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(is paper presents a constrained connected automated vehicles (CAVs) trajectory optimization method on curved roads with
infrastructure assistance. Specifically, this paper systematically formulates trajectory optimization problems in a spatial domain
and a curvilinear coordinate. As an alternative of temporal domain and Cartesian coordinate formulation, our formulation
provides the constrained trajectory optimization flexibility to describe complex road geometries, traffic regulations, and road
obstacles, which are usually spatially varying rather than temporal varying, with assistances vehicle to infrastructure (V2I)
communication. Based on the formulation, we first conducted a mathematical proof on the controllability of our system, to show
that our system can be controlled in the spatial domain and curvilinear coordinate. Further, a multiobjective model predictive
control (MPC) approach is designed to optimize the trajectories in a rolling horizon fashion and satisfy the collision avoidances,
traffic regulations, and vehicle kinematics constraints simultaneously. To verify the control efficiency of our method, multi-
scenario numerical simulations are conducted. Suggested by the results, our proposed method can provide smooth vehicular
trajectories, avoid road obstacles, and simultaneously follow traffic regulations in different scenarios. Moreover, our method is
robust to the spatial change of road geometries and other potential disturbances by the road curvature, work zone, and speed
limit change.

1. Introduction

(e CAVs equipped with advanced sensing and commu-
nication technologies enable their self-driving tasks and
connection with other vehicles as well as infrastructures.
Under such a connected and automated environment, CAVs
can obtain precise ambient information via sensing and
communication to make decisions and control more effi-
ciently and safely than human-driven vehicles. Due to the
potentials, CAV technologies have experienced a fast de-
velopment in very recent years [1–5]. Among these tech-
nologies, trajectory planning serves as a critical component
to plan the vehicles’ future movement to avoid hazards and
make the CAVs operate in a safe, comfortable, and efficient
manner. Rather than treating the highway as a straight line,

there are many curved roads in the real world such as
mountain area that requires ego-CAV trajectory planning
algorithm to render both longitudinal and lateral move-
ments to make CAVs pass safely.

Due to the importance, two-dimensional CAVs trajec-
tory planning algorithms have been widely researched in
recent years [6–14]. (e state of art of CAV trajectory
planning algorithms can be generally divided into four
different approaches: (i) the graph search-based approach
[14, 15]; (ii) the interpolating curve planner [16–18]; (iii) the
sampling-based approach [19, 20]; and (iv) the function
optimization approach [21, 22]. (e graph search-based
approach divides the feasible vehicle travel region into
multiple grids, and by that, finding the optimal trajectory can
be equivalently treated as finding the shortest path among
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nodes of feasible grids. By the shortest path formulation, this
type of approach (e.g., [23, 24]) usually applied dynamic
programming and A-star algorithm. By the nature of the
shortest path problem, this type of approach needs to
tradeoff between computation and precision. When the size
of lattice is small and number of lattices are big, this type of
algorithm can be slow computing. Whereas when the size of
the grid is big, the trajectory can be discontinuous and
nonsmooth. On the other hand, the interpolating curve
planner, which uses predefined curve functions to generate
reference points from the available space [18, 25, 26], is
comparatively computational less expensive. (e above-
mentioned approaches largely ignore vehicle kinematics by
assuming the physical positions are attainable regardless of
vehicle acceleration and angular speed constraints that may
induce implementation infeasibility is the real-world ap-
plication. (e sampling-based approach executes a random
search over the vehicle feasible state space (e.g., position,
speed, and acceleration) and finds an optimal sequence of
state heuristically by comparing these randomly sampled
state spaces according to a predefined objective function
(e.g., minimize travel delay and intensive acceleration or
brake). (ough effective, these approaches usually render
suboptimal solutions suggested by [27] due to the searching
heuristics nature. Further, if the state dimension is large, the
computation complexity will also increase significantly. As
an opposite, the function optimization approach formulates
the trajectory planning of CAV as a constrained optimi-
zation problem that is flexible in handling constraints from
the environment [8, 13, 28, 29], which can minimize a
multiobjective cost function meanwhile satisfying the ve-
hicle dynamics and hazard avoidances constraints. Further,
the constrained optimization approach is usually imple-
mented in a rolling horizon fashion to be against unexpected
disturbances, and it is also known as MPC in the control
theory field, which is widely applied in CAV car following
control [30–32].

(ough promising, the constrained optimization-based
CAVs trajectory planning still faces some challenges. One
challenge is to describe the road geometries in the formu-
lation explicitly. Differed in the utilized coordinates, they
can be further categorized as (i) CAV trajectory constrained
optimization on a Cartesian coordinate [8, 13, 28, 29] and
(ii) CAV trajectory constrained optimization on a curvi-
linear coordinate [9, 10, 33, 34]. As a most widely applied
coordinate, the Cartesian coordinate is more suited to de-
scribe open spaces. However, road geometry is usually
composed of complex and composite curves, which means
using Cartesian coordinates will be technically challenging
to formulate the road boundaries as constraints. On the
other hand, the curvilinear coordinate system is born to
describe geometries formed by curved lines [35]. Especially
for the road geometry description, one axle of the curvilinear
coordinate can be the lane centerline, while the other axle
can be perpendicular to the centerline tangent. By that, the
road geometry and boundaries can be simply formulated,
reducing a great formulation and computation complexity.

Nevertheless, most of the vehicle trajectory optimization
in the literature is vastly built by a temporal formulation

[6–11], assuming that the road geometry characteristics (e.g.,
curvature, lane tangent directions) remain unchanged over
time, that has not fully exploited the potentials of the
curvilinear coordinate. (e road geometries characteristics,
traffic regulations (e.g., speed limit), and hazards are spa-
tially varying rather than temporally varying, which serve as
an unobservable exogenous disturbance impacting the
performances that further exert a negative impact on the
desired planning objectives. (ough the real-time infor-
mation of road attributes can be conveyed to CAVs via V2I,
with the increasing maturity of the vehicle to infrastructure
(V2I) communication, explicitly incorporating these spa-
tially varying characteristics in the temporal domain is still
forbiddingly hard. However, the very recent works by
[36, 37], which utilize the spatial formulation for one-di-
mensional CAV car following control and curvilinear co-
ordinate based human driven vehicles modeling in an
intersection, respectively, provide a new angle to formulate
the trajectory planning problems in a spatial domain. In-
spired by their works, we found that the spatial domain
formulation can explicitly incorporate the optimal formu-
lation of spatially varying attributes on a curvilinear coor-
dinate. Hence, an infrastructure assisted spatially
constrained optimal ego-CAV trajectory planning algorithm
based on a curvilinear coordinate is provided in this paper,
which can deal with any types of curved road safely and
efficiently. Especially, we contribute to design a spatially
formulated constrained CAV trajectory optimization in a
curvilinear coordinate that is capable of: (i) greatly sim-
plifying the formulation compared with ones formulated in
the time domain and Cartesian coordinates; (ii) quickly
converging to the desired vehicle operation state (e.g., target
speed, following lane centerline), and robust to the spatially
disturbances (e.g., lane curvature change) by the infra-
structure communication and assistance and (iii) providing
a multi-objective optimization (e.g., smoothness of vehicle
control, less deviation from desired state) framework which
explicitly incorporates the spatial characteristics (e.g., lane
curvature) and constraints (e.g., speed limit, obstacles, and
lane width) while avoiding obstacles.

(e organization of this paper is as follows. Section 2
provides detailed problem descriptions and gives assump-
tions of our paper. Section 3 describes the system by a state
space and presents the design ofMPC for the system. Section
4 presents the designed simulation experiments to verify the
effect of the proposed model. (e conclusion of the paper
and future work is summarized and discussed in Section 5.

2. Problem Description

We provide an illustrative example to motivate our work on
trajectory planning first. For our modeling, we focus on two-
dimensional ego-CAV trajectory planning on a highway
without any intersections. Specifically, our planning target is
to ensure ego-CAV travel as fast as possible and meanwhile
keep to the targeted road center line. When a CAV drives on
a complex traffic scenario such as on a winding lane with or
without a potential obstacle, as shown in Figure 1, an infinite
number of paths are possible for a CAV, but limited time is



given for the decision. It is assumed that the CAV can collect
vehicle dynamics from its own sensors. However, road at-
tributes (road geometry, traffic control devices) are obtained
from communicating with roadside units (RSUs) [38], by
which CAVs know exact traffic environment information in
advance. We provide detailed geometries via V2I commu-
nication because road geometries are relatively static and can
be easily measured by infrastructure. If we rely on vehicular
sensing, we will be unable to obtain and utilize road ge-
ometries that are not within the sensing range. Additionally,
when a CAV is traveling at a high speed, the road geometry
information obtained via vehicular sensing may be noisy or
inaccurate. (e purpose of the trajectory planning algorithm
is to find the optimal path from an infinite number of
possible paths based on the CAV’s location in a very short
time to ensure safety, control efficiency, comfort require-
ments, and traffic regulation obeyance. Before the detailed
modeling, we made the following assumptions for the in-
volved system.

Assumption 1: the vehicle is treated as a point.
Assumption 2: all actuation and communication delays
are negligible.

Assumption 3: the vehicle is above automation level 3
according to Society of Automotive Engineering
standard [39].
Assumption 4: all vehicle dynamics effects such as
suspension movement, road inclination, and aerody-
namic forces are negligible.
Assumption 5: the road geometry characteristics,
spatially traffic regulations and control (e.g., speed limit
sign), and obstacle position information can be mea-
sured by RSU and communicate to CAVs.

3. Methodology

3.1. State Space Formulation. In this section, we describe the
system by a spatial domain state space in a curvilinear
coordinate and prove its controllability. One axle of a
curvilinear coordinate for a path is usually defined as its
centerline, while the other axle can be perpendicular to the
lane tangent. By that, road geometry and its boundaries can
be simply formulated.

Let C represents the centerline of the lane as shown in
Figure 2.(e lane centerline, with respect to the global frame
G{ } that is represented by the [xdes(s), ydes (s), θdes(s)]T ∈

R3, where its position is given by [xdes(s), ydes(s)]T and its
orientation in the global frame is represented by θdes(s). Let s

be the mapped length of the curvature along the lane
centerline that vehicle has traveled. Based on that, we define
V{ } represents the vehicle body-fixed reference frame with
its pace (pv(s)), the reciprocal of the vehicular velocity,
represents the vehicle’s forward speed in space domain, and
its orientation in the global frame is represented by θv(s).

To describe the vehicle dynamics over the established
curvilinear coordinate, we construct a state space system and
define the system state X(s) for each space s as

X(s) �

r(s)

ψ(s)

p(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

where r(s) is the lateral deviation, which equals to signed
orthogonal distance from the CAV to the closest point on the
lane centerline C, in meters; ψ(s) � θv(s) − θdes(s), where
ψ(s) is the angular deviation, θv is the angle between the CAV
heading and the x-axis in the global frame {G} and θdes(s) is
the angle between the tangent of the lane centerline and the x-
axis in the global frame {G}, in radians;
p(s) � pv(s) − pdes(s), where p(s) is the pace deviation,
pdes(s) is the reciprocal of the road speed limit (pdes(s) is a
nondifferentiable function of s, which can be treated as a
constant), in second per meter. Note that, θdes(s) and pdes(s)

are spatially varying and got in a real-time manner by the
infrastructure. By V2I, θdes(s) and pdes(s) can be directly
obtained by vehicle and used for modeling. Specifically, the

Roadside Unit
Vehicle Sensing
Communication Signal
Road Centerline

CAV
Obstacle

Figure 1: Problem description.



vehicle dynamics are modeled as a nonlinear state space
system as

dX(s)

ds
�

d
ds

r(s)

ψ(s)

p(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

sin(ψ(s))

k(s)

α(s)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� f[X(s), U(s)],

(2)

where k(s) � kv(s) − kdes(s), which is the relative angular
spatial change rate that controlled by the steering wheel.
kv(s) is the curvature of the vehicle trajectory; kdes(s) is the
curvature of the lane centerline, in radian per meter; and
α(s) is relative moderation that indicates acceleration of the
CAV, which can be treated as the control of the brake or
throttle pedal (negative value indicates accelerating), in
second per meter squared. k(s) and α(s) compose our “road
characteristics compensated” control input U(s), given as
U(s) � [k(s), α(s)]T.

However, the road speed limit can be changed based on
geometric road design in a real-world situation, which
means pdes(s) cannot be treated as a spatially invariant
constant when speed limit change occurs. Moreover, the
speed limit change for the road is a unit jump, and pdes(s) is
still a nondifferentiable function of s. To solve this problem,
we introduce a “buffer zone” in front of the speed limit
changing area where a changed speed limit is posted at the
same length as our MPC model’s prediction horizon. (e
“buffer zone” section divides speed limit difference by the
“buffer zone” length to smoothly form a discrete velocity
transit. With Δs is sufficiently small, the velocity change in

the “buffer zone” is close enough to be treated as a con-
tinuous system. (us, pdes(s) becomes a differentiable
function of s inside the “buffer zone,” and αdes(s) is the
parameter indicating acceleration of the road is the deriv-
ative of pdes(s), in second per meter squared. (e new
nonlinear function with the “buffer zone” introduced is

(dX(s)/ds) � (d/ds)

r(s)

ψ(s)

p(s)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

sin(ψ(s))

k(s)

α(s)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, where

α(s) � αv(s) − αdes(s), where αv(s) is the parameter indi-
cating acceleration of the CAV.

Table 1 shows brief equations and their associated units
of measurement

Given the state space defined above, we first analyzed its
controllability that describes the ability of any control
variables that can move the state of a system from any initial
state to any final state in a finite time interval. Hence, we
applied the following definitions and theorems to approve
the controllability.

Theorem 1. Nonlinear system small-time locally controlla-
bility [40]: the linear test: if a nonlinear _y � f(y, u), whose
linearized control system over an equilibrium point (ye, ue):
_y � Ay + Bu is controllable, then it is small-time locally
controllable at (ye, ue).

