ping problem, imposed on the logit-based SUE model, we
introduce a path-size factor ϖrs

k to correct the EPC of the
overlapped routes. The path-size factor ϖrs

k ∈ ð0, 1� is defined
for each route k and is decided according to the length of
links within a route and the relative lengths of routes that
share a link. A typical form is as follows [32]:

ϖrs
k = 〠

a∈Γk

la
Lrsk

1
∑l∈Krs

δrsal
,∀k ∈ Krs, r ∈ R, s ∈ S, ð32Þ

where la is the length of link a, Lrsk is the length of
route r connecting O-D pair rs, Γk is the set of all links
in route r between O-D pair (r, s), and δrsal is equal to 1
for link a on route r between O-D pair (r, s) and 0
otherwise. Hence, the combined multimodal demand
model can be formulated as

min
f rsk ,qmrsð Þ

〠
a

ðva
0
ta xð Þdx − 1

θK
〠
rs

〠
mk

f rsmk ln ϖrs
k −〠

rs

〠
m

Ψm
rsq

m
rs

+
1
θM

〠
rs

〠
m

qmrs ln qmrs +
1
θK

〠
rs

〠
mk

f rsmk ln f rsmk

−
1
θK

〠
rs

〠
m

qmrs ln qmrs :

ð33Þ

Equation (27)–(31).

In the combined multimodal model, the second term of
the objective function is associated with the path-size factor.
The third term is associated with modal attractiveness. The
fourth term is for entropy maximization of mode choices.
The last two terms are associated with the entropy maximi-
zation of route choices as we interpreted in Remark 1.

(2) Nested Structure for Handling Mode Similarity. This sec-
tion extends the multimodal model with MNL to the formu-
lation with a two-level structured NL [38]. With the nested
structure, the travel modes with similarity (such as bus and
metro are recognized as public transit) are modeled in the
same nest, which allows considering the correlations of the
similar modes. Consequently, the CMSTA model with NL
is formulated as the following MP formulation.

min
f rsumk ,qumrsð Þ

〠
a

ðva
0
ta xð Þdx − 1

θK
〠
rs

〠
mk

f rsumk ln ϖrs
k −〠

rs

〠
um

Ψum
rs ∙q

um
rs

+
1
θU

〠
rs

〠
u

〠
m

qumrs ln 〠
n

qunrs −〠
um

qumrs ln〠
wn

qwnrs

 !

+
θM
θU

〠
rs

〠
u

〠
m

qumrs ln qumrs −〠
m

qumrs ln 〠
n

qunrs

 !

+
1
θK

〠
rs

〠
um

〠
k

f rsumk ln f rsumk −〠
k

f rsumk ln 〠
l

f rsuml

 !
,

ð34Þ

〠
um

qumrs = qtotalrs , r ∈ R, s ∈ S, ð35Þ

〠
k

f rsumk = qumrs ,∀m ∈Mu
rs, u ∈Urs, r ∈ R, s ∈ S, ð36Þ

va =〠
um

PCEum

OCCum
〠
rs

〠
k

f rsumkδ
rs
a,umk,∀a ∈ A, ð37Þ

μ∙�qrs = qtotalrs , ð38Þ

f rsumk ≥ 0,∀k ∈ Kum
rs ,m ∈Mu

rs, u ∈Urs, r ∈ R, s ∈ S, ð39Þ

0 < qumrs ≤ qtotalrs ,∀u ∈Urs, r ∈ R, s ∈ S, ð40Þ

where the label u ∈Urs for the variables are the nest of
the similar modes between (r, s). θU is the scale parameter
for nest choice.

Proposition 2. The MP formulation in Eqs. (34)–(40) gives
the route choice solution of the PSL model and mode choice
solution of the NL model.
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Proof. The Lagrange of the MP problem can be given by

L f rsumk, q
um
rs , π

rs
um, λrsð Þ =〠

a

ðva
0
ta xð Þdx − 1

θK
〠
rs

〠
mk

f rsumk ln ϖrs
k

−〠
rs

〠
um

Ψum
rs ∙q

um
rs +

1
θU

〠
rs

〠
u

〠
m

qumrs ln 〠
n

qunrs −〠
um

qumrs ln 〠
wn

qwnrs

 !

+
θM
θU

〠
rs

〠
u

〠
m

qumrs ln qumrs −〠
m

qumrs ln 〠
n

qunrs

 !

+
1
θK

〠
rs

〠
um

〠
k

f rsumk ln f rsumk −〠
k

f rsumk ln 〠
l

f rsuml

 !

+〠
rs

λrs qtotalrs −〠
um

qumrs

 !
+〠

rs

〠
um

πrs
um qumrs −〠

k

f rsumk

 !
ð41Þ

where λrs, πrs
um are, respectively, the dual variables associ-

ated with the constraints (35) and (36). Given the equilib-
rium condition holds at the optimal solution with only
positive flow. The following KKT condition can be obtained.
We assume that PCEum/OCCum = 1, ∀m, u.

