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Connected and autonomous vehicles (CAVs) are emerging technology that attracts the interests of many transportation pro-
fessionals and computational scientists. Several recent studies have investigated different model frameworks of CAVs in different
transportation environments, such as on freeways and at conventional intersections. Nevertheless, few efforts have been made to
investigate the performances of CAVs at innovative intersections, and the lack of knowledge can result in an inaccurate prediction
of CAVs performances in the existing transportation network. /is research intends to mitigate this research gap by studying the
traffic delay and fuel consumption of CAVs in the environment of the superstreet and its equivalent conventional intersection
through simulation-based experiments. A real-world superstreet in Leeland, NC, is selected and used. A conventional intersection
with equivalent road designs is established in the simulation platform to make a comparison with the selected superstreet. /is
research develops both platooning and trajectory planning modeling frameworks to examine the implications of CAVs with
different capabilities. /e Intelligent Driver Model (IDM) is selected and applied to model the CAV behaviors, while Wiedemann
99 (W99) is used to model Human-Driven Vehicles (HDVs)./e simulation results demonstrate the efficiency of both platooning
and trajectory planning, respectively. Different effects of CAVs in the superstreet and its equivalent conventional intersection are
observed. /e findings from this research can provide an important reference for transportation planners and policymakers in
predicting the influence of CAVs on the existing transportation infrastructure.

1. Introduction

CAVs are promising technology and can yield significant
impacts in various transportation environments. Extensive
efforts have been devoted to exploring the potential effects of
CAVs in various transportation environments, including
freeways [1–3], roundabouts [4, 5], and conventional in-
tersections [6, 7]. In these studies, assumptions were often
made for CAVs’ capabilities, such as trajectory planning,
shorter headways, accurate controls, shorter reaction times,
and communication with other vehicles or infrastructure,

such as traffic signals [8, 9]. However, few efforts have been
devoted to investigating the impact of CAVs on the oper-
ational performance of innovative intersections. Among the
numerous innovative intersection designs, superstreet is one
of them that has been successfully implemented in several
places in the US [10].

/erefore, this research intends to mitigate the research
gap by exploring the different performances of CAVs in
the environments of the superstreet and conventional in-
tersection. /e research uses Simulation of Urban Mobility
(SUMO) as the simulation platform due to its rich
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Application Programming Interfaces (APIs) to build proper
behavior models of CAVs and HDVs. To be specific, dif-
ferent car-following models are considered for CAVs and
HDVs, respectively. To account for the car-following
characteristics of HDVs, W99 is selected for its consider-
ation of both mechanical features of vehicles and the ran-
domness of human drivers. As for CAVs, IDM is selected
and used due to its intuitive measurable parameters and
accurate controls of vehicle movements. /is research also
takes account of popular advanced features of CAVs in-
cluding platooning and trajectory planning strategies. A
superstreet from North Carolina in the real world is selected
for the case study for its typical superstreet design and traffic
flow characteristics. An equivalent conventional intersection
with a similar road configuration is also designed and used in
the same simulation platform tomake a fair comparison./e
performance evaluation also explicitly accounts for different
traffic demands and market penetration rates.

/e rest of the paper is laid out as follows: First, this
research gives a brief literature review on the superstreet and
CAVs technology, respectively. Second, this paper intro-
duces the modeling framework for CAVs and HDVs, es-
pecially for the behavior models of CAVs. /ird, this paper
presents and discusses relevant results generated from the
designed scenarios. /en conclusions are drawn based on
the research findings.

2. Literature Review

Superstreet is one of the popular innovative intersection
designs which has been applied in numerous places, espe-
cially in the states of North Carolina and Maryland in the US
[10]. By allocating more green time for vehicles from the
main road, superstreets could yield less traffic delay com-
pared to conventional intersections, especially when there are
significant unbalanced traffic volumes between themain road
and the minor road [11, 12]. Hummer et al. [13] conducted a
study investigating a superstreet corridor situated in North
Carolina. Conclusions were made that the superstreet could
potentially yield travel time and safety benefits. In addition to
the studies on the performance’s comparison between
superstreet and its equivalent conventional intersection, Xu
et al. [14, 15] investigated the optimal design of U-turn offset
length and signal timing plan using an analytical approach
and optimization methods, respectively.

In recent years, CAVs have become promising solutions
to reduce congestion at intersections due to their shorter
headways and trajectory guidance capabilities. /e perfor-
mances of CAVs are robust in different transportation
scenarios, and they can consistently yield less travel time,
traffic delay, and fuel consumption [7, 16, 17]. Table 1
provides a summary of recent existing studies on CAVs
categorized by transportation environments.

CAVs and HDVs are often modeled with different car-
followingmodels. On the one hand,W99 is the popular HDV
model for its rich parameters that capture the randomness of
human driver behaviors [1, 28]. On the other hand, CAVs
can be modeled with IDM, the adaptive cruising control
(ACC) model, or the cooperative adaptive cruising control

(CACC) model. /ese models all have intuitive measurable
parameters for CAVs. CACC model is developed based on
the ACC model by adding two-way communication between
the preceding vehicles and the following vehicles. With
CACC, the CAVs can travel on the roads with shorter
headways (0.6s) compared to ACC vehicles [29].

Platooning is a unique feature for CAVs for its commu-
nication capabilities with other vehicles. A platoon of CAVs
can travel on the roads with homogenous speeds and shorter
headways [30]. Moreover, when it comes to planning tra-
jectories, researchers onlyneed todetermine the trajectories of
leading vehicles, and the rest of the vehicles inside the platoon
can follow the trajectory of the leading vehicle. Different
studies may have different definitions for the platoon. Feng
et al. [31] and Yu et al. [32] defined the platoon as a group of
vehicles that can travel through the intersection within one
phase, while Ye et al. [33] defined the platoon as a group of
vehicles that share similar speeds and have a close distance in
between. In addition, some studies specifically defined the car-
following behaviors of the vehicles inside the platoon [34, 35].

With trajectory planning, CAVs can follow a calculated
velocity or acceleration/deceleration rate at each time step
when approaching the intersection. /e calculated velocity/
acceleration profiles may achieve certain optimal traffic
performance measures such as minimal travel time, fuel
consumption, or emissions [31–33]. When the objectives are
fuel consumption or carbon dioxide emissions, the objective
functions often result in a nonlinear function form whose
analytical solutions are hard to obtain. Hence, nonlinear
programming, dynamic programming, and other meta-
heuristic methods like the genetic algorithm (GA) are
popular approaches to solving such problems [32, 33, 36,
37]. Nevertheless, computational efficiency is an inevitable
great challenge in the real world when these approaches are
in deployment. Notably, trajectory planning that is combined
with signal optimization can eliminate vehicle stops [31, 32].
Adaptive signal controls with knowledge of vehicle arrival
patterns may perform significantly better than trajectory
planning standalone. Nevertheless, the combined optimi-
zation of trajectory planning and signal timing has limita-
tions in the requirement of the full market penetration rate of
CAVs and considerable investment in the hardware instal-
lation and maintenance of traffic lights. /us, this joint
coordination between the traffic light and CAVs is likely to be
implemented in the latter stages of CAV development. In an
environment where adaptive signals are not available, Green
Light Optimal Speed Advisory (GLOSA) was proposed in the
fixed signal-controlled intersections [38, 39]. With GLOSA,
an optimal speed could be determined for CAVs based on the
remaining green time or the green phase initiation time to
reduce the number of stops or total waiting time.

/rough literature review, a general modeling frame-
work of CAVs and HDVs can be identified. /is research
adopts concepts including car-followingmodels, platooning,
and trajectory planning to model the behaviors of CAVs.
Also, it is found that few studies have been conducted on
investigating the CAVs’ performances in innovative inter-
sections. By simulating the HDVs and CAVs in the envi-
ronment of the superstreet and equivalent conventional
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intersection, this research can close the identified research
gap and provide an important reference for policymakers.

3. Methodology

/is section illustrates the methodology of modeling HDVs
and CAVs procedures. /e researchers utilize the W99
model that is calibrated by GA to model the HDVs in
superstreets, while CAVs are modeled with IDM. Moreover,
platooning and trajectory planning schemes are also de-
veloped for CAVs.

3.1. Information on the Selected Location for Case Study.
A superstreet situated in Leeland, NC is identified for the
case study. /is superstreet is selected for its typical geo-
metric design and traffic flow characteristics. /e traffic
characteristic information on the selected superstreet is
available in Hummer et al. [13]. Figure 1 shows the selected
superstreet and signal locations in Google Maps, and Table 2
provides the traffic characteristics information. /e maxi-
mum speed limits are set as 29m/s (i.e., 65mph) for the main
road and 15.6m/s (i.e., 35mph) for the minor road./e four
minor intersections in the superstreet system are all signal
controlled with a cycle length of 120 s.

3.2. Car-Following Models

3.2.1. IDMModel. IDM was developed by Treiber et al. [40].
It is a collision-free model with intuitively measurable

parameters. Due to these advantages, the IDM has been
popularly used in modeling CAVs [1, 41, 42]. /e acceler-
ation rate in IDM is a function of the velocity of the subject
vehicle, the gap to the preceding vehicle, and the velocity
difference to the preceding vehicle, as (1) and (2) show below:

a(s, v,Δv) � am 1 −
v

vd

 

∝

−
s∗(v,Δv)

s
 

2
⎛⎝ ⎞⎠, (1)

s
∗
(v,Δv) � s0 + vT +

v × Δv
2

����
amb

 , (2)

Figure 1: Selected superstreet for the case study and signal
locations (adapted from the screenshot of google maps).

Table 1: Recent studies on the CAVs categorized by transportation environments.

Transportation
environments Authors Year CAV features

Freeway

Guo et al. [3] 2020 CACC, platoons, cooperative merging
Adebisi et al. [18] 2020 CACC models
Liu and Fan [1] 2020 CAVs with revised intelligent driver model

Chityala et al. [19] 2020 CAVs with shorter headways
Hu and Sun [20] 2019 Cooperative lane changing control, cooperative merging control

Conventional
intersection

Han et al. [7] 2020 Platooning-based trajectory planning with optimal control framework

Pourmehrab et al. [21] 2020 CAVs with an intelligent intersection control algorithm (IICA) and hybrid
autonomous intersection management (H-AIM)

Guo et al. [22] 2019 Joint optimization of vehicle trajectory and intersection controller with
combined dynamic programming and shooting heuristic approach

Li and Zhou [23] 2017 Signal timing optimization with the brand and bound algorithm considering
mixed traditional vehicles

Zhou et al. [24] 2017 Parsimonious shooting heuristics algorithm to construct vehicle trajectories
on a signalized highway segment

Jiang et al. [6] 2017 Eco approaching at an isolated signalized intersection under partially
connected and automated vehicles environment

Dresner and Stone [25] 2008 Reservations based algorithm in the lightless intersection

Roundabout

Mohebifard and
Hajbabaie [4] 2021a

Optimization on trajectory and merging sequence; customized solution
technique that transforms the two-dimensional optimization problem into a

combination of easier one- and two-dimensional subproblems
Mohebifard and
Hajbabaie [5] 2021b Trajectory control in a roundabout with a mixed fleet of automated and

human-driven vehicles
Martin-Gasulla and
Elefteriadou [26] 2021 Roundabout management algorithm for trajectory planning of CAVs

Chalaki et al. [27] 2020 Trajectory planning control framework for roundabout
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where a indicates the desired acceleration rate; am is the
maximum acceleration rate; v denotes the current speed; v d

indicates the desired speed (assumed equal to the speed limit
in this research); v represents the speed difference between
the subject vehicle and its preceding vehicle; ∝ means the
acceleration exponent, which is set as 4 in this research; s is
the current gap distance between the subject vehicle and its
preceding vehicle; s0 denotes the standing distances (2.5m);
T represents the desired headway (1s); b is the maximum
deceleration rate.

3.2.2. W99 Model. W99 is a microsimulation psychophys-
ical model which has ten parameters available for calibra-
tion. /ese ten parameters are intuitively consistent with
human driver behaviors with certain randomness. To ensure
that theW99 can represent the local traffic accurately, the ten
parameters are calibrated to ensure that the average speeds
on each approach in the simulation are matched with the
ones that were from the field survey, according to Hummer
[13].

Considering the data availability, this research selects the
minimal difference between simulated average speeds and
observed average speed for each approach as the objective
function used in the calibration process. An overall differ-
ence within 15% is regarded as acceptable performance.


N
i vo,i ∗ − vs,i


/vo,i 

N
, (3)

where vo,i and vs,i are the observed and simulated average
speed for approach i, respectively, and N indicates the total
number of approaches.

A genetic algorithm is utilized to minimize the difference
between the observed average speeds and simulated average
speeds for each approach. GA is a popular and efficient
approach to calibrating the car-following model parameters.
For brevity, this research skips the introduction of GA.
Readers may refer to existing studies of GA calibration for
more details [43]. /e population size and the maximum
number of generations are set as 10 and 20, respectively. /e
final difference becomes stable at 11%, which is recognized as
an acceptable difference./e obtained parameter values from
GA are presented in Table 3. /e lane changing movement is

controlled by the default car-following model in SUMO, i.e.,
LC2013 [44].

3.3. Platooning Schemes. Vehicle platooning is one of the
advanced features of CAVs. It can only be achieved with
CAVs that have communication capabilities with other
vehicles. Two assumptions were often made with CAVs
platooning. One is shorter headways for vehicles inside a
defined platoon, and the other is homogenous speeds. With
shorter headways and homogenous speeds, the vehicles
inside the same platoon can be regarded as a single unit to
travel on the road, which can increase the capacity of the
roads and also reduce the computational complexity when
trajectory planning is involved. /is research has also
adopted these concepts to fully release the potentiality of
CAVs.

3.3.1. Platoon Formulation and Splitting. /e platoon
control system in this research iterates all active vehicles in
the simulation environment and checks whether the
neighboring vehicles meet the requirements for the platoon
formulation. /e requirements are that the vehicles

(1) are in the same lane
(2) stay within the range of a certain distance
(3) share the same path

If the requirements above are met, then the system can
define such a group of vehicles as a platoon and thus share
the same speed with the leading vehicle. However, if any of
the vehicles inside the platoon fail to suffice these re-
quirements, then the platoon splits up and switches back to
the default car-following model.

/ere is one more condition guaranteeing platoon
splitting. When the platoon is approaching an intersection,
the remaining green time gp may not be sufficient for all
vehicles in a platoon to pass the intersection together, es-
pecially when the platoon size is large. /us, to make the
platoon system practical, the vehicles with platooning are
assumed to have the knowledge of remaining green time.
With the information on the remaining green time gp, the
platooning system checks whether all vehicles inside a
platoon can pass the intersection or not through,

Table 2: Traffic characteristic information on the superstreet at Leeland, NC.

Approach Average speed (m/s) Peak hour demand Average stops Travel time (minutes)
EBL 5.99 18 3 2.45
EBR 6.93 20 2 1.38
EBT 5.68 9 2 2.25
NBL 8.00 20 1 1.17
NBR 14.08 71 0 0.64
NBT 14.75 2029 0 0.81
SBL 5.72 321 1 1.26
SBR 14.26 38 0 0.4
SBT 19.58 1637 0 0.58
WBL 8.09 66 2 2
WBR 7.69 345 1 0.89
WBT 5.05 11 2 2.09
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where gw
p denotes the remaining green time for the platoon

P, Di
t and vi

t indicate the remaining distance toward the
intersection and the speed of the ith vehicle inside the
platoon P at the time step t. In the platoon P, when ith the
vehicle cannot pass the intersection and the vehicle directly
ahead of the ith vehicle, i.e., i − 1th, can pass the intersection,
then the platoon P disbands from the i − 1th vehicle. /e
vehicles after the i − 1th vehicle in the platoon P would
reform a platoon to decelerate together. When the platoons
are approaching the intersection, the platooning system
checks (4) for each vehicle in the platoons at every time step.
In this manner, the platoon system can avoid situations
where the platoon runs a red light because of its large
platoon size.

3.3.2. Platooning Behaviors. /e vehicles inside a platoon
share the same speed and keep a constant close distance in
between. /e platoon speed is naturally determined by the
leading vehicle’s speed. /e platoon attempts to set the
following vehicles’ speeds the same as that of the leading
vehicle within acceleration capacity in every time step. If the
speed difference between the leading vehicle and the fol-
lowing vehicle exceeds the acceleration/deceleration ca-
pacity, the speeds of the following vehicles will execute the
boundary speeds to match the leading vehicle’s speed as
close as possible, as shown in the following:

v
following
t �

max v
following
t−1 −aL,v

leading
t−1 , ifvleading≤vfollowing,

min v
following
t−1 +aU,v

leading
t−1 , ifvleading>vfollowing,

⎧⎪⎨

⎪⎩

(5)

where v
following
t and v

following
t−1 indicate the speed of the fol-

lowing vehicle at the time step t and time step t − 1 , re-
spectively, and v

leading
t−1 denotes the speed of the leading

vehicle at the time step t − 1 .
Indeed, in this system, the distance that guarantees a

platoon formulationmay have an important influence on the
performance of the platooning system. Hence, this research
also conducts a sensitivity analysis of this parameter. /e
selection of distance boundaries ranges from 5m to 31mwith
an increment of 4m. Each distance boundary has 5

simulation runs and each simulation lasts for 900s
(15minutes). /is research obtains the traffic delay and fuel
consumption to determine the optimal searching distance.
Figure 2 provides the average traffic delay and fuel con-
sumption results for each distance boundary. According to
Figure 2, it can be observed that both traffic delay and fuel
consumption reach relatively low values at a distance of 21m,
and thus this research selects 21m as the distance boundary
for further analysis.