Definition 1. Equilibrium point: for a nonlinear differential
equation (dX(s)/ds) � f[X(s), U(s)], where f is a function
mapping Rn × Rm⟶ Rn. A point Xe ∈ Rn is called an
equilibrium point if there is a specific Ue ∈ Rm such that
f(Xe, Ue) � 0n.

By the Definition 1, it is trivial to find that the equi-
librium point of the system as equation (2) occurs if and only
if Xe � [0, 0, 0]T, Ue � [0, 0]T

Theorem 2. Linear time-invariant system controllability
[40]: For a linear time-invariant system with the form
_x � Ax + Bu, the controllability matrix can be written as

{G}

x0

y

{V}

ψ(s)

pv(s) θv(s)

θdes(s)

r(s)
C

s

Figure 2: Vehicle modelling on the defined curvilinear coordinate.



G � G(A, B)

� B, AB, A
2
B, . . . , A

n− 1
B􏽨 􏽩

􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
n×(mn)matrix

. (3)

If rank(G) � n, this linear system is controllable.
Based on the Definition 1, >eorems 1 and 2, we can have

the following proposition:

Proposition 1. >e state space formulated as equation (2) is
small-time locally controllable at the equilibrium point
Xe � [0, 0, 0]T, Ue � [0, 0]T.

Proof. With Taylor series, equation (2) at the equilibrium
point (Xe, Ue) can be rewritten as

dX(s)

ds
� 􏽘

n

i�1

d
i
f(X(s), U(s))X(s)�Xe

/di
X(s)􏼐 􏼑 X(s) − Xe( 􏼁

n

n!
+

d
i
f(X(s), U(s))U(s)�Ue

/di
U(s)􏼐 􏼑 U(s) − Ue( 􏼁

n

n!
⎡⎣ ⎤⎦. (4)

According to the Taylor series, a representation of a
function as an infinite sum of terms that are calculated from
the values of the function’s derivatives at a single point. In
our case, only 1st order derivative needs to be considered for
the linearized control system. Moreover, the equilibrium in

our system occurs when the CAV drives along the lane
centerline, which means that there is no deviation between
the CAV and the lane centerline. (e 1st order derivative of
equation (4) at the equilibrium point (Xe, Ue) can be written
as

dX(s)

ds
�

0 cos(ψ) 0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ψ�ψe

X(s) − Xe( 􏼁 +

0 0

1 0

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
U(s) − Ue( 􏼁, (5)

and equation (5) can be simplified as

dX(s)

ds
� AX(s) + BU(s), (6)

where A �

0 1 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ , B �

0 0
1 0
0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.

Based on equation (3), the controllability matrix of
equation (6) can be written as

G(A, B) � B, AB, A
2
B􏽨 􏽩

�

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(7)

which gives us the rank of the controllability matrix:

rankG(A, B) � 3. (8)
□

Remark 1. (e above linearization process can also be
proved by the small-angle approximation. Specifically, when

the angle is relevant small and cos(ψ) ≈ 1, the small-angle
approximation can be applied. (e same state-space model,
as equation (6), can be derived based on the small-angle
approximation from equation (2).

To reflect control frequency in the real world, we applied
the zeroth-order hold (ZOH) for control input for dis-
cretization. Specifically, the control input is assumed to be a
constant during each update spatial interval Δs, and when Δs
is sufficiently small, the discretization process can be treated
as a continuous system [41].(e discrete version of equation
(5), according to equation (6), is shown as

X(m+1)Δs ≈ AdXmΔs + BdUmΔs,∀m> 0, (9a)

s.t. Ad � e
AΔs

, (9b)

Bd � 􏽚
Δs

0
e

AcdcB. (9c)

For notation brevity, we useXm to representXmΔs for the
rest of the paper.

Table 1: Table of variables.

Variables Equation Unit
Lateral deviation r(s) (N/A) m

Angular deviation ψ(s) θv(s) − θdes(s) rad
Pace deviation p(s) pv(s) − pdes(s) (s/m)

Relative angular spatial change rate k(s) kv(s) − kdes(s) (rad/m)

Relative moderation α(s) αv(s) − αdes(s) (s/m2)



3.2. MPC Formulation. In this section, we provide an MPC
formulation due to its great capability to systematically deal
with system state and control constraints and meanwhile
handling multiobjectives. Further, it is robust to be against
system disturbances due to its rolling horizon imple-
mentation. Based on the discretized control Equation (9a), a
linear MPC formulation is formulated in our study. In our
MPC framework as illustrated by Figure 3, at each current
space step m, we solved a constrained trajectory optimi-
zation problem over a fixed finite prediction horizon with
spatial length mp to calculate the optimal control input and
state sequences within the horizon. (e controller only
implements the first step optimal control input at space step
m, and the algorithm continues this process repetitively until
the end of algorithm, as shown in Figure 3.

To better illustrate the algorithm, we use
Up

m � [U
p,m
m , U

p,m
m+1, . . . , U

p,m
m+mp− 1] to denote the optimal

control vectors for CAV obtained at space m for the pre-
diction horizon, m to m + mp;
Xp

m � [X
p,m
m , X

p,m
m+1, . . . , X

p,m
m+mp

] to denote the predicted
future states for CAV obtained at space m for the prediction
space horizon, and m to m + mp;X

r
m � [Xr

0, Xr
1, . . . , Xr

m] to
denote the realized states for CAV by space m, which can be
seen as the optimal solution where Xr

0 is the initial state
when the control introduces.

By carefully considering the control efficiency and
driving smoothness, an optimal control strategy can be
obtained by solving the optimal control problem given as

X
p∗
m ,U

p∗
m( 􏼁 � argminF X

p,m
m+mp

􏼒 􏼓

+ 􏽘

m+mp− 1

i�m

L X
p,m

i , U
p,m

i􏼐 􏼑,

(10a)

s.t. X
p,m
i+1 � AdX

p,m
i + BdU

p,m
i ,

∀i ∈ m, m + 1, m + 2, . . . , m + mp − 1􏽮 􏽯,
(10b)

X
p,m
m � X

r
m, (10c)

X
p,m
i ∈ Xi∀i ∈ m, m + 1, m + 2, . . . , m + mp􏽮 􏽯, (10d)

U
p,m

i ∈ Ui∀i ∈ m, m + 1, m + 2, . . . , m + mp􏽮 􏽯, (10e)

where mp is the prediction space horizon; L(X
p,m
i , U

p,m
i ) is

the running cost consists of the CAV penalties on the de-
viation from equilibrium point and driving discomfort; and
F(X

p,m
m+mp

) is the terminal cost that refers to the final stage of
the prediction horizon. Equation (10c) is the initial state for
the prediction horizon at space step m; and equation (10d) is
the state constraint used to guarantee the vehicle states at
each space point. Equation (10e) is the control constraint
used to regulate that the steering wheel rotation and ac-
celeration/deceleration are within a reasonable range of
U(s).

For the objective function formulated in equation (10a),
the running cost is specified as follows:

L X
p,m
m+n, U

p,m
m+n( 􏼁 � X

p,m
m+n( 􏼁

T
PX

p,m
m+n + U

p,m
m+n( 􏼁

T
QU

p,m
m+n

+ 2q1kv,m+nkdes,m+n − q1k
2
des,m+n,

(11a)

where P and Q are diagonal positive definite matrices,
usually designed as the diagonal matrix below:

P �

p1

p2

p3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, p1, p2, p3 > 0, (11b)

Q �
q1

q2
􏼢 􏼣, q1, q2 > 0. (11c)

Especially, if we want to regulate that the vehicles stick to
the lane centerline for safety concern, we can predefine p1
and p2 with large values, while on the other hand, if we are
willing to provide the trajectories with flexibility, we can set
p1,2⟶ 0.

We further specify the terminal cost as:

F X
p,m
m+mp

􏼒 􏼓 � X
p,m
m+mp

􏼒 􏼓
T

SX
p,m
m+mp

, (12)

where S �

s1
s2
s3

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, s1, s2, s3 > 0.

In equations (10d) and (10e), by considering vehicle’s
physical limits, CAV’s state constraint determined at space
m is formulated as

r
L
m+n ≤CX

p,m
m+n ≤ r

U
m+n∀n ∈ 0, 1, 2, . . . , mp􏽮 􏽯, (13a)

ψmin ≤DX
p,m
m+n ≤ψmax∀n ∈ 0, 1, 2, . . . , mp􏽮 􏽯, (13b)

0≤TX
p,m
m+n ≤ +∞∀n ∈ 0, 1, 2, . . . , mp􏽮 􏽯, (13c)

−
1

Rmin
− kdes,m+n ≤EU

p,m
m+n ≤

1
Rmin

− kdes,m+n

∀n ∈ 0, 1, 2, . . . , mp − 1􏽮 􏽯,

(13d)

αmin ≤ IU
p,m
m+n ≤ αmax∀n ∈ 0, 1, 2, . . . , mp − 1􏽮 􏽯. (13e)

