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Due to continuous urban sprawl, large-scale bus network design has become a major challenge in urban transport planning. &e
continuous increase in urban population and scale makes the factors considered in the urban route network design increasingly
complex. Contemporary public transportation network design problems are based more on efficiency goals such as the ac-
cessibility and comfort of the transportation network, which increases the difficulty of analyzing the problem. Bus network design
is not only an NP-hard (nondeterministic polynomial) problem but also a multivariable and multiobjective problem. &is paper
focuses on the bivariate and multiobjective bus network design problem of route generation and station selection. &is paper
proposes an algorithm called the Pseudo Force Field. By combining the idea of Particle Swarm Optimization (PSO) and the
properties of the force field, a feasible route generation scheme is provided for the design of the bus network. &e algorithm does
not need to determine the end station and has a high degree of completion of the demand.&is solves the problem of the selection
of terminal stations in large-scale road network design. On this basis, the article combines Genetic Algorithm (GA) and Pareto
frontier to provