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Studying the time interval duration between the first accident and the second accident caused by it can provide decision makers
with valuable information on how to effectively deal with high-risk second accidents. 'is paper is aimed to explore the potential
influencing factors of the interval duration between the two accidents and predict it. First, the spatiotemporal definition method is
applied to identify the cascaded first accident and the second accident. 'en, on the basis of using Kaiser-Meyer-Olkin (KMO)
measure and Bartlett’s sphere test statistics to ensure the applicability of the data to the factor analysis method, the explanatory
variables that can significantly affect the interval duration are obtained through the factor analysis method. Finally, the random
forest model (RF), which combines the advantages of machine learning methods, is employed to predict the duration of the
interval. Traffic accident data set collected in Los Angeles city from February 2016 to June 2020 is used to validate prediction
performance in this study. Bayesian method is applied to optimize the hyperparameters in the RF, while three evaluation in-
dicators, including the Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Percentage Error
(MAPE), are used to estimate the prediction effect.'e test results and comparative experiments confirm that RF is able to predict
the interval well and has better prediction performance. 'is is of great significance for the prediction of the duration of the
interval between one accident and the second accident.

1. Introduction

Road traffic accidents can be caused by motor vehicles and
nonmotor vehicles [1, 2], and their impacts are also un-
certain. Due to the peculiarities of the road, the dangerous
traffic conditions caused by the first accident usually expose
unattended vehicles and persons to extra risks. 'is issue
may lead to a second accident. 'e risk of a second accident
is estimated to be six times that of the first accident [3]. 'e
huge negative consequences caused by the second accident
make it another issue of concern for road traffic accidents to
be widely studied.

Raub [4] proposed that any crash that occurred within one
mile from the scene of an accident with an event lasting more
than 15 minutes is considered to be related to the original
event, and this accident is called a second accident cascaded

with the first accident.'e 15-minute threshold is based on the
escape time provided by the related research of Lindley and
Tignor [5], that is, the time that may affect the traffic operation
after the accident. 'e one-mile distance is derived from the
observation of accidents that occurred during the period of
maximum traffic flow. Karlaftis et al. [6] applied the predefined
identification parameters of time and distance proposed by
Raub to identify secondary accidents. Hirunyanitiwattan and
Mattingly [7] considered 60 minutes and 2 miles upstream as
the thresholds, but Moore et al. [8] set the thresholds of time
and space as 2 hours and 2 miles on the Los Angeles highway.
Zhan et al. [9] calculated the thresholds based on the different
lane congestion assumptions in the “Expressway Capacity
Manual,” using accident recovery time of 33.34–52.6 minutes,
event dissipation time of 0–21.76 minutes, and maximum
queue length of 1.09–1.49 miles as thresholds.
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'e above studies all used the static spatiotemporal
threshold method to identify second accidents. 'e per-
formance of this static method mainly depended on the
thresholds and their applicability to the study area. Sun [10]
proposed an improved dynamic threshold method that can
extract second accidents from the event database. 'e dy-
namic threshold was derived from the initial accident
progress curve. 'e dynamic method described in the study
of Sun and Chilukuri [11] improved the existing static
method by using the event progress curve to mark the end of
the change queue during the entire event. Moreover, some
studies have also proposed speed-based methods to deter-
mine the time and space range of major events or classify
second accidents [12–20].

Not only focus on the identification of second accidents,
but also the prevention or rescue of second accidents. Se-
Ryong et al. [21] researched the second accident in the
tunnel, and they concluded the concrete barriers are suitable
to reduce the risk of the second accident. Aoki et al. [22]
developed a new robot called “QRoSS.” It can replace
humans to complete some dangerous second accident rescue
missions. Kostikova et al. [23] analyzed the factors of second
accidents through data from in-depth accident analysis.
Pietila et al. [24] studied determinants of recurring occu-
pational accidents, and it can be found that the substantial
reoccurrence of occupational accidents emphasizes the
importance of assessing the prevention policies after each
accident. Kim et al. [25] propose a road stud system in-
corporating a wireless control function using RF-based
communication with existing solar LED road studs and a
system for controlling them. It can be possible to prevent
secondary accident after accident.

Although scholars have made a lot of contributions to
the study of second accidents, they have not explored the
relationship between the time and spatial threshold and the
identification of secondary accidents. 'ere is also a lack of
research on the prediction of the time between the first and
second accidents. In order to solve these problems, this study
considers the influence of the first accident spatiotemporal
impact threshold on the second accident and proposes a
static spatiotemporal threshold definition method based on
sensitivity analysis to identify accident pairs. At the same
time, consider the influence of the duration of the first
accident, explore, and analyze the duration of the interval
between two accidents. 'us, it provides more compre-
hensive and accurate accident information for traffic
management and a scientific basis to avoid accidents.

'e remaining of this research is organized as follows:
Section 2 introduces the data source. Section 3 presents the
framework of this work and the methods used. 'e result
and discussion are outlined in Section 4. Section 5 is the
conclusion and prospect.

2. Data Description

'is study is based on data analysis, which is getting more
and more attention to be applied in various research in the
field of transportation [26–29]. According to statistics on
traffic accidents for five consecutive years (2016–2020) in
various cities of the United States, the number of accidents in
Los Angeles city ranked first, with 11798, 11388, 11309,
8705, and 1716, respectively, accounting for 29.4%, 29.3%,
29.1%, 30.4%, and 31.3% in five years. 'erefore, in order to
clarify the potential mechanism of accidents in Los Angeles
city, we selected 2016–2020 road traffic accidents in Los
Angeles as the data set. 'e details of the data source are
shown in Table 1.

3. Methodology

3.1. Spatiotemporal Definition. 'e main idea of the spa-
tiotemporal definition method is to treat an accident that
occurs within a given time threshold and space threshold
from the first accident as a second accident cascaded with it.
'e mathematical model is described as follows:

SC �
0, other,

1, if tc ∈ tp, tp + Δt   and sc ∈ sp, sp + Δs  ,

⎧⎨

⎩

(1)

where tc is the time point when the first accident occurred,
SC is the space point where the first accident occurred, ∆t
and ∆s are the time and space threshold of the spatiotem-
poral definition method. 1 means that the accident is
identified as a second accident; otherwise, it is 0.

3.2. Factor Analysis. In this paper, the factor analysis
method is used to identify the influencing factors in the
interval duration prediction, analyze the correlation between
the respective variables and the dependent variables, and
extract common factors. 'e public factor set formed by this
method is applied to represent the accident information
without affecting the prediction. On the one hand, the
complexity of the model is simplified without affecting the
effect of the predictive model. On the other hand, variables
that can significantly affect the duration of the interval can
be explored.

3.2.1. Correlation Coefficient. 'is study employs the
Pearson coefficient to quantify the closeness of the factors.
'e coefficient is defined as the quotient of the covariance
and standard deviation between two variables. 'e calcu-
lation formula is as follows:
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Cov(X, Y)
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where Cov is covariance, σ is the standard deviation. It can
be seen from formula (2) that the Pearson coefficient is
meaningful if and only if the standard deviations of the two
variables are not 0.

3.2.2. Applicability Analysis. If the variables have no cor-
relation or the correlation is low, there is no common factor
between these variables. 'erefore, only when there is a
strong correlation between the variables, the data can use
factor analysis with a few false variables instead of objective
explanatory variables. In this study, the KMO measure and
Bartlett’s sphere test are used to test the applicability of
factor analysis of data.

(1) KMO Measurement. 'e KMO measurement is a com-
prehensive index that takes into account the correlation
coefficient and partial correlation coefficient of variables.
'e calculation formula is as follows:

KMO �
 i≠jr

2
ij

 i≠jr
2
ij +  i≠jp

2
ij

, (3)

where rij is the correlation coefficient between variables i and
j, and pij is the partial correlation coefficient between var-
iables i and j. When the correlation coefficient is much larger
than the partial correlation coefficient, the KMO measure is
close to 1; otherwise, the KMOmeasure is close to 0. 'at is,
the KMOmeasure is between [0, 1]. 'e more it is close to 1,

Table 1: Description of data properties.

Property Description
Number Unique identifier for incident record
Source Source of incident report (accident API)
Information channel code Provide a more detailed description of the event
Collision level 'ere are 4 levels, the greater the value, the greater the impact on traffic
Start time Accident start time
End time Accident end time
Longitude of occurrence 'e longitude shown in GPS coordinates at the beginning of the accident
Latitude of occurrence 'e latitude shown in GPS coordinates at the beginning of the accident
End longitude 'e longitude shown in the GPS coordinates at the end of the accident
End latitude 'e latitude shown in the GPS coordinates at the end of the accident
Distance 'e length of the road area affected by the accident
Characterization Natural language description of the accident
Figure Address bar street number
Street Street name in the address bar
Side 'e address bar shows the opposite side of the street (left/right)
City City displayed in the address bar
County County displayed in the address bar
State State shown in the address bar
Postcode Postal code displayed in the address bar
Country Country shown in the address bar
Time zone 'e location of the accident shows the time zone
Airport code Airport weather station closest to the accident site
Weather timestamp Show the time stamp of the meteorological observation record
Temperature Temperature (in degrees Fahrenheit)
Wind chill Wind chill (in degrees Fahrenheit)
Humidity Humidity (percent)
Pressure Air pressure (in inches)
Visibility Visibility (in miles)
Wind direction Wind direction
Wind speed Wind speed (in miles per hour)
Precipitation Precipitation (in inches)
Weather conditions Weather conditions (rain, snow, thunderstorm, fog, etc.)
Conveniences 'e presence comfort indicated by the POI annotation is in a nearby location
Deceleration zone Speed bump or hump nearby
Intersection 'ere is an intersection nearby
Yield Yield nearby
Junction 'ere is a junction nearby
No exit 'ere is no exit sign nearby
Railway 'ere is a railway nearby
Roundabout 'ere is a roundabout nearby
Station 'ere is a station nearby
No thoroughfare 'ere are stops nearby
Traffic light 'ere are traffic lights nearby
Turn Turn signs nearby
Sunrise sunset Show day or night according to sunrise/sunset
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the correlation is stronger, the partial correlation is weaker,
and the effect of factor analysis is better; when it is less than
0.5, the correlation is low and factor analysis is not
applicable.

(2) Bartlett Sphere Inspection. 'e Bartlett sphere test judges
whether variables are independent based on data correlation
and make the null hypothesis that the correlation coefficient
matrix is a unit matrix. If the value of the test statistic is large
and the corresponding associated probability value is less
than the significance level (0.05) given by the study, the null
hypothesis is rejected; otherwise, the null hypothesis is ac-
cepted and the correlation coefficient matrix is approxi-
mately a unit matrix, indicating that the variables may
provide some information independently and lack common
factors, which is not suitable for factor analysis.

3.2.3. Mechanism of Factor Analysis. 'e factor analysis
method explores the relationship between the original
variables [30], converts multiple variables of the original
data into several common factors that can express the de-
pendence of the data, eliminates the overlap of information
between the variables to a certain extent, and reduces the
intrinsic relevance [31]. In the method of factor analysis,
factors are abstract concepts and only serve as symbols. 'e
mathematical model is described as follows.

Assuming the original variables xi (i � 1, 2, 3, . . . , p) and
standardizing them to obtain new variables zi, the factor
analysis model is expressed as follows:

zi � ai1F1 + ai2F2 + · · · + aimFm + ciUi(i � 1, 2, 3, . . . , p).

(4)

Among them, Fj (j � 1, 2, . . . , m) is the common factor;
Ui (j � 1, 2, . . . , p) is only related to the variable zi and is
called the special factor; the coefficient aij and cij refer to the
factor loading, and A� (aij) is called the factor loading
matrix. 'en, the above formula can be expressed as the
following matrix form:

z � AF + CU, (5)

where z� (z1, z2, . . . , zp)T, F� (F1, F2, . . . , Fm)T，U�

(U1, U2, . . . , Up)T, A� (aij)p∗m, C� diag (c1, c2, . . . , cp).

3.2.4. Factor Rotation. 'e factor loading matrix is not
unique, so it is necessary to rotate the factor loadingmoment
[32]. 'is is helpful that the square value of each column or
row of the loading matrix is differentiated to two levels of 0
and 1 and can simplify the factor loading matrix.

'is study uses the maximum variance method for factor
rotation. On the basis of the initial load matrix, the trans-
formation method of the factor load matrix is obtained
according to the simple structure criterion so that the
variance of the square value of each column element of the
transformed factor load matrix is kept independent of each
other. At this time, a few variables have higher loading values
on the factors, which can explain the composition of
common factors.

3.2.5. Factor Score. After the load matrix is rotated, its factor
score function is defined as follows:

Fj � βj1X1 + βj2X2 + · · · + βjpXp, j � 1, 2, 3, . . . , m. (6)

It can be seen from the above formula that the coefficient
of the score function can be calculated to obtain the score of
each factor. Since p>m, an accurate score cannot be ob-
tained, and only an estimated value of the score can be
obtained [33].

'rough the Bartlett factor score, use the weighted least
squares method to finish estimating. Regarding xi-ui as the
dependent variable, the factor loading matrix is regarded as the
observation of the independent variable, decomposed as follows:

xi1 − μ1 � a11f1 + a12f2 + · · · + a1mfm + ε1
xi2 − μ2 � a21f1 + a22f2 + · · · + a2mfm + ε2
. . . . . .

xip − μp � ap1f1 + ap2f2 + · · · + apmfm + εp

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

. (7)

Because the variances of the special factors are different,
the weighted least squares method is used to find the score,
so that


p
j�1 xij − μi  − ai1

f1 + ai2
f2 + · · · + aim

fm  
2

σi
2 . (8)

Among them, the smallest f1,
f1, . . . , fm is the factor

score of the corresponding data.
Expressed as a matrix:

x − μ � AF + ε. (9)

To achieve the minimum (x − μ − AF)TD− 1(x − μ
−AF), the minimum value F is the factor score of the re-
sponse data, among them,

D �
σ−2
1 0

0 σ−2
p

⎡⎢⎢⎣ ⎤⎥⎥⎦. (10)

'e calculated F is satisfied ATD− 1F � ATD− 1A(x − μ),
and the solution is as follows:

F � A
T
D

− 1
A 

− 1
A

T
D

− 1
(x − μ). (11)

3.3. Random Forest Model. Random forest (RF), proposed by
Breiman [34], belongs to the Bagging class of ensemble al-
gorithms.'e core idea of Bagging is to use bootstrap to sample
randomly, collect the same number of samples for each tree,
repeat the process several times to generate several decision
trees, train the learners separately, and integrate the training
results of the weak learners into strong learning according to
the strategy device. For the classification tree, the voting
strategy is combinedwith the result of the weak learner, and the
category with the most votes is the final output of the model.
For the regression tree, the arithmetic average of the output of
the weak learner is used as the final predicted value of the
model. 'e structure diagram is shown in Figure 1.

4 Journal of Advanced Transportation



'e bagging framework that chooses the CART tree as a
weak learner is called random forest [35]. When the decision
tree grows, it is different from other decision trees. 'e
CART tree is a binary tree and uses the feature with the
smallest Gini index as the split point to split to generate two
subtrees. 'e Gini Index, also known as Gini Impurity, is
usually used to measure the degree of uncertainty. Because
the CART tree is a binary tree, the Gini index can be
expressed as follows:

Gini(p) � 2p(1 − p). (12)

In the formula, p refers to the probability of being
classified into this category.

3.4. Bayesian Optimization Algorithm. 'e Bayesian opti-
mization algorithm, proposed by Snoek et al. [36], is one of
the most famous scalable applications of Bayesian networks
and is often applied for hyperparameter optimization in
machine learning models. 'e algorithm defines the dis-
tribution of the objective function from the input data to the
output data and requires that there are several sample points
(assuming that the hyperparameters conform to the
Gaussian process (GP)). 'rough the Gaussian regression
process, the posterior probability distribution of the known
n points is calculated, and the expectedmean and variance of
each hyperparameter at each value point are obtained. 'e
mean value represents the final expected effect. 'e larger
the mean value, the larger the final index of the model; the
variance represents the uncertainty [37]. 'erefore, in
Gaussian regression, points with large mean and large
variance should be selected. 'e main idea (as shown in
Figure 2) is to give an optimized objective function, con-
tinuously add sample points provided by the acquisition
function (AC) (like Upper confidence board, UCB; Proba-
bility of improvement, PI; Expected improvement, EI) to
update the posterior distribution of the objective function,
and continue to receive the last parameter information to
update the current parameters until the posterior distri-
bution Basically fits the real distribution.

3.5. Evaluation Indicator. 'ere are three commonly used
regression model evaluation indicators: Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE),

and Root Mean Square Error (RMSE). 'eir formulations
are as follows:

MAE �


N
i�1 tpi − toi





N
,

MAPE �
1
N



n

i�1

tpi − toi

toi




× 100%,

RMSE �

�������������


N
i�1 tpi − toi 

2

N



.

(13)

In the formula, N is the number of data sets, tpi is the
prediction value, and toi is the true value.

3.6. Prediction Framework. Firstly, use the spatiotemporal
definition method, identify the secondary accidents cas-
cading with the first accident from the original data, inte-
grate the accident pairs, and verify the accuracy of the
accident pair recognition through the accident description.
'en, KMO measurement and Bartlett sphere test are in-
troduced to test the applicability of factor analysis to the
accident information. Finally, after the verification is passed,
the data is analyzed by factor analysis, and a random forest
model (RF) is constructed to predict the interval between the
first and second accidents of road traffic accidents. 'e
duration model and the framework flow chart shown in
Figure 3 are as follows:

Step 1: According to the four dimensions of the ac-
cident’s start time, end time, the longitude of occur-
rence, and latitude of occurrence, use the
spatiotemporal definition method to process each ac-
cident record information in the original data, and
extract the secondary accidents cascaded with it.
Step 2: Verify the information extracted in Step 1 based
on the accident description information of the accident.
If the verification fails, it will be filtered; if the infor-
mation passes the verification, the accident information
will be integrated.
Step 3: Preprocess the data of the new data set inte-
grated for the first accident and the second accident,
calculate the Pearson coefficient between the inde-
pendent variable and the dependent variable, KMO

Original data set

Random
sampling

Sub training
set Dn

Sub training
set D2

Sub training
set D1 Sub-learner L1

Sub-learner L2
Integrate Strong learner

Sub-learner Ln

Figure 1: Bagging structure.
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measurement statistics, and Bartlett’s sphere test sta-
tistics to analyze whether the data can be applicable for
factor analysis method.
Step 4: Use factor analysis to extract the common
factors of the data set, stratify the influencing factors,
calculate the factor score, calculate the weight of each
variable, and feedback the factor score to each sample
point to form a new data set.
Step 5: Divide the new data set into a training set and
test set according to the ratio of 7 : 3.

Step 6: Use the Bagging method, specifically the
Bootstrap self-samplingmethod, to process the training
set, randomly select k samples (k less than the number
of samples n) with replacement to form the subtraining
set, and repeat this step.
Step 7: Construct a weak decision tree learner for each
subtraining set and use the method of randomly
selecting features during feature selection.
Step 8: Combine each weak learner to form a strong
random forest learner. Input the test set and optimize

Begin

Model initialization

Initial points

GP process

Determine the type of AC

Obtain the point with the
largest AC value

Termination condition

Yes

No

No Yes

Output the optimal
solution

Use the set of points with the
largest AC value selected in

previous round

Figure 2: 'e flowchart of Bayesian optimization.
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the frame parameters and decision tree parameters of
the random forest through the Bayesian algorithm.
After the model calibration is completed, input the
training set and output the predicted value.

Step 9: Based on the true and predicted values of the test
set, the model performance evaluation index is cal-
culated to evaluate the model performance.

4. Results and Discussion

'is study has two objects: (1) verifying the performance of
the random forest model in predicting the duration of the
interval between the first and second accidents and (2)
investigating the important factors that affect the duration of
the interval. We firstly select the spatiotemporal definition
method to identify the cascading first accident and the

Original data set

Model
construction

Extract common
factors

Correlation coefficient
calculation

Independant and
dependant variables

Information
verification of
accident pair

Observation of the
duration of the first

accident

Calculation of the
observation distance of

the accident location

Spation-temporal
definition method

Data correlation
analysis

Information
integration of accident

pairs

Between the
independant variables

KMO measure Bartley
sphere test

Common factors
rotation

Common factors
score

Common factors
integration data

Hyperparameters
optimization

End

Model prediction Model performance
evaluation

Random
forest

Factor analysis
method

Figure 3: Interval duration prediction framework.
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second accident and verify the accident pair matching degree
through the accident information. 'en, calculate the KMO
measure and Bartlett’s sphere test statistics of the accident
pair to judge the applicability of the data to the factor
analysis method. At last, the random forest (RF) model
combined with factor analysis is applied to analyze and
predict the interval duration between the first and second
accidents.

4.1. Identification of Second Accidents. A second accident is
defined as an accident that occurred within the scope of the
initial accident. However, although there are many ways to
record accidents in detail, in most accident data sets, acci-
dents do not record the first accident and the second ac-
cident separately. It may be because when recording the
accident, it is impossible to straightforwardly distinguish the
accident as first or second [38]. 'erefore, it is necessary to
choose an appropriate method to process accident data sets
to identify simple accidents and second accidents cascaded
with the first accident. 'is study employs the spatiotem-
poral definition method to identify cascading accident pairs
in the Los Angeles accident data set, and this method is
sensitive to time-space thresholds. In order to optimize the
effect of this method in identifying second accidents, we use
a sensitivity analysis method with different time thresholds
(duration to 180 minutes after the duration) and space
thresholds (0.5 miles to 3 miles) to analyze the accident
identification characteristics of each group of time and space
thresholds.

In order to display the changes of the space threshold
values in the spatiotemporal definition method to the
second accident recognition effect, the time thresholds are
set to 1 h after the duration of the first accident, 2 h after
the duration of the first accident, 2.5 h after the duration
of the first accident, and 3 h after the duration of the first
accident. Figure 4 shows different sizes of the transfor-
mation space threshold to identify the number of sec-
ondary accidents.

By observing Figure 4, we can see that when the set time
thresholds are 1 hour after the duration of the first accident,
2 hours after the duration of the first accident, 2.5 hours after
the duration of the first accident, and 3 hours after the
duration of the first accident, the number of accident pairs
recognized through the spatiotemporal definition method
remains stable, which means that the spatiotemporal defi-
nition method used in this dataset is not sensitive to space
threshold.

In order to display the change of the time threshold value
to the second accident recognition effect, set the space
thresholds as the conditions of 1 mile from the first accident,
2 miles from the first accident, 2.5 miles from the first ac-
cident, and 3 miles from the first accident. Figure 5 shows
different sizes of the transformation time thresholds to
identify the number of second accidents.

By observing Figure 5, we can see that when the time
thresholds are set to be 1 mile from the first accident, 2
miles from the first accident, 2.5 miles from the first
accident, and 3 miles from the first accident, the number

of accidents identified by the spatiotemporal definition
method increases in the same trend. 'is means that the
spatiotemporal definition method used in this data set is
sensitive to the time threshold. 'erefore, in order to
determine the time threshold, this study uses an interval
of 5 minutes as the duration to identify the number of
second accidents.

It can be seen from Figure 6 that in the first 29 intervals,
the number of identified accident pairs increases with the
increase of the number of intervals. After the 30th interval,
the number of identified accident pairs remains stable. 'is
shows that after the 30th intervals of the accident duration,
the spatiotemporal definition method is not sensitive to time
thresholds. 'erefore, the time threshold of the spatio-
temporal definition method used in this study is set as 150
minutes (30∗5) as the duration of the first accident.

Based on the above time threshold, a total of 767 sets of
accident pairs were extracted. On this basis, continue to
research and analyze the space threshold. Calculate the
spatial distance of each pair of accidents and sort them into
the ranges of 0.5 miles, 1 mile, 1.5 miles, 2 miles, and 3 miles.
'e number of accident pairs that meet the above range
conditions is 754 pairs, 3 pairs, 3 pairs, 3 pairs, and 4 pairs,
respectively. 'e results show that about 98.3% of the
cascaded first accidents and second accidents in this data set
have a space distance of 0.5 miles, so the space threshold is
set to 0.5 miles.

Accordingly, we then use accident description fields and
street information to verify accident pairs. After the veri-
fication is passed, there are a total of 754 valid accident pairs.
After preprocessing of accident pairs (removal of redundant
features, missing value repair, feature value processing,
feature uniqueization, etc.), there are 28 remaining ex-
planatory variables. 'eir codes and variables are shown in
Table 2.

4.2. Applicability Test of Factor Analysis Method. Factor
analysis method is introduced to explore the potential in-
ternal dependence of the first accident and the second ac-
cident; hence, it is necessary to test the applicability of the
data factor analysis.

4.2.1. Pearson Coefficient Calculation. Calculate the corre-
lation coefficient between the independent variable and the
dependent variable points of the accident-to-data set
through the Pearson coefficient. 'e results show the cor-
relation coefficient between the duration of the first accident
and the duration of the interval is 0.883, indicating that the
duration of the first accident has a high correlation with the
duration of the interval. In addition, the variables that are
positively related to the interval duration are collision de-
gree, edge, airport code, visibility, convenience facilities, bus
stops, time of occurrence, and peak period; negatively re-
lated variables are the first accident impact distance, the
second accident impact distance, humidity, air pressure,
wind direction, wind speed, intersections, junctions, rail-
ways, signal lights, seasons, months, hours, weather, and
precipitation.

8 Journal of Advanced Transportation



4.2.2. KMOMeasurement and Bartley Sphere Test. 'e effect
evaluation corresponding to the calculated statistics [39] of
KMO measurement is shown in Table 3.

Calculating the KMO measurement statistics of the
integrated accident pair data, the result is 0.661, which is in
the range of 0.6 to 0.7. With reference to Table 3, it can be
seen that the KMOmeasurement effect of this data is rated as
acceptable. In addition, the Bartlett sphere test is introduced
to determine whether the correlation coefficient matrix is a
unit matrix. 'e calculation result is 0.00, which is less than
the significance level of 0.05, indicating that the null hy-
pothesis can be rejected and is suitable for factor analysis.

4.3. Factor Analysis Method. After passing the applicability
test, we can calculate the total variance explanation table,

clarify the number of common factors, and output the factor
loading matrix. Judging by the factor loading matrix,
whether a reasonable explanation can be made for the
variables. Otherwise, an appropriate method is adopted to
rotate the factors so that the factor loading presents different
characteristics. Determine the common factor corre-
sponding to each explanatory variable according to the
factor loading after rotation. Output its factor score coef-
ficient matrix to calculate the weight of each factor and
determine the significant influencing factors.

In order to judge the degree of influence of each ex-
planatory variable on the interval duration, this study di-
vides it into three levels based on the weight value of each
explanatory variable: “significant influence,” “general in-
fluence,” and “small influence.” In order to quantify the
grading standard, the grading value needs to be established
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Figure 4: Space threshold sensitivity analysis.
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first. As shown in Table 4, the weight values are all small. For
the sake of comparison, the calculation results are shown in
Table 4 according to Sj � 100∗|wj| to enlarge the weight
value. Afterward, the classification system standards based
on the calculated value are as follows:

Pj �

1, Sj ∈ [0, 2),

2, Sj ∈ [2, 4.5),

3, Sj ∈ [4.5, +∞).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

In the formula, Pj is the grading standard.
According to the above analysis results, there are 10

explanatory variables that can significantly affect the du-
ration of the interval. 'ey are conveniences, railways,
stations, weather, distance affected, and distance affected
by the second accident, weather at the time of the second
accident, degree of collision, the severity of second accident

collision and duration of the first accident; explanatory
variables with general effects include wind speed, traffic
lights, humidity, sunrise and sunset, visibility, wind di-
rection, no thoroughfare, working day, intersection,
junction, no precipitation, and airport postcode. 'ere are
six explanatory variables that have a low impact on the
duration of the interval: peak period, season, side, peak
period of the occurrence of second accidents, temperature,
and air pressure.

4.4. Hyperparameter Optimization. 'e dual randomness of
the RF model (random sampling and random selection of
feature splits) reduces the variance of the prediction re-
sults and makes the model express good fitting results.
'erefore, this study optimizes the main hyperparameters
of the RF to obtain good prediction performance. 'e RF
model mainly has 4 hyperparameters, which are the
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Figure 5: Time threshold sensitivity analysis.
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number of decision trees, the maximum depth of decision
trees, the minimum number of samples required for
subdividing internal nodes, and the minimum number of
samples for leaf nodes.

'e Bayesian optimization algorithm is employed through
the Hyperopt module in Python. After setting the objective
function, search space, optimization algorithm, and the max-
imum number of evaluations, the module can automatically
search for the optimum according to the given parameters.
To avoid overfitting, 10-fold cross-validation is incorpo-
rated into the Bayesian optimization algorithm. In this
study, RF is the objective function; Parzen tree is the default
optimization algorithm; the maximum number of evalu-
ations is set to 4; the search space is the search range of each
hyperparameter, and the settings are shown in Table 5. 'e
hyperparameters for the automatic optimization of the
Bayesian optimization algorithm of 10-fold cross-valida-
tion are shown in the table.

4.5. Interval Duration Prediction and Analysis. 'e above
optimized parameter values are set as hyperparameters of
the RF model, the optimal RF model is applied to predict the
test set, and the prediction results of the prediction set are
analyzed to evaluate the usability of the algorithm.

4.5.1. Results Prediction. By observing from Table 6, the
average true value of the test set is 42.605min, which is slightly
lower than the average 42.273min of the predicted value. 'is
means that the predicted value is generally close to the true
value. 'e standard deviation of the true value is 23.807min,
which is higher than the deviation of 18.010min of the pre-
dicted value, which indicates that the predicted value of the test
set is more stable than the true value distribution. 'e mini-
mum value, 25% quantile, 50% quantile, 75% quantile, and
maximum which are of the true value and the predicted value
are 26min, 30min, 43.5min, 45min, 300min, and 27.717min,
30.021min, 43.378min, 45.064min, 136.061min. 'e distri-
bution range of the true value is 274 and the distribution range
of the predicted value is 108.3. 'at is, the predicted value
distribution is more concentrated, which is also consistent with
the conclusion of the standard deviation of the true value and
the predicted value.

4.5.2. Model Performance Comparison and Evaluation.
In order to measure the performance of the RF model in
predicting the duration of the interval between the first
and second accidents, the K-nearest neighbor model
(KNN), and the support vector regression model (SVR)
were introduced for comparison, and the absolute MAE,
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Table 2: Correspondence table of variable and codes.

Code Variable Code Variable
X1 Collision degree X15 Station
X2 Influence distance X16 No thoroughfare
X3 Side X17 Traffic light
X4 Airport postcode X18 Sunrise sunset
X5 Temperature X19 Working day
X6 Humidity X20 No precipitation
X7 Pressure X21 Season
X8 Visibility X22 Peak period
X9 Wind direction X23 'e weather
X10 Wind speed X24 Impact distance of second accident
X11 Conveniences X25 Severity of second accident collision
X12 Intersection X26 Whether the second accident occurred during the peak period
X13 Junction X27 Weather at the time of the second accident
X14 Railway X28 Duration of first accident
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MAPE, and RMSE of the three models were calculated,
respectively. 'e results are shown in Table 7.

As shown in Table 7, the MAPE values of RF, KNN, and
SVR in the interval duration prediction are 1.310%, 1.516%,

and 1.801%, respectively. 'e results show that the MAPE
value of the RF model is the smallest, indicating that the RF
model is more capable than the KNN and SVR models. It is
more accurate to predict the duration of the interval.

Table 3: KMO measurement statistics effect evaluation.

KMO measurement >0.9 0.8-0.9 0.7-0.8 0.6-0.7 0.5-0.6 <0.45
Whether to apply factor analysis Extremely suitable Very suitable Suitable Acceptable Very bad Not suitable

Table 4: 'e importance level of the weight of each variable.

'ree-level indicators wj Sj Pj
Conveniences 0.062 6.2 3
Railway 0.052 5.2 3
Station 0.052 5.2 3
Weather 0.050 5.0 3
Influence distance 0.049 4.9 3
Impact distance of second accident 0.049 4.9 3
Weather at the time of the second accident 0.049 4.9 3
Collision degree 0.047 4.7 3
Severity of second accident collision 0.047 4.7 3
Duration of first accident 0.045 4.5 3
Wind speed 0.041 4.1 2
Traffic light 0.041 4.1 2
Humidity 0.040 4.0 2
Sunrise sunset 0.040 4.0 2
Visibility -0.037 3.7 2
Wind direction 0.037 3.7 2
No thoroughfare 0.036 3.6 2
Working day 0.033 3.3 2
Intersection 0.033 3.3 2
Junction 0.030 3.0 2
No precipitation 0.030 3.0 2
Airport postcode 0.014 1.4 2
Peak period 0.029 2.9 1
Season 0.028 2.8 1
Side 0.027 2.7 1
Whether the second accident occurred during the peak period 0.027 2.7 1
Temperature −0.024 2.4 1
Air pressure −0.018 1.8 1

Table 5: Optimized values of RF hyperparameters.

Hyperparameter Search space 'e optimal value
Number of decision trees [50, 500] 245
Maximum depth of decision tree [1, 8] 5
Minimum number of samples required for subdividing internal nodes [1, 10] 3
Minimum number of samples for leaf nodes [1, 10] 7

Table 6: Calculation table observed and predicted values of interval duration.

Clustering data set True value (min) Predicted value (min)
Sample size 228 228
Average value 42.605 42.273
Standard deviation 23.807 18.010
Minimum 26.000 27.717
25% quantile 30.000 30.021
50% quantile 43.500 43.378
75% quantile 45.000 45.064
Maximum 300.000 136.061
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Specifically, MAE, MAPE, and RMSE of the RF model
are 1.689min, 1.310%, and 11.822min, respectively. 'e
MAPE value is 1.310%, which is between [0%, 10%], so the
RF combined with the factor analysis method can predict the
interval duration with higher accuracy.

5. Conclusion and Prospect

In order to explore the potential influencing factors of the
interval duration between the first accident and the cascaded
second accident and predict it. In this paper, the sensitivity
analysis method is applied to determine the time-space
thresholds of the spatiotemporal definition, and the cascade
of first and second accidents that met the conditions is
extracted. 'en, after calculating the KMO measure and
Bartlett’s spherical test statistic to verify that the accident is
applicable to the data set for factor analysis, the factor
analysis method is carried out to obtain factors that sig-
nificantly affect the duration of the interval. We divide the
processed data into a training set and test set at a ratio of 7 : 3,
construct a RF model based on the test set, and select the
Bayesian optimization algorithm with tenfold cross-vali-
dation to optimize the hyperparameters. Based on the true
and predicted values of the test set, the MAE, MAPE, and
RMSE are calculated. 'e main contribution of this work is:

(1) Some studies use the spatiotemporal definition
method to identify accident pairs, but the difference
of different thresholds in identifying accident pairs is
not considered. 'erefore, this paper integrates the
sensitivity analysis into the spatiotemporal definition
method to determine the time-space thresholds. 'e
results show the interval is sensitive to a time
threshold and not sensitive to space threshold.

(2) Explore the factors that can significantly affect the
duration of the interval between the first accident
and the cascaded second accident. In fact, there are
many studies related to second accidents, but there is
a lack of research on predicting the time of occur-
rence of second accidents. 'is paper introduces the
factor analysis method, constructs the influencing
factor analysis as a three-level indicator, improves
the accuracy of the factor analysis, and provides
support for traffic managers to prevent second ac-
cidents. Finally, it can be concluded that there are 10
explanatory variables that can significantly affect the
duration of the interval. 'ey are conveniences,
railways, stations, weather, distance affected, dis-
tance affected by the second accident, whether at the
time of the second accident, degree of collision, the
severity of second accident collision, and duration of
the first accident.

(3) 'e test results show the MAPE value of RF is 1.58%,
which is within [0, 10%], indicating that the RF
model of the fusion factor analysis method can
predict the interval duration with high accuracy.
Moreover, the comparative experiments confirm the
RF outperforms KNN and SVR.

However, there are parts that can be improved in this
article. 'e specific content is as follows:

(1) With the development of intelligent transportation
systems, the configuration rate of various detectors
used for traffic management on the road is also
getting higher and higher, and the types and quality
of collected data are becoming more and more
abundant, and high-quality data can allow research
to better see the nature of the problem through the
traffic phenomenon. 'erefore, future research will
focus on data sets that combine accident data and
traffic flow data to obtain more accurate and con-
vincing accident duration predictions.

(2) In order to improve the efficiency and accuracy of
secondary accident recognition, we need to incor-
porate the dynamic changes of time and space
thresholds into the recognition method.

(3) 'is study currently only models the characteristics
of the collected accident data. However, some un-
recorded or even unobserved potential factors affect
the estimation of duration.
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