Equation (13a) is the constraint to make sure that the
CAV drives within the drivable lane, where C � [1, 0, 0], and

rL
m+n �

r
−
m+n, ifOb ≤m + n≤Oe

− rmax,Otherwise
􏼨 and

rU
m+n �

r
+
m+n, ifOb ≤m + n≤Oe

rmax,Otherwise
􏼨 . Where r−

m+n and r+
m+n are

lower bound and upper bound that CAV can pass through
within the obstacle zone, respectively; Ob and Oe are spatial
positions where obstacle start and end, which can be ob-
tained from infrastructure through V2I in advance. rmax is
the half of the lane width; equation (13b) is the constraint
that the physical limits of allowable angular deviation for
CAV to make sure that the CAV’s driving direction will not
deviate much from the lane centerline direction, where
D � [0, 1, 0], ψmin and ψmax indicates the lower and upper



bound of allowable angular deviation; equation (13c) is the
constraint to ensure that the CAV does not exceed the speed
limit, where T � [0, 0, 1], and this constraint also makes sure
that the CAV cannot drive backward; equation (13d) is the
constraint that the realized moving path of CAV is bounded
by a givenminimum turning radius, where E � [1, 0], Rmin is
the minimum turning radius of the CAV; equation (13e) is
the constraint based on the physical limits of vehicle’s ac-
celeration/deceleration rate a. In this constraint, I � [0, 1]

and αmin � − amaxp
3
s , where amax is the CAV’s maximum

acceleration limit. Similarly, αmax ,s � − aminp3
s , where amin is

the CAV’s maximum deceleration limits.
To be noted that the above formulation can be expanded

in the scenario with speed limit change or stop sign by
introducing the concept of “buffer zone,” and correspond-
ingly, equation (13e) changes to αmin − αdes ≤ IU

p,m
m+n ≤ αmax

− αdes∀n ∈ 0, 1, 2, . . . , mp − 1􏽮 􏽯. (e information kdes,m+n,
θdes,m+n and pdes,m+n can be hardly measured by vehicle due
to the limit of sensing range, whereas this static information
can be readily measured and communication by the infra-
structure. As can be found that, differed from the method
merely based on vehicular sensors, the infrastructure-
assisted approach can provide necessary information to
further improve control. Furthermore, the information that
is transmitted by vehicle-to-vehicle (V2V) communication
is extremely dependent on traffic volume and the distance
between the controlled vehicle and its leading vehicle. If the
volume of traffic is low, there may be no other vehicles to
provide geometric data. Although the volume of traffic is not
necessarily low, V2V communication cannot provide in-
formation if the distance between vehicles is large, as the
vehicle will not save much geometric road information as it
passes.

4. Experiment and Results

To test our optimal control model, we create a one-lane road
segment with a series of curves as the numerical simulation
environment shown in Figure 4. (e road comprises three
continuous curves with a total length of 1600m and 3.6m

lane width, which means a 1.8m width from lane centerline
to left/right lane boundary. (e first two curves have the
same radius of 300m, and the radius of the third curve is
200m. (e speed limit of the road is set as 54 (km/h) (15
(m/s)).

To validate our proposed method, simulation experi-
ments of multiple traffic scenarios are performed on
MATLAB since the field test is expensive and beyond the
scope of this paper. (e parameter setting for the CAV
trajectory optimization as equations (10a) to (10e) is given in
Table 2, according to [37, 42].

Five different simulation experiments of multiple traffic
scenarios are summarized in Table 3.

4.1. Scenario 1: A Continuous Curvy Road Segment with the
Constant Speed Limit. For the initial condition, we set the
vehicle’s lateral deviation from the lane centerline to be 1m,
the angular deviation to be − (π/6) rad, and the pace de-
viation to be (1/30) (s/m) (equivalently desired speed dif-
ference 5 (m/s) in our case). To better analyze the
convergence behavior of the proposed algorithm, we plot the
proposed controller performance of the first 50m in Fig-
ure 5, which demonstrates the proposed trajectory opti-
mization method’s performance without the “buffer zone”
introduced. To be noted that system states and control in-
puts maintain very closely to the system equilibrium point
with nearly no oscillation from 50m to 1600m.
Figures 5(a)–5(e) indicate the system state evolution, in-
cluding lateral deviation, angular deviation, and pace de-
viation, and how the control inputs change in the space
domain as the CAV moves by our control, respectively. As
can be seen, similar trends are observed for different system
states and the control input values. To be more specific, the
lateral deviation exhibits some reasonable fluctuation ini-
tially: CAV moves 1.386m laterally from lane centerline’s
left side to the right side in the first 6m along the road, where
the positive sign indicates that the CAV has been off the
track and is at the left side of the lane centerline and the
negative sign indicates that the CAV has off the track and is
at the right side of the lane centerline. (en it quickly turns
back from the right side to the lane centerline in the next 6m
and keeps driving on the lane centerline afterward. Angular
deviation and relative angular spatial change rates converge
in a nearly similar fashion as lateral deviation. As for the pace
deviation and relative moderation converges to zero grad-
ually. (ese results show that the algorithm quickly finds the
difference between the vehicle states and the lane centerline
and calculates the optimal control inputs to achieve the
system equilibrium dynamically. Moreover, even though the
θdes(s) and kdes(s) evolve spatially, the proposed controller
shows great robustness to these disturbances mentioned
above. Rather than the time-domain approach (e.g., [43]),
the proposed method can better handle the space varying
θdes(s) and kdes(s), which shows the superiority of proposed
algorithm by incorporating the road geometric attributes via
infrastructure to vehicle communication.