3.4. Trajectory Planning

3.4.1. Optimal Trajectory Based on Accumulated Absolute
Acceleration Rates. CAVs can plan their trajectories based
on the signal information obtained to achieve a certain
objective, such as minimizing fuel consumption or traffic
delay. /e popular approach is to formulate trajectory
planning as an optimal control problem whose objective can
be a certain traffic performance measure. When the goal is to
minimize fuel consumption or emissions, the objective
function often takes a nonlinear form and requires nonlinear
programming to obtain an optimal solution. Significant
computational resources may be required in the real world.
A substitute approach to achieving the optimal fuel con-
sumption or emissions benefit is to minimize accumulated
absolute acceleration rates along the trajectories, according
to [31]. First, a generalized trajectory planning problem of
CAVs can be formulated with the objective of minimizing
cost C.

minC(a, v) ,

_x(t) � v(t)

_v(t) � a(t)
 ,

x t0(  � 0

v t0(  � v0
 ,

x tf  � D

v tf  � vf

⎧⎪⎨

⎪⎩
,

−aL ≤ a(t)≤ aU, ,

0< v(t) < vmax ,

t0 ≤ t≤ tf,

tffixed.

(6)

Table 3: GA calibrated W99 parameter values.

Parameters Interpretation Default values Calibrated values
CC0 Average standstill distance (meter) 1.4 1.287251
CC1 Headway (seconds) 1.2 1.569918
CC2 Longitudinal oscillation (meters) 8 1.28187
CC3 Start of deceleration process (seconds) −12 −12.3849
CC4 Minimal closingΔv(m/s) −1.5 −2.398
CC5 Minimal openingΔv(m/s) 2.1 0.324976
CC6 Speed dependency of oscillation (10−4 rad/s) 6 4.047425
CC7 Oscillation acceleration-m/s2 0.25 0.29111
CC8 Acceleration rate when starting (m/s2) 2 4.582238
CC9 Acceleration behavior at 80 km/h (m/s2) 1.5 4.261776
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where C(a, v) represents the cost function, x(t) and v(t) are
control variables that indicate the traveled distance and
instant speed value at the time step t respectively. a(t) is the
control variable that represents the acceleration rate at time
step t. t0 and tf are the time steps when the CAVs start and
�nish the trajectory, respectively. aL and aU represent the
absolute values for the maximum deceleration rate and
acceleration rates. vmax indicates the maximum speed (speed
limits) while vf denotes the �nal speed when the vehicle
arrives at the intersection. v0 represents the initial speed at
which the vehicle enters the communication range between
CAVs and signalized intersections. D is the target distance
that the subject vehicle needs to travel, which often is the
distance between the vehicle and the intersection. �e fuel
consumption or emission is known to be signi�cantly related
to the acceleration rates. [31] developed a trajectory planning
strategy to minimize fuel consumption based on Pon-
tryagin’s Minimum Principle (PMP). �rough analysis of
PMP, a generalized solution can be achieved with the ob-
jective of minimizing the accumulated absolute acceleration
rates along the trajectory, which is as follows:

minC � ∫
tf

t0
|a(t)|dt . (7)

�e solution to the optimal trajectory generally results in
a three-segment trajectory, in which vehicles remain at a
constant speed at the second segment. �e �rst and the third
segment have a constant either maximum acceleration or
deceleration rate according to the relationships between the
[31]initial speed and �nal speed, as Figure 3(a) shows.
Figure 3(b) provides an example comparison of when CAVs
are enabled with and without such trajectory planning
feature.

�e transition time steps t1 and t2 can be determined
given the following equations in the deceleration case
(v0 > vf) and acceleration case (v0 < vf), respectively, where
vc indicates the constant speed in the second segment and
the other variables are de�ned earlier.

v0 + vc
2
∗ t1 + vc ∗ t2 − t1( ) +

vf + vc
2
∗ tf − t2( ) � D ,

vc �
v0 − aL ∗ t1 � vf + aL tf − t2( ), v0 > vf,

v0 + aU ∗ t1 � vf − aU tf − t2( ), v0 < vf.




(8)

Additionally, one can obtain the lower and upper travel
time boundary to guarantee that a feasible solution will be
obtained as shown below:

v0 > vf

tL �
D

v0
+
v0 − vf( )

2

2∗ v0 ∗ aL
,

tU �
D

vf
−
v0 − vf( )

2

2∗ vf ∗ aL
,




(9)

v0 < vf

tL �
D

vf
+

v0 − vf( )
2

2∗ vf ∗ aU
,

tU �
D

v0
−
v0 − vf( )

2

2∗ v0 ∗ aU
.




(10)

Notably, a feasible three-segment trajectory solution
only exists when the vehicle arrival time tf is strictly within
the boundary of tL and tU, i.e.,

tL < tf < tU. (11)

When tf � tL or tf � tU, the three-segment trajectory
solution collapses into the two-segment trajectory. �e
lower/upper-time boundaries indicate two-segment trajec-
tories in acceleration and deceleration, respectively, as
shown in Figure 4.

In a deceleration scenario, the lower boundary indicates
that the vehicle keeps its current speed in the �rst segment
and then decelerates to its �nal speed in the second segment.
�e upper boundary indicates that the vehicle �rst decel-
erates to the target �nal speed, then keeps the target �nal
speed until it arrives at the intersection. On the other hand,
in an acceleration scenario, the lower boundary indicates
that the vehicle �rst accelerates the �nal speed vf and then
cruises at the target speed until arriving at the intersection.
When the �nal speed vf is equal to the maximum speed vmax
such trajectory type can yield the minimum travel time
tminimum and thus is referred to as the minimum travel time
trajectory. �e upper boundary in an acceleration scenario
means that the vehicle �rst keeps its initial speed and then
accelerates to its target speed. Intuitively, when the travel
time is strictly within the lower- and upper-time boundaries,
then an optimal three-segment trajectory exists. When the
travel time is equal to one of the two boundary values, then a
two-segment trajectory introduced above can be applied.
Nevertheless, when travel time exceeds the boundary, then
no feasible solution exists with the given distance,
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Figure 2: Performances of platooning with di�erent values of
distance boundaries.
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acceleration rate, and initial speeds. �is re�ects real-world
scenarios. For example, a vehicle may not be able to de-
celerate to a speed of zero if the remaining distance to the
intersection is too short or the initial speed is too high.

Demonstrated that this trajectory planning strategy
could successfully [31] reduce tra�c delay and fuel con-
sumption in a standard isolated conventional intersection
with a joint adaptive signal optimization algorithm.With the
adaptive signal control, Equation (11) can stand for most
cases and the vehicle can avoid stops under certain tra�c
conditions. Nevertheless, this strategy cannot be directly

transferred to a �xed signal-controlled intersection. In a
�xed signal-controlled intersection, the �nal travel time tf is
largely dependent on the initiation time or remaining time of
the target green phase in a �xed signal timing plan, where
vehicles cannot avoid stopping entirely. To apply this tra-
jectory planning scheme in a �xed signal-controlled inter-
section, this research also considers a constant deceleration
trajectory when (11) cannot be su�ced. For a constant
deceleration trajectory, the vehicle will keep a constant
deceleration rate until it arrives at the intersection with a
speed of 0, as shown in Figure 5. �e deceleration rate adec
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Figure 4:�e two-segment trajectory when the travel time is equal to the boundary values. (a) tf � tU and v0 > vf. (b) tf � tL and v0 > vf. (c)
tf � tL and v0 < vf. (d) tf � tU and v0 < vf.
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can be easily obtained through the basic kinetic law, which is
described by (11).

adec �
v0

2∗D/v0
. (12)

Based on the signal status and the next signal switch time
tswitch, the vehicle can choose di�erent speed trajectories as
introduced above.

(1) Red Signal. When the upcoming signal status for the
subject vehicle is red, the signal switch time tswitch indicates
the initiation of green time. �e lower time boundary ob-
tained through (10) is equal to the minimum travel time
tminimum when the given �nal speed vf � vmax. If the switch
time tswitch is less than or equal to the tminimum, then the
vehicle can meet a green signal with a two-segment tra-
jectory as shown in Figure 6 to achieve minimal tra�c delay.

If the switch time is greater than the minimum travel
time, i.e., tswitch ≥ tminimum, then the vehicle with a minimum
travel time trajectory will meet a red signal. In this situation,
it is assumed that tf � tswitch. From (9) and (10), one may
obtain tL and tU given a �nal speed vf. Hence, researchers
may simply enumerate all possible �nal speeds [0, vmax) to
obtain a feasible speed candidate list Vf so that (12) stands.

tL < tswitch < tU . (13)

�is research selects the max(Vf) so that the subject
vehicle can travel through the intersection with maximum
�nal speed to minimize the tra�c delay, where the max
function returns the maximum value among the feasible
�nal speed list Vf .

(2) Green Signal. If the ahead signal status is green, then
tsignalswitch indicates the remaining green time for the subject
vehicle. �is research mainly considers two cases based on
the relationship between signal switch time tsignalswitch and
minimum travel time tminimum of the subject vehicle.

Case 1. When the subject vehicle can traverse through the
intersection with minimum travel time tminimum (i.e.,
tsignalswitch ≥ tminimum), then the vehicle may accelerate its
maximum speed to pass the intersection to achieve the

minimal tra�c delay. However, this strategy may potentially
increase the average fuel consumption as the fuel con-
sumption is closely related to the acceleration rate. In some
circumstances, if the tsignalswitch ≥ tcurrentspeed, where
tcurrentspeed is the travel time to the intersection when the
vehicle keeps its current speed, then the decision-makers
who assign a higher priority to fuel consumption may let the
vehicle keep its current speed to avoid increasing fuel
consumption with acceptable compromise on the tra�c
delay.

Case 2. tsignalswitch ≤ tminimum means the subject vehicle
cannot arrive at the intersection within the given remaining
green time even if the vehicle accelerates to maximum speed.
In such a situation, a constant deceleration trajectory in-
troduced above may be executed. �e subject vehicle may
need to check whether the vehicle can meet the second green
with a given �nal speed within [0 vmax) when the distance D
is large.

3.4.2. Encountering Preceding Vehicles during Trajectory
Planning. In the real world, the vehicles may have close
preceding vehicles on the road, and following the pre-
determined trajectories may lead to collisions with the
preceding vehicles.�erefore, to avoid these collisions in this
research, when a vehicle has preceding vehicles that are
within a 3s headway, the vehicle will stop executing the
planned trajectory and switch to the prede�ned car-fol-
lowing model, which is the IDMmodel in this research. Note
that the system constantly checks each vehicle’s distance to
the preceding vehicles at each time step. When the distance
to the preceding vehicle is greater than 3s and there is an
upcoming signalized intersection, then the system will plan
the vehicle trajectory again for the subject vehicle to follow.
With this function, the vehicles following the planned tra-
jectory can successfully avoid collision with not only the
close preceding vehicles but also the queueing vehicles in
front of the intersection because of the red signal.