(1) Route choice

∂L f rsumk, qumrs , λrs, πrs
umð Þ

∂f rsumk
= crsumk +

1
θK

ln f rsumk + 1ð Þ − 1
θK

Á ln 〠
l

f rsuml + 1
 !

−
1
θK

ln ϖrs
k − πrs

um = 0,∀k,m, u, r, s:

ð42Þ

Rearranging

f rsumk

∑l f
rs
uml

= ϖrs
k exp θK πrs

um − crsumkð Þf g, ð43Þ

1 =〠
l

ϖrs
l exp θK πrs

um − crsumlð Þf g, ð44Þ

f rsumk

∑l f
rs
uml

=
ϖrs
k exp θK πrs

um − crsumkð Þf g
∑lϖ

rs
l exp θK πrs

um − crsumlð Þf g =
ϖrs
k exp θK −crsumkð Þf g

∑lϖ
rs
l exp θK −crsumlð Þf g :

ð45Þ
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Figure 3: Structures for nonnested and nested multimodal models.

Step 0: Initialization. Obtain an initial flow pattern {f rs,ð0Þumk , q
um,ð0Þ
rs } using eqs. (46)-(53) based on the free-flow link travel time, and set

n: =0.

Step 1: Descent direction. Update the network cost with the current flow pattern Xn = f f rs,ðnÞumk , qum,ðnÞ
rs g. Find an auxiliary solution

Yn = f f̂ rs,ðnÞumk , q̂um,ðnÞ
rs g using eqs. (46)-(53) with the updated network cost.

Step 2: Determine step size. Choose the step size as αðnÞ = 1/βðnÞ, where βðnÞ is given by

βðnÞ =
βðn−1Þ + λ1, if jjYn − Xnjj ≥ jjYn−1 − Xn−1jj
βðn−1Þ + λ2, otherwise

(
where λ1 > 1 and 0 < λ2 < 1.
Step 3: Updating solution. Xðn+1Þ ≔ XðnÞ + αðnÞ∙ðY ðnÞ − XðnÞÞ.
Step 4: Convergence criterion. If the convergence criterion is satisfied, then stop; otherwise, return to step 1, and set n≔ n + 1.

Algorithm 1: Solving the CMSTA model.

8 Journal of Advanced Transportation



Thus,

Pk mj = ϖrs
k exp θK −crsumkð Þf g

∑lϖ
rs
l exp θK −crsumlð Þf g : ð46Þ

(2) Mode choice

∂L f rsumk, qumrs , λrs, πrs
umð Þ

∂qumrs
=
θM
θU

ln qumrs + 1ð Þ + 1 − θM
θU

Á ln 〠
n

qunrs + 1
 !

−Ψum
rs + πrs

um − λrs = 0,∀m, u, r, s:

ð47Þ

Rearranging

qumrs 〠
n

qunrs

 !1−θM/θM

= exp
θU
θM

λrs +Ψum
rs − πrs

um −
1
θU

� �� �
:

ð48Þ

Summing all m gives

〠
n

qunrs

 !1/θM

= exp
θU
θM

λrs −
1
θU

� �� �
〠
m

exp
θU
θM

Ψum
rs − πrs

umð Þ
� �

:

ð49Þ

Thus,

〠
n

qunrs = exp θUλrs − 1f g 〠
m

exp
θU
θM

Ψum
rs − πrs

umð Þ
� � !θM

:

ð50Þ

Then, summing all u gives

〠
u

〠
n

qunrs = qrs = exp θUλrs − 1f g〠
u

〠
m

exp
θU
θM

Ψum
rs − πrs

umð Þ
� � !θM

:

ð51Þ

Therefore, we have the marginal probability

∑nq
un
rs

qrs
= Pu rsj =

∑mexp θU /θMð Þ Ψum
rs − πrs

umð Þf gð ÞθM
∑u ∑nexp θU /θMð Þ Ψun

rs − πrs
unð Þf gð ÞθM

: ð52Þ

And the conditional probability

qumrs
∑nqunrs

= Prs
m uj =

exp θU /θMð Þ Ψum
rs − πrs

umð Þf g
∑nexp θU /θMð Þ Ψun

rs − πrs
unð Þf g : ð53Þ

Proposition 3. The solution of NL-PSL model is unique.

Proof. It is sufficient to prove that the objective function in
Eq. (34) is strictly convex, as the feasible region is bounded
by linear constraints only and is convex.

Note that the link travel time is assumed strictly increas-
ing in term of the link flow. The Hessian matrix with respect
to the route flow is obtained as

∂2Z
∂f rsumk∂f

rs
uml

=
∂crsumk

∂f rsumk
+

1
θK

1
f rsumk

−
1

∑l f
rs
uml

� �
> 0, k = l

0, k ≠ l

8><>: ,

ð54Þ

where f rsumk ≤ ∑l f
rs
uml, and thus the diagonal elements

must be positive.

Step 0: Initialization. Start from an initial value μð0Þ. Let n: =0.
Step 1: Solving the CMSTA model. Given the multiplier μðnÞ, solve the CMSTA model to obtain the equilibrium link flows fvma g and
mode-specific OD demand fqmrsg.
Step 2: Sensitivity analysis. Obtain ∇μv

m
a ðμðnÞÞ and ∇μq

m
rsðμðnÞÞ from the sensitivity analysis of the CMSTA model.

Step 3: Local approximation. Approximate the upper-level capacity constraints using the sensitivity results, and then solve the

resulted linear programming to obtain an auxiliary multiplier bμðnÞ.
Step 4: Updating the multiplier. μðn+1Þ ≔ μðnÞ + α∙ðbμðnÞ − μðnÞÞ, where α is a step size.
Step 5: Convergence test. If the convergence test is satisfied, then stop; otherwise, return to step 1, and set n≔ n + 1.

Algorithm 2: The SAB algorithm for the reserve network capacity model.

1 2

3

4

paradox link

Effective link

(1)

(2)

(3)

(4)

(5)(7)

(6)

Figure 4: The Braess network for network capacity paradox.
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The Hessian matrix with respect to the mode flow vari-
ables can be expressed as

∂2Z
∂qumrs ∂qunrs

=
θM
θU

1
qumrs

−
1

∑nqunrs

� �
+

1
θU

1
∑nqunrs

� �
> 0,m = n

0, k ≠ l

,

8><>:
ð55Þ

where qumrs ≤∑nq
un
rs , and thus the diagonal elements must

be positive. Therefore, the above equations imply the posi-
tive definite Hessian matrix. Therefore, the NL-PSL model
has a unique solution. This completes the proof.

In summary, the multimodal network capacity model is
formulated as bilevel programming, of which the upper-
level model is given by Eqs. (1)–(3), and the lower-level
model is given by Eqs. (34)–(40). Moreover, Figure 3 shows
the process of developing the nested structure with route
overlap correction based on the original MNL-based com-
bined model. Not only that, the nested structure can be eas-
ily extended to consider intermodal travels (e.g., car and
metro, bus and metro) by involving them as specified mode
options. Also, the NL model can be regarded as a special case
of the cross-nested logit model [38], and hence it is reason-
able to extend the current nested structure to capture the
mode similarity in different intermodal travelling stages [8].

3. Design of Solution Algorithm

The multimodal network capacity model is formulated as
bilevel programming. Some early studies use the incremental

assignment method by loading the travel demand gradually
until the network capacity has been reached (e.g., [39]).
Yang et al. [9] used an iterative estimation assignment algo-
rithm to estimate the implicit relationship, referred to as
reaction function, between the upper-level and lower-level
decision variables. Chen and Kasikitwiwat [40] employed
the genetic algorithm to solve the practical and ultimate net-
work capacity problems in a small network. However, such
approximate methods may not provide a good quality solu-
tion to the bilevel models, especially in real-size transporta-
tion networks [41]. On the other hand, the precision of the
solution to the lower-level problem is important to locally
evaluate the reaction function and further to the quality of
the bilevel models [42]. Be aware of the aforementioned prob-
lems, this section will design an iterative solution algorithm,
which is capable to solve the proposed multimodal network
capacity model with good quality for practical purposes.

3.1. Solving the Lower Level Model. A key step of the SAB
algorithm is solving the lower level equilibrium problem.
For the multimodal network capacity model, the lower-
level CMSTA problem is a NL-PSL-based stochastic equilib-
rium model in Eqs. (34)–(40). In this study, we use the self-
regulated averaging (SRA) method [43] to solve the CMSTA
model. The procedure is as follows.

3.2. Sensitivity Analysis of the CMSTA Model. The sensitivity
analysis of the lower-level model is used to approximate the
original nonlinear relationship, which transform the original
bilevel programming to a single-level programming for
simplifying its solution. A comprehensive review on the
sensitivity analysis approaches for the transportation
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equilibrium models can be referred to Du and Chen [44].
Since we have proved the solution of the NL-PSL-based
CMSTA model is unique in the route flow space (i.e., Prop-
osition 3), the analytical expressions can be obtained follow-
ing the typical approach for the sensitivity analysis of the
nonlinear programming by Fiacco [45].

Firstly, the Lagrange function of the CMSTA model with
the O-D multiplier μ is as follows.

L f rsumk, q
um
rs , π

rs
um, λrs, μð Þ

=〠
a

ðva
0
ta xð Þdx + 1

θK
〠
rs

〠
um

〠
k

f rsumk ln f rsumk −〠
k

f rsumk ln 〠
l

f rsuml

 !

−
1
θK

〠
rs

〠
mk

f rsumk ln ϖrs
k +〠

rs

〠
um

Ψum
rs ∙q

um
rs

+
θM
θU

〠
rs

〠
u

〠
m

qumrs ln qumrs −〠
m

qumrs ln〠
n

qunrs

 !

+
1
θU

〠
rs

〠
u

〠
m

qumrs ln〠
m

qumrs +〠
rs

〠
um

πrs
um qumrs −〠

k

f rsumk

 !

+〠
rs

λrs μ∙�qrs −〠
um

qumrs

 !
,

ð56Þ

where πrs
um, λrs are the Lagrangian multipliers. Thus, the

first-order necessary conditions, i.e., the KKT conditions,
of the CMSTA model are

∇f rsumk
L = crsumk +

1
θK

ln f rsumk + 1ð Þ − 1
θK

ln 〠
l

f rsuml + 1
 !

−
1
θK

ln ϖrs
k − πrs

um = 0,∀k,m, u, r, s

∇qumrs
L =

θM
θU

ln qumrs + 1ð Þ + 1 − θM
θU

ln 〠
n

qunrs + 1
 !

−Ψum
rs + πrs

um − λrs = 0,∀m, u, r, s

∇πrs
um
L = qumrs −〠

k

f rsumk = 0,∀m, u, r, s

∇λrs
L = μ∙�qrs −〠

um

qumrs = 0,∀r, s, ð57Þ

where ∇ is the gradient operator. Let M(ε) and N(ε) be
the Jacobians of the above system equations, we have

M εð Þ =

∇2
f rsumk

L Ο −ΓT Ο

Ο ∇2
qumrs

L I −ΦT

−Γ Ι Ο Ο

Ο −Φ Ο Ο

2666664

3777775,

N εð Þ = ΟΟΟ I½ �T ,

ð58Þ

where ∇2
f rsumk

L = ð∂crsumk/∂f
rs
umkÞ + ð1/θKÞð1/f rsumk − 1/∑l

f rsumlÞ,∇2
qumrs

L = ðθM/θUÞð1/qumrs − 1/∑nq
un
rs Þ + ð1/θUÞð1/∑nq

un
rs Þ,

and ∇2 is the second-order gradient operator. Γ denotes the
route/O-D incidence matrix; Φ denotes the mode/O-D inci-
dence matrix; I is the identity matrix. Because the Hessian of
the CMSTA model is positive definite (as the proof of proposi-
tion 3) and the incidence matrices of Ψ, Φ, and I are linearly
row independent, the JacobianmatrixM(ε) should be invertible.
Thereby, the derivatives of the input variables to the perturbed
parameters are given by

∇μ f
rs
umk

∇μq
um
rs

∇μπ
rs
um

∇μλrs

2666664

3777775 = M εð Þ½ �−1 −N εð Þ½ �: ð59Þ
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Figure 8: A bimodal network
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Then, the derivatives of link flows are calculated by ∇μva =
ΔT∙diag ðPCEum/OCCumÞ∙∇μ f

rs
umk, where Δ is the link/route

incidence matrix.

3.3. Solving the Network Capacity Problem with a Bilevel
Framework. The SAB algorithm falls into the category of
the decent method, and has been widely used for solving
the bilevel programming with an equilibrium assignment
in the lower-level problem [9, 46]. Utilizing the sensitivity
analysis results, the nonlinear constraints in the upper-level
model is approximated as:

vma μ nð Þ
� �

+ ∇μv
m
a μ nð Þ
� �

∙ μ − μ nð Þ
� �

≤ φm
a C

m
a ,∀a ∈ A,m ∈M,

qmrs μ nð Þ
� �

+ ∇μq
m
rs μ nð Þ
� �

∙ μ − μ nð Þ
� �

≤Qm
rs ,∀m ∈M, r ∈ R, s ∈ S,

ð60Þ

where ∇μv
m
a ðμðnÞÞ and ∇μq

m
rsðμðnÞÞ obtained from the sen-

sitivity analysis of the CMSTA model. Thus, the sensitivity
analysis-based algorithm is summarized as follows.

4. Numerical Examples

In this section, we provide three detailed examples to illus-
trate: (i) the effect of adding new link and (ii) the effect of
adding a new mode to the network capacity; (iii) the effect
of route overlap and mode similarity to the network capac-
ity. After that, a multimodal transportation system is drawn
from a real urban area. The capacities of the multimodal net-
work are evaluated under scenarios with different network
improvement measures, which demonstrate the effective
ways of increasing network capacity for multimodal trans-
portation systems.

4.1. Effect of Adding New Link. Consider the road network in
Figure 4, which has been used to illustrate the Braess para-
dox and then been adopted for network capacity paradox

[6]. In this study, we retain the link characteristics and per-
formance functions from Yang and Bell [6]. In the original
network before the new link is added, the link cost functions
are: t1ðv1Þ = 20 + 2v1, t2ðv2Þ = 50 + v2, t3ðv3Þ = 50 + v3,
and t4ðv4Þ = 20 + 2v4. The link capacities are C1 = C4 = 10
and C2 = C3 = 20. It is not hard to find link 1 and link 4
are the bottlenecks in the original network. The maximum
demand can be sent from node 1 to node 2 is bound by
the capacities of link 1 and 4. Since the conditions for the
two routes (1⟶ 3⟶ 2; 1⟶ 4⟶ 2) are the same, the
capacity of this network is 20. To promote the capacity of
this network, there are three options to add a new link in
the network: link 5, link 6, or link 7, as Figure 4 shows. Obvi-
ously, in any case, the route diversity can be increased as a
new route will be introduced in the expanded network.

It has been verified in Yang and Bell [6], adding link 6
will certainly result in a decrease in total network capacity.
Hence, link 6 is regarded as the paradox link for this net-
work. On the contrary, adding link 7 generally can increase
the network capacity. In this study, we consider the option
of adding link 5 (from node 1 to node 2). The cost function
of the new link is given by t5ðv5Þ = t05 + v5. The capacity of
the new added link 5 is assumed to be 5, 10, and 15. For each
level of link capacity, the free-flow travel time on link 5 (i.e.,
t05) varies from 10 to 150. The capacity of the expanded net-
work is calculated with respect to different combinations of
link capacity and free-flow time, and the results are illus-
trated in Figure 5. For the SUE model, we set θK = 0:1.

From Figure 5, the new link 5 may not always promote
the total network capacity. When the free-flow time on link
5 is low, more travel demand will transfer from the original
two routes (1⟶ 3⟶ 2; 1⟶ 4⟶ 2) to the new route
(1⟶ 2). In this situation, link 5 should have sufficient
capacity to allocate the new attracted demand. As Figure 5
shows, if the capacity of link 5 is insufficient to deal with
the transferred demand, the expanded network could have
a lower capacity than the original one, which results in the
paradox phenomenon. In this case, the bottleneck will shift
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from link 1 and 4 to link 5. From the administrators’ aspect,
if a new parallel link is planned to be constructed between
the OD pair, it should have enough capacity, and not have
very short travel time which could share too much travel
demand and create a new bottleneck.

4.2. Effect of Adding Mode Choice Alternative. Figure 6 is a
road network with only one OD pair (from node O to node
D). The travel time functions of the three (road) links are
given by: t1 = 10 + 2ðv1/C1Þ, t2 = 10 + 2ðv2/C2Þ, and t3 = 5
+ ðv3/C3Þ. The parameters for travel choices are assumed
as θK = 1:0, θM = 0:5. The link capacities are assumed as
800, 800, and 1,300, respectively. It is easy to identify if the
network capacity is 1,300 from O to D, bound by the
capacity of link 3. If the administrator wants to promote
the systematic transport capacity by adding a new travel
mode, the metro and bus can be two usual options. As
Figure 6(a), to add the metro to the transportation system,
a separate new line should be constructed physically inde-
pendent to the road network. As Figure 6(b), to add bus ser-
vice, the existing road network can be utilized by sharing
links with passenger cars. Also, we assume the PCE factor,
PCEm, is set to 2.5 for bus, and 1 for passenger car. The aver-
age occupancy, OCCm, is set to 25 for bus, and 1.2 for pas-
senger car. The attractiveness of the car, bus, and metro
are set to 0, -3.5, and -1.5, respectively, which assumes driv-
ing is more preferred in this area. Also, the travel cost of the
metro is assumed to be a constant, and here let wmetro

rs = 15.
To show how adding new mode influences the systematic

capacity, we consider that the capacity of the new metro line
changes from 200 to 1,000; for the bus service, we assume
the new bus line travels through links 1 and 2, and its capacity
is changed 200 to 1,000 as well. The results of network capacity
are illustrated in Figure 7. In both cases, the total travel
demand is firstly restricted by new modes and then bound
by link 3 of the road network. Same as experiences, adding a
new metro line can expand the total network capacity more
compared with adding a new bus service. One intuitive reason
is that the metro usually owns independent network facilities
and has a larger transportation ability. Another persuasive rea-
son is the EPC of the metro is lower than that of the bus
because the bus’s travel time depends on road congestion. In
addition, Figure 7 also shows the capacity paradox region for
both cases, in which the capacity of the new mode is too low.
In this situation, adding new mode could reduce the system-
atic capacity because queues will form in the new mode.

Remark 2. From the experiments in Section 4.1 and 4.2, we
note that either adding a new link or adding a new mode
could lead to a paradox phenomenon on network capacity.
This usually occurs when the new link or mode creates a bet-
ter travel option (e.g., route or mode) but cannot provide
sufficient capacity at the same time. In practice, the capacity
paradox more usually occurs when adding new links,
because the newly added mode normally has sufficient
capacity to allocate the new attracted demand. In both cases,
it is necessary to avoid the occurrence of capacity paradox,
especially in network design problems. An efficient way is

to maximize the network reserve capacity in network design
problems [6].

4.3. Effect of Route Overlapping and Mode Similarity. This
section shows how considering route overlap and mode sim-
ilarity will affect the network capacity evaluation. The multi-
modal network capacity is evaluated to demonstrate: (1) the
effect of route overlapping; (2) the effect of mode similarity;
and (3) the effect of considering both.

The first experiment in this section is conducted on a
bimodal network in Figure 8. For the road network, there
are three routes connecting the only OD pair (from node
O to node D). Clearly, the two lower routes are overlapping
on link 3. We assume the length of the overlapping portion
to be x. Thus, the link cost functions are: t1ðv1Þ = ð50 − xÞ
+ 2ðv1/C1Þ, t2ðv2Þ = ð50 − xÞ + 2ðv2/C2Þ, t3ðv3Þ = x + ðv3/
C4Þ, and t4ðv4Þ = 55 + ðv4/C4Þ. Also, the capacities of the
road links are C1 = C2 = C3 = C4 = 10. A metro line also
exists from O to D, and its travel cost and attractiveness
are set to be 60 and -1.5, respectively. The parameters for
mode choice and route choice are assumed as θK = 0:1,
θM = 0:2.