To gain further insight into the proposed trajectory
optimization method, we convert pv(s), α(s), and kv(s) in

…

Trajectory/Input

m – 1 m + 1 m + 2 m + mp Spacem

Prediction Horizon
Prediction Trajectory

Prediction Control Input
Realized Trajectory

Figure 3: Illustration of model predictive control.



the spatial domain into speed, acceleration, and angular
deviation rate in the time domain, as shown in Figure 6. (e
CAV starts with and keeps a high acceleration for the first
15m and then it decreased gradually until it achieves equi-
librium points, as shown in Figure 6(a). (ese acceleration
changes lead to a speed increase in the first 50m andmake the
speed converge to the desired speed, as shown in Figure 6(b).
We can also find that the angular deviation rate is within a
reasonable range initially and gradually converges to zero.

4.2. Scenario 2: AContinuous Curvy Road Segment with Speed
Limit Change. (e results in the previous sections show that
the proposed trajectory optimization method is efficient and
stable without speed limit change to be considered. How-
ever, in order to test how the proposed trajectory optimi-
zation method works in a real-world situation, we change
the speed limit of the road segment from 1104m to 1600m
to be 10 (m/s) and create a “buffer zone” of the same length
as mp. In other words, we now pay our attention to a new
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Figure 4: Illustration of road trajectory.

Table 2: Default parameters for model validation.

Parameters Value
ψmin and ψmax − (π/6) rad and (π/6) rad
amin and amax − 5 (m/s2) and 3 (m/s2)
rmax 1.8m
p1, p2 and p3 0.33, 0.1 and 10
q1 and q2 1 and 500
s1, s2 and s3 5p1, 5p2 and 5p3
Δs 2m
mp 80m

Table 3: Scenarios settings.

Scenarios Speed limit change Driving behavior change Obstacle System disturbances
1 No No No No
2 Yes No No No
3 No Yes No No
4 No Yes Yes No
5 No Yes Yes Yes



situation where the road segment from 1024m to 1104m is
replaced by the “buffer zone” with αdes equals
(1/1200)(s/m2). (e illustration for the road trajectory with
a “buffer zone” is given in Figure 7.

(e results in Figure 8 give us a generalized illustration of
how the proposed trajectory optimization method performs
with the “buffer zone.” Although the “buffer zone” is in-
troduced, the system state evolution and how the control
input change in the space domain, as shown in Figures 8(a)–
8(e) respectively, is stable and show great robustness to the
real-world disturbance.(e change of angular deviation rate
that indicates the relative turning speed and direction of the
CAV shown in Figure 8(h) shows a similar trend as that in
Figure 6(c). Furthermore, as expected, CAV’s speed and
acceleration oscillate around the “buffer zone.”

Figure 9 gives us a detailed illustration of CAV’s speed
and acceleration changes inside the “buffer zone.”
Figure 9(a) shows that the algorithm quickly detects the
speed limit change in the “buffer zone” and makes the

deceleration decision to achieve the system equilibrium
dynamically, which leads to a smooth speed transition, as
shown in Figure 9(b).

4.3. Scenario 3: A Curved Road with Two Different Desired
Driving Behaviors. (e previous sections demonstrated the
performance of our proposed trajectory optimization
method. In this section, we further conduct a comparison to
see the p1 and p2 weight impact on the obedience to the lane
centerline. To see the flexibility of CAV’s decision, we set an
obedient driving behavior with p1 and p2 as the default case
and a flexible one with weights approaches to zero. To better
visualize, we create a new one-lane 150m curvy road with
the same CAV initial conditions and adjust the reference
line’s weight. (e dash-dotted line in Figure 10 shows the
result with original weight, and the dotted line shows the
result of all q1, q2, s1, and s2 changed to 0 which means that
there is no reference line to follow.
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Figure 5: CAV state and control results of the first 50 meters: (a) lateral deviation r(s); (b) angular deviation ψ(s); (c) pace deviation p(s);
(d) relative moderation α(s); (e) relative angular spatial change rate k(s).
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Figure 6: Speed, acceleration, and angular deviation rate of CAV without the “buffer zone”: (a) acceleration; (b) speed; (c) angular deviation
rate.
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Figure 8: CAV state and control results with the “buffer zone”: (a) lateral deviation r(s); (b) angular deviation ψ(s); (c) pace deviation p(s);
(d) relative moderation α(s); (e) relative angular spatial change rate k(s); (f ) acceleration; (g) speed; (h) angular deviation rate.
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Figure 9: Speed and acceleration inside the “buffer zone”: (a) acceleration; (b) speed.