3.5. Simulation Scenarios and Relevant Settings. An equiva-
lent conventional intersection with the same road segment
length, lane con�guration, and maximum speed is designed in
the simulation platform.�e cycle length is also set the same as
the superstreet in the real world, i.e., 120s, to make a fair
comparison.�e green splits for each approach are determined
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by their volume ratios. To account for different traffic con-
ditions, this research tests four different traffic scales including
25%, 50%, 75%, and 100% of peak hour traffic volumes from
Table 2. Furthermore, a market penetration analysis is con-
ducted on the 100% peak hour traffic volumes. 25%, 50%, and
75% of CAV market penetration rates are considered in the
simulation. Every scenario is run five times with different
random seeds to account for the randomness. To make the
system more robust and increase calculation accuracy, the
simulation resolution is set as 10HZ, which means the sim-
ulation runs 10 time steps every second. Once the vehicle enters
the roadway network, the vehicle is assumed to enter the
Vehicle-to-Infrastructure (V2I) communication range, which
is reasonable since the selected superstreet has a rather short
road segment length in all approaches before the traffic signals
(less than 300m). Average traffic delay (delay per vehicle) and
fuel consumption (fuel consumption per vehicle) are the
performance indicators that are used for this research. Traffic
delay is measured by the ideal travel time (free-flow speed
without any stop) minus actual travel time. Fuel consumption
is measured by the default emission model from SUMO, i.e.,
HBEFT.3 [45]. /e maximum acceleration rates and decel-
eration rates for IDM are set as 2.5m/s2. Considering drivers’
comfort, the maximum acceleration rate and deceleration rate
in CAV trajectory planning are 2m/s2.

4. Results and Discussion

4.1. 7e Performance of CAVs in Conventional Intersections

4.1.1. Traffic Delay. To provide an initial understanding of the
performance of CAVs, this research first obtains the simulation
results of CAVs from the equivalent conventional intersection.
/e traffic delay results are presented in Figure 7. From Fig-
ure 7, it can be observed that the developed platooning, tra-
jectory planning, and platooning-based trajectory planning can
reduce the traffic delay in most scenarios. /e exception is
CAVs with platooning at 25%. When CAVs are enabled with
platooning, the speed of the following vehicles is influenced by
the leading vehicle in the same platoon and may not be able to
achieve their maximum speeds even in light traffic volume.
/is may potentially explain that no benefit is gained for
platooning in the traffic demand of 25% and 50% peak hour
traffic volume scenarios. /e traffic delay improvements for
CAV with platooning increase as the traffic demand increases.

Trajectory planning can reduce traffic delay to a larger
extent in light traffic volume scenarios, and the improve-
ment magnitudes shrink as the traffic volumes increases.
/ese results can be explained by the trajectory planning
modeling framework. As mentioned in the methodology
section, to avoid collisions with preceding vehicles and
queueing vehicles in front of the intersection, CAVs with
trajectory planning may switch to the default car-following
model frequently in high traffic demand scenarios. For CAV
with platooning-based trajectory planning, the traffic delays
share a similar trend as the ones from CAV with platooning.
Notably, platooning-based trajectory planning also suc-
cessfully reduces the traffic delay in low traffic demand
scenarios.

4.1.2. Fuel Consumption. From Figure 8, it can be observed
that platooning could provide larger benefits in terms of fuel
consumption in high traffic volume scenarios. /e im-
provement magnitudes are also consistent with existing
studies on platooning [46]. /e proposed trajectory planning
framework reduces the average fuel consumption to a certain
extent in low traffic volume scenarios. However, the fuel
consumption benefits from trajectory planning are less sig-
nificant compared to platooning. In addition, the trajectory
planning framework may produce adverse effects on fuel
consumption in high traffic volume scenarios, as observed in
100% peak hour traffic volume scenarios. In high traffic
volume scenarios, CAVs with trajectory planning capability
change to the car-following model frequently because of the
presence of preceding vehicles, which may produce speed
fluctuations and higher fuel consumption. CAV with pla-
tooning-based trajectory planning produces the optimal fuel
consumption results in most traffic demand levels.

4.2. Comparison between CAVs and HDVs with Calibrated
W99. /is research first examines the performance of the
calibrated W99 model, IDM model, IDM with platooning,
IDM with trajectory planning, and IDM with platooning-
based trajectory under 100% peak hour traffic volume,
respectively.

Although it is expected that CAVs outperform HDVs, it
may not be necessarily always true in the real world. For
instance, when the vehicle travels through a congested in-
tersection, HDVs are likely to have shorter headways and
practice emergency deceleration or acceleration to achieve
minimal travel time or avoid collisions, while CAVs cannot
exceed the predetermined boundary of safe headway and
acceleration rates. According to Figure 9, the results from
calibrated W99 and IDM prove this assumption since they
have similar average delays and fuel consumption.

However, when CAVs are enabled with platooning and
trajectory planning, the CAVsmay be superior to HDVs. For
theproposedplatooningmodel, compared to the IDMmodel,
the traffic delay decreases from 23.42 to 20.49 (around 13%),
while the fuel consumption decreases from 95.79 to 85.87
(around 10% reduction). Since HDVs with calibrated W99
have similar traffic delay and fuel consumption, similar
improvements can be found when comparing CAV with
platooning against HDVs with calibrated W99. Table 4
presents the comparison results between CAVs with differ-
ent features and HDVs with calibrated W99.