In this example, the path-size factors of the three routes
are 1, ð100 − xÞ/100 and ð100 − xÞ/100. By increasing x from
0 to 50, the capacity of road network and bimodal system are
evaluated and presented in Figure 9. For comparison, the
network capacities are evaluated by using the MNL model,
which does not consider the overlapping issue. Also, the
EPC of the car mode can be obtained under different level
of overlapping. The EPC of car mode with PSL model is
shown in Figure 9. The EPC of car mode can be derived
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using Eq. (44), and is given by wcar
rs = −ð1/θKÞ ln ∑lϖ

rs
k exp

f−θKcrsl g.
Figure 9 indicates that the route overlapping issue has

significant influences on the evaluation of road network
capacity. Moreover, considering overlapping issue could
change the EPC of the car mode, and further affect the
capacity results for the entire bimodal system. Besides,
regarding the overlapping degree, the bottleneck at
maximum demand will change from link 3 to link 4 in this
example. However, when employing the MNL model, the
network capacity results have nothing to do with the route
overlapping.

The second example demonstrates the effect of mode
similarity on the multimodal network capacity. The multi-
modal network with the car, bus and metro mode is shown
as Figure 10. There is only one OD pair from O to D. The
bus mode is assumed to share the road network with car
mode. In this example, the network characteristics are set
the same as Section 4.2. The capacities of the two public
transit modes are assumed sufficient large. To show the
impact of mode similarity, the NL and MNL are employed
for the mode choice in this example. For route choice, the
dispersion parameter is set as θK = 0:7. For MNL the param-
eters for choosing mode is set as θM′ = 0:7. For NL, the
parameters for choosing nests are assumed as θU = 0:7, while
the parameters for choosing modes in each nest, θM , is var-
ied from 0.1 to 0.9. As we know, a smaller value of θM for NL
indicates a higher mode similarity; otherwise, at θM = 1, the
NL model produces the same results as the MNL model,
which means the mode similarity is not considered. From
Figure 11, considering mode similarity will produce different
network capacity results. As the bottleneck for this example
network is at road link 3, along with the increase of similar-
ity for public transit modes, more travel demand transfers to
the car mode and results in a lower capacity of the multi-
modal network.

The third example shows how considering route overlap
and mode similarity will affect the mode share and further
impact the evaluation of network capacity. We again employ
the combination of all three modes in Figure 10. The setting
values of the parameters are same, except that the mode

choice parameter in each nest, θM , is fixed at 0.5. The multi-
modal network capacity is evaluated under three formula-
tions: (1) with the MNL-MNL model (without considering
route overlap and mode similarity), (2) with the MNL-PSL
model (only dealing with route overlap), and (3) with the
NL-PSL model (dealing with both route overlap and mode
similarity). The results are shown in Figure 12.

Figure 12 demonstrates the effect of route overlap and
mode similarity to the total network capacity and the share
rate of three travel modes. From the MNL-MNL to the
MNL-PSL model, by which the route overlapping problem
is tackled, the EPC of car mode is corrected by the path-
size factor of PSL. It results in the EPC of car increasing,
and thus the travel demand transfers from the car mode to
the other two modes. As there is much spare capacity of
the bus and metro lines, more total travel demand can be
raised until the road network reaches saturation again.
Therefore, the network capacity evaluated by using the
MNL-PSL is larger than that by the MNL-MNL. Further-
more, from the MNL-PSL to the NL-PSL model, the mode
similarity is modeled by NL. The nest structure enlarges
the EPC of the travel modes from the same nest by consid-
ering the correlations. It results in the travel demand shifting
from the public transit modes back to the car mode. Thus,
the crowdedness in the road network is increased, and then
the whole system reaches its capacity with a lower level of
total demand since the constraints from the road network.
Without considering the mode similarity, the network
capacity could be overestimated. Note that considering both
route overlap and mode similarity may not necessary to
increase the network capacity result.

4.4. A Case Study. This section conducts a case study based
on a real multimodal transportation network, as shown in
Figure 13. Four scenarios (including the base scenario) are
designed to discuss: (1) how building a new road segment
affects the network capacity; (2) how improving public
transport attractiveness benefit to the total network capacity
of the urban transportation system; and (3) how much the
network capacity will be improved by constructing a new
metro line.
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Figure 13: A multimodal network from Jiangning District in Nanjing.

Table 1: Total OD demand of the multimodal system in Figure 13.