(e results shown in Figure 10 illustrate that CAVmakes
much more aggressive decisions with the obedient driving
behavior than those with the flexible driving behavior. As we
can see, CAV with the obedient driving behavior makes
sharp turning decisions and quickly turns back to the lane
centerline. In contrast, CAV makes smooth turning deci-
sions and needs more time to reach the lane centerline with
the flexible driving behavior. Moreover, unlike CAV with
obedient driving behavior tightly follows the reference line
as long as it reaches the reference line, CAV with the flexible
driving behavior can deviate from the reference line when
the curve occurs.

4.4. Scenario 4: A Curved Road with an Obstacle. We further
conducted a simulation experiment using the same initial
condition and one-lane road as shown in Figure 7 to test our
proposed trajectory optimization method with a 10m ob-
stacle created. (e rL

m+n � 0.5m and rU
m+n � 1.8m during the

obstacle section. To meet both safety and driving comfort

requirements, a joint driving mode is designed, whichmeans
a flexible driving behavior before and during the obstacle
and an obedient driving behavior afterward.

As we can see from Figure 11, the CAV quickly detects
the obstacle and makes smooth and comfortable control
decisions to avoid the obstacle. (e flexible driving behavior
makes the CAV drive in the center to prevent any potential
collision between the CAV and the obstacle during the
obstacle section. In contrast, the obedient driving behavior
lets the CAV quickly turn back and keep to the lane cen-
terline after the CAV passes the obstacle section.

4.5. Scenario 5: A Curved Road with an Obstacle and System
Disturbances. To show the robustness of our proposed
method, we conduct an experiment with external system
disturbance [44] based on Scenario 4 to demonstrate that
our method is capable of providing efficient and stable
control. Specifically, we add normally distributed random
generated disturbances to each of the system states. (e
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details of disturbances are given in Figure 12, where the
range of disturbance for the lateral deviation, the angular
deviation, and the pace deviation is within [− 0.1, 0.1],
[− 0.05, 0.05], and [− 0.0012, 0.0012] per meter, respectively.

As we can see from Figure 13, the resulted trajectory is also
smooth and within the feasible drivable area, which suggests
that our method is also efficient with system disturbance.

5. Conclusion

Vehicular trajectory optimization plays an essential role in
ensuring vehicles’ travel safety and efficiency. Traditional
trajectory planning algorithms and methods are primarily
formulated in the time domain by detecting the road in-
formation with a limited range and optimizing the trajectory
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Figure 12: System disturbance: (a) lateral deviation noise; (b) angular deviation noise; (c) pace deviation noise.
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myopically, which cannot competently handle the spatially
varying road geometric change, obstacles, and traffic reg-
ulations. To remedy that, this paper provided a new angle to
plan long-term trajectories in a spatial domain with the help
of infrastructure. Specifically, this paper systematically
formulates trajectory optimization in a spatial domain and
on a curvilinear coordinate, enabling our method to flexibly
formulate spatially varying complex road geometries, traffic
regulations, and road obstacles whose information can be
obtained through V2I communication. For rigor, the con-
trollability of the state space was mathematically proved by
using both the linear test and the small-angle approximation.
Considering vehicle travel efficiency and trajectory
smoothness while satisfying the collision avoidance and
vehicle kinematics constraint, a multiobjective MPC was
constructed, which can be efficiently solved by the state of
arts optimization methods.

To demonstrate the usefulness and wide applications of
our proposed trajectory planning optimization algorithm,
multiscenarios numerical simulations were conducted,
which include five parts: (i) a continuous curvy road seg-
ment with the constant speed limit, (ii) a continuous curvy
road segment with speed limit change, (iii) a curved road
with two different desired driving behaviors, (iv) a curved
road with an obstacle, and (v) a curved road with an obstacle
and system disturbances. As the results suggested, the
proposed trajectory optimization method could guarantee
satisfactory performance for all scenarios under different
types of disturbances. Further, the algorithm is capable of
providing stable trajectory control with nearly no oscillation
by utilizing the information provided by the infrastructure
and newly presented formulation.

Some directions can be extended on the current
framework in the future. For example, future studies could
apply a more complex four-wheel vehicle control model and
incorporate uncertainties in vehicle dynamics. Moreover, we
will extend the MPC framework to include ambient vehicle
movement and cooperatively plan the trajectories of CAVs
for more applicable scenarios, such as intersections and on-
ramp scenarios [45].
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