/e outstanding performance of platooning perfor-
mances may be related to the large traffic volume in this
scenario. On the other hand, IDM with trajectory planning
has few benefits in terms of both traffic delay and fuel
consumption compared to IDM only. As described in the
previous section, CAVs will change into the car-following
model when they detect vehicles that are within a 3s headway.
In a congested traffic condition such as 100% peak hour
traffic volume, the advantages of trajectory planning are
significantly compromised. As for CAVs with platooning-
based trajectory planning, the traffic delay decreases and
reaches the lowest traffic delay (19.80s) among all scenarios,
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Figure 7: Average tra�c delay(s) of CAVs in the equivalent conventional intersection. (a) Average tra�c delay for IDM and IDM with
platooning (b) Average tra�c delay for IDM and IDMwith trajectory planning. (c) Average tra�c delay for IDM and IDMwith platooning-
based trajectory planning.
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Figure 8: Continued.
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while the fuel consumption is lower compared to CAVs with
trajectory planning but higher compared to CAVs with
platooning. CAVs with platooning and trajectory planning,
when vehicles are close to each other, form a platoon so that
trajectory planning can be executed, which explains the
greater tra�c delay reduction in CAVs with platooning-
based trajectory planning. �e fuel consumption of pla-
tooning-based trajectory planning is higher than the ones of
platooning but lower than the ones of trajectory planning.

4.3. �e Performances of CAVs in Superstreets

4.3.1. Tra�c Delay. Figure 10 presents the average tra�c
delay when CAVs are enabled with platooning, trajectory
planning, and platooning-based trajectory planning. CAVs
with platooning have similar performances as they did in the
equivalent conventional intersection. When the tra�c scale
is at 25% peak hour tra�c volume, the CAVs with pla-
tooning fails to reduce the average tra�c delay. Nevertheless,
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Figure 8: Average fuel consumption(ml) of CAVs in the equivalent conventional intersection. (a) Average fuel consumption for IDM and
IDMwith platooning. (b) Average fuel consumption for IDM and IDMwith trajectory planning. (c) Average fuel consumption for IDM and
IDM with platooning-based trajectory planning.
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Figure 9: Tra�c performances with di�erent scenarios.

Table 4: CAV performances compared to HDVs with calibrated W99.

TD1 Improvement2 (%) FC3 Improvement4

IDM 23.32 0 97.41 -2%
IDM with platooning 20.49 13 85.87 10%
IDM with trajectory panning 22.04 6 96.14 0%
IDM with platooning-based trajectory planning 19.80 15 94.78 1%
1 average tra�c delay in seconds;2 benchmark is 23.42;3 average fuel consumption in milliliter;4 benchmark is 95.79.
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when the tra�c demand is greater or equal to 50% of peak
hour tra�c volume, the CAVs start to reduce the tra�c delay
in the superstreet.

As for trajectory planning, the reductions of tra�c delay
in di�erent demands are relatively constant compared to the
ones in the conventional intersection. In superstreet, the
road capacity often is larger than the equivalent conven-
tional intersection. �erefore, CAVs might not have to
switch to the car-following model frequently as they did in
the equivalent conventional intersection in 100% peak hour
tra�c volume demand, which explains the relevant constant
tra�c delay reduction.

CAVs with platooning-based trajectory planning still
produce minimal tra�c delays in nearly all demand levels
(except for 25% peak hour tra�c demand).�e general trend
of tra�c delays is similar to that in platooning scenarios as in
the equivalent conventional intersection.

4.3.2. Fuel Consumption. Figure 11 presents the fuel con-
sumption of CAVs in the superstreet. Platooning yields
similar fuel consumption trends as it did in the tra�c delay
results. Nevertheless, CAVs with trajectory planning pro-
duce higher average fuel consumption, especially in the
lower tra�c demand scenarios. �e increased average fuel

consumption is potentially attributed to two reasons: (1) the
acceleration behavior of CAVs with trajectory planning in
order to catch the remaining green or initiation green time;
(2) CAVs with trajectory planning may stop at the second
consecutive intersection after passing the �rst intersection
with acceleration in the superstreet system. In high tra�c
volume scenario, the adverse e�ects of fuel consumption are
alleviated since CAVs with trajectory planning do not have
much freedom of accelerating before the intersection. �is
result demonstrates the necessity of incorporating two
consecutive signal information in designing a trajectory
planning framework when two signals are closely spaced.
�e adverse e�ects on fuel consumption are alleviated when
CAVs are enabled with platooning-based trajectory
planning.

4.3.3. CAVs with Di�erent Market Penetration Rates. �e
dominance of CAVs on the road is a gradual process in
which technology, political and legal challenges continu-
ously remain. �e policymakers may be interested in the
performances of CAVs with di�erent levels of market
penetration rates. �erefore, this research also conducts a
market penetration analysis where HDVs controlled by
calibrated W99 and CAVs controlled by IDM with

16.02
18.01

20.69
23.32

16.88 17.81 18.87
20.49

25 50 75 100
Traffic Demand (%)

IDM
IDM with platooning

5

10

15

20

25
Tr

affi
c D

el
ay

(a)

16.02
18.01

20.69
23.32

14.63
16.21

18.98
22.04

25 50 75 100
Traffic Demand (%)

IDM
IDM with trajectory planning

5

10

15

20

25

Tr
affi

c D
el

ay

(b)

16.02
18.01

20.69
23.32

15.00 15.40
17.30

19.80

25 50 75 100
Traffic Demand (%)

IDM
IDM with platooning-based trajectory planning

0

5

10

15

20

25

Tr
affi

c D
el

ay

(c)

Figure 10: Average tra�c delay(s) of CAVs in the superstreet. (a) Average tra�c delay for IDM and IDM with platooning. (b) Average
tra�c delay for IDM and IDM with trajectory planning. (c) Average tra�c delay for IDM and IDM with platooning-based trajectory
planning.
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platooning-based trajectory planning coexist. 25%, 50%, and
75% CAV market penetration rates are tested under 100%
peak hour tra�c volume. When CAVs follow HDVs, CAVs
are often assumed to have larger headways [47]. �erefore,
when CAVs follow HDVs, the CAV headway is set the same
as HDVs, i.e., 1.6s. Figure 12 provides the results of the
market penetration analysis. Based on Figure 12, it can be
observed that tra�c delay starts to fall at the market pen-
etration of 75% CAVs, where the fuel consumption is similar
to that of 0% CAV. �e fuel consumption and tra�c delay
are highest when the market penetration rate of CAVs is at

the 50% level. Overall, the more mixed the vehicle types are
(i.e., equal market penetration rate of CAVs and HDVs), the
worse the tra�c performance is.