O\D 1 2 3 4 5 6 7 8 9

1 — 400 600 600 800 200 600 400 400

2 600 — 600 400 200 200 200 200 200

3 1200 600 — 400 400 600 800 200 600

4 600 400 400 — 1000 200 400 400 400

5 600 400 800 1000 — 800 1000 200 800

6 400 200 600 200 800 — 1000 200 400

7 400 200 200 200 1200 600 — 200 200

8 400 200 200 400 400 200 200 — 80

9 400 200 200 200 800 400 400 80 —
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Figure 13 presents a multimodal transportation network
in Jiangning District in Nanjing, China. In this network, 9
major centroids are identified, which are associated with 72
OD pairs. Table 1 lists the OD demand of these OD pairs.
For demonstration, we consider the base scenario when only
metro line No. 1 was built. Consider that the administrators
want to improve the multimodal system to cope with the
rapid-growing travel demand in this area. The network
capacity will be of particular concern. Hence, the multi-
modal network capacities are calculated for several network
improvement measures to find out how to increase the
capacity of the multimodal system. The scenarios for evalu-
ating multimodal network capacity are described in Table 2.
We assume that the parameters of the CMSTA model are
θU = 0:1, θM = 0:5, and θK = 0:2.

4.4.1. Scenario 0. In the base scenario, the multimodal net-
work capacity is evaluated by the MNL-MNL model and
the NL-PSL model, respectively. The attractiveness of bus
and metro are, respectively, set to be -5 and -2. A working
route set with 183 routes is provided. Without considering
the route overlapping and mode similarity, the reserve
capacity produced by the MNL-MNL model is μ = 1:44.
On the contrary, by using the NL-PSL model, we obtain
the corrected reserve network capacity as μ = 1:48. Also, the
congestion is identified at the road links (8, 43), (11, 1), (23,
29), (25, 32), (29, 31), (39, 31), and (43, 39) (where the
volume/capacity ratios are over 0.95). The bottleneck is link
(25, 32) in this case. Besides, the mode alternative is evaluated

by counting the reasonable mode options between each OD
pair. The mode choice options between OD pairs are listed
in Table 3.

4.4.2. Scenario 1. As the road congestion at the maximum
flow situation is identified at the links around node 25 and
node 29, it is intuitive to enhance the network connection
and supply in this area. From this point, one may suggest
building a new road segment between node 25 and node
29. By applying this scheme, two new links are created, i.e.,
link (25, 29) and link (29, 25), with the same configuration.
Let the free-flow time and capacity of the two new links be t0
= 4 min and Ca = 2,700 pcu/hour. From the computational
results, we find that the total network capacity (denoted by μ)
is declined, from 1.48 to 1.27. After bulding the new link, the
bottlenecks of the network capacity are link (29, 31) and (31,
29). Figure 14 shows the maximum traffic flow patterns on
the road network before and after adding the new link. The
red links indicate high utilization of the link capacities, while
the green links mean low utilization of the capacities. Thus,
fewer links with high utilization can be observed. Figure 15
shows an aggregate view of the V/C ratios for all road links.
The link V/C ratios are arranged from high to low. We note
that with the new links, the overall V/C ratio declines in the
road network, which shows an obvious reduction in the utiliza-
tion of the network. The upper right region of Figure 15 indi-
cates the network spare capacity which has not been utilized
when the travel demand ismaximized. Apparently, the propor-
tion of this region reflects how much residual space has not

Table 2: Scenarios for evaluating network capacity.

Scenario Description Setting

0 base scenario Evaluate network capacity before the improvement measures Ψbus
rs = −5,Ψmetro

rs = −2.

1 effect of adding new links
To show adding new links may cause the capacity paradox although

the route diversity is increased

Ψbus
rs = −5,Ψmetro

rs = −2;
Add new links (25, 29) and

(29, 25)

2 effect of improving bus
attractiveness

To show encouraging public transport priority could increase the
multimodal network capacity Ψbus

rs = 0,Ψmetro
rs = −2.

3 effect of constructing a new
metro line

To show the effectiveness of the new metro line on the enhancement
of both network capacity and mode diversity

Ψbus
rs = −5,Ψmetro

rs = −2;
Construct the metro line no.

3.

Table 3: Mode choice options between OD pairs.

O\D 1 2 3 4 5 6 7 8 9

1 — B C C B C B C M B C C M B C B C

2 B C — C B C B C B C C B C B C

3 C C — C C C C C C

4 B C B C C — C B C C B C B C

5 B C M B C C C — B C C M B C B C

6 B C B C C B C B C — C B C B C

7 C M C C C C M C — C C

8 B C B C C B C B C B C C — B C

9 B C B C C B C B C B C C B C —

Abbreviations: C, car; B, bus; M, Metro.
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been used when the total travel demand reaching the network
capacity. Note that the network utilization is directly converted
to the maximum demand. It is because the one trip may tra-
verse many links along the route, so the total link flow may
include duplicate counting of the travel trips. Besides, this result
again verifies the conclusion in section 4.1, which shows adding
new links may cause the capacity paradox in practice.