4.4. A Comparison between Conventional Intersection and
Superstreet. Figures 13 and 14 compare the average tra�c
delay and fuel consumption of CAVs in the equivalent
conventional intersection and superstreet, respectively.
Based on Figure 13, with IDM vehicles, the superstreet can
consistently outperform the equivalent conventional
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Figure 11: Average fuel consumption (ml) of CAVs in the superstreet. (a) Average fuel consumption for IDM and IDM with platooning.
(b) Average fuel consumption for IDM and IDMwith trajectory planning. (c) Average fuel consumption for IDM and IDMwith platooning-
based trajectory planning.
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Figure 13: Average tra�c delay(s) comparison of CAVs between the conventional intersection and superstreet. (a) IDM. (b) IDM with
platooning. (c) IDM with trajectory planning. (d) IDM with platooning-based trajectory planning.
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Figure 14: Continued.
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intersection regarding average tra�c delay. However, it
could also be observed that the average tra�c delay dif-
ferences between the conventional intersection and super-
street are reduced in platooning and platooning-based
trajectory planning scenarios compared to CAVs controlled
by IDM only.

As for fuel consumption, Figure 14 shows that the av-
erage fuel consumptions of CAVs with trajectory planning
are higher when they are in the superstreet under 25% and
50% peak hour tra�c volume. When CAVs are enabled with
platooning-based trajectory planning, they have higher
average fuel consumption on all demand levels in the
superstreet. As explained in the previous section, this may
potentially result from the lack of consideration of two
closely spaced signalized intersections when developing the
trajectory planning control framework. Tables 5 and 6
provide improvement magnitudes of superstreet com-
pared to the conventional intersection in terms of the av-
erage tra�c delay and fuel consumption, respectively.

5. Conclusions

�is research investigated the performances of CAVs and
HDVs in the environments of the superstreet and conven-
tional intersection. CAVs were modeled with the IDM car-
following model, while HDVs were modeled with the W99
car-following model. A real-world superstreet situated in
Leeland, NC, was replicated in the simulation platform to test
the performances of CAVs and HDVs under di�erent tra�c
conditions. In addition, to fully examine the potentiality of
CAVs, a simple platooning scheme and trajectory planning
strategy were developed for CAVs, respectively. In this re-
search, the W99 model was calibrated with GA so that the
W99 model can better represent the local drivers’ behaviors.
Di�erent tra�c demands and market penetration rates were
taken into consideration in the designed scenarios.

�e simulation results indicated that without platooning
and trajectory planning, CAVmodeled by IDM did not have
signi�cant improvement compared to HDVs modeled by
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Figure 14: Average fuel consumption(ml) comparison of CAVs between the conventional intersection and superstreet. (a) IDM. (b) IDM
with platooning. (c) IDM with trajectory planning. (d) IDM with platooning-based trajectory planning.

Table 5: Average tra�c delay improvement magnitudes of superstreet compared to the equivalent conventional intersection with di�erent
CAV Features.

CAV features
Peak demand scale

25% 50% 75% 100%
IDM 10% 13% 19% 31%
IDM with platooning 8% 14% 17% 21%
IDM with trajectory planning −4% 8% 19% 32%
IDM with platooning-based trajectory planning −2% 15% 17% 17%

Table 6: Average fuel consumption improvement magnitudes of superstreet compared to the equivalent conventional intersection with
di�erent CAV Features.

CAV features
Peak demand scale

25% 50% 75% 100%
IDM 5% 4% 3% 8%
IDM with platooning 5% 5% 5% 4%
IDM with trajectory planning −15% −6% 2% 10%
IDM with platooning-based trajectory planning −14% −10% −8% −5%
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W99. /e developed platooning strategy can successfully
reduce the traffic delay and fuel consumption at relatively
high traffic demand scenarios (50%, 75%, and 100% peak
hour volume) in both the superstreet and the conventional
intersection. Trajectory planning could reduce the traffic
delay in both superstreet and conventional intersection
environments but with different impacts on fuel con-
sumption. CAVs with trajectory planning produced higher
fuel consumption in the superstreet in the lower traffic
demand scenarios, especially in traffic demand 25% and 50%
of peak hour traffic volume. A potential reason is that CAVs
which accelerate to pass the first intersection may fail to pass
the consecutive second intersection in the environment of
superstreet. In the market penetration rate analysis of CAVs,
it was found that the mixed traffic environment can com-
promise the benefit when the CAVsmarket penetration rates
were at 25% and 50% peak hour traffic volume. CAVs have
better performances when the market penetration rate is
about 75% and above.

/is research also compared the traffic performances of
CAVs in the conventional intersection and superstreet. A
notable finding was that the proposed trajectory planning
control strategy can successfully reduce the average traffic
delay without increasing the average fuel consumption in the
conventional intersection. /is was different from super-
street where CAVs enabled with trajectory planning increase
the fuel consumption. /is demonstrated the efficiency of
the proposed trajectory planning strategy in an isolated
intersection. However, this result also indicated that the
trajectory planning without considering special features of
two closely spaced signalized intersections may suffer ad-
verse effects on fuel consumption. Overall, the improvement
magnitude of platooning and trajectory planning was larger
in the conventional intersection.

Based on these research findings, the future research
directions could be the adaptive signal control strategy that
takes arrival information on CAVs into consideration, which
may reduce the adverse effects of trajectory planning on fuel
consumption identified in this research. Also, a more so-
phisticated trajectory planning algorithm that takes into
account two consecutive signalized intersections can be
developed.
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