4.4.3. Scenario 2. Another option to increase the network
capacity is to encourage the policy of public transport prior-

ity. This can be reflected as the increase in the attractiveness
of bus or metro mode. In this scenario, we simply raise the
attractiveness of the bus mode from -5 to 0. The rising of
bus attractiveness could be realized by improving riding
comfort, reducing bus fares, as well as raising people’s
awareness of “green travel”, etc. From the result, the network
capacity under public transport priority is increased signifi-
cantly, from μ = 1:48 to 1.58. It is because that increasing
bus attractiveness can reduce the net travel impendence of
the bus mode, and thus more travel demand will transfer
from other modes (mainly from car mode) to buses. The
bus share rate increases from 14.82% to 19.0%. Since the
occupancy of buses is much higher than private cars, the
traffic flow can be significantly declined on the road network
with the same amount of trip demand. Hence, the total net-
work capacity will be raised. The changes on the bus attrac-
tiveness, mode share, total capacity, and maximum flow
pattern are illustrated in Figure 16. The result is consistent
with the concept of the multimodal network capacity in
Figure 1. Therefore, encouraging public transport priority
usually improves the network capacity of the multimodal
transportation systems.

4.4.4. Scenario 3. If the budget is enough, an effective way of
enhancing the network capacity is to construct a new metro
line in this area. In reality, the metro line No. 3 was con-
structed in Jiangning District after 2015. Here, we assumed
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the metro line No.3 is a new built line. The effectiveness of
constructing metro line No. 3 will be embodied according
to the network capacity evaluation results. With the new
metro line, the evaluation results show that the reserve net-
work capacity is improved from μ = 1:48 to 1.62, which
means adding a new metro line can greatly increase the mul-
timodal network capacity. Besides, the metro share rate
increases from 8.91% to 17.41%. Figure 17 shows the
changes in the multimodal OD distributions after the con-
struction of metro line No. 3. The OD pairs connecting cen-
troid 1, 4, 8, and 9 have a great change on demand patterns
since these OD pairs are benefited from the new metro line.
It also shows that the growth of the total network capacity is
mostly contributed by the new metro line, which bears 4,474
trips/h travel demand at the maximum demand situation.
On the contrary, the same OD pairs (in red zones) for car
and bus modes show a decline in demand.

Moreover, Figure 18 depicts the changes in OD demand
by each mode. Overall, due to the new metro line, the total
demands of car and metro, respectively, increase by 912

trips/h and 4,887 trips/h, while the total bus demand
decreases by 1,241 trips/h. By decomposing the changes into
individual OD pairs, we note that the metro demand growth
almost occurs at the OD pairs connected by the new metro
line. For these OD pairs, the demands of car and bus are
attracted to the metro and show significant reductions. Also,
we find that more percentage of bus demand shifts to the
metro in comparison to car demand (see Figure 18). This
is interpreted by the nested structure of the NL model for
mode choice. With the new metro line, the total share rate
of bus and metro is increased (as Table 4). However, the
bus users are easier to shift to metro than the car drivers,
because both bus and metro are public transport and are
considered in the same nest (effect of mode similarity).
Thereby, the bus mode shows a total net loss (-1,241 trips/h)
caused by the newmetro line. In addition, as the metro system
is more competitive in medium to long-distance, Figure 18
shows that long trips on the road network (by car and bus)
are reduced obviously after building the new line. Conse-
quently, the road network will have more residual space and
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hence can take over more drive demand in short trips. Hence,
the total car demand increases slightly from the overall result.

In summary, the network capacity assessment under the
four scenarios are reported in Table 4. From Scenario 1, add-
ing a new road may reduce the capacity of the multimodal
transportation network. Enhancing network capacity and
increasing alternative diversity may not be always consistent.
In addition, utilizing public transport to share more travel
demand is a recommended choice to expand the network
spare capacity. This can be realized by either encouraging
public transport (Scenario 2) or improving the transit net-
work (Scenario 3).

5. Conclusions

This study focused on the modelling of mode choice and
route choice in the lower-level of the bilevel multimodal net-
work capacity model, and extended the network capacity
analysis to consider multiple travel modes. Thus, a CMSTA
model is formulated step by step originating from the
stochastic user equilibrium with elastic demand. In the
CMSTA, the route overlapping problem is captured by using
the PSL model, and the mode similarity is characterized by
the NL model. Besides, an alternative formulation of the
MP-formulated network capacity models was derived in this
study, by which the objective function is associated with the
entropy maximization theorem and dual variables of the
constraints are associated with the EPCs of the travel modes.
By extending the reserve capacity concept, the multimodal
network capacity model can be easily solved with the given
SAB algorithm. At last, numerical results showed that the
proposed multimodal network capacity model can capture
both mode similarity and route overlapping lying in the
multimodal transportation system, and thus further improve
the network capacity results; it can evaluate how planning or
management strategies (e.g., adding new links or mode
options, improve modal attractive) change the mode share
rates and further benefit for network-wide capacity.

It has been noticed that, adding new links may lead to
the capacity paradox, which causes the reduction of the
network-wide capacity even though the travel alternative
diversity is increased; adding new modes generally can
improve the network capacity although the capacity paradox
may occur in some extreme condition; considering route
overlap or mode similarity will increase the EPC for the
group of the correlated route or mode alternatives, which
changes the mode share rates and further impacts the net-
work capacity evaluation. In addition, from the real case

study, both encouraging public transport (i.e., increase the
attractiveness of buses) and constructing a new metro line
(if budget is enough) can be an effective way to enhance
multimodal transportation network capacity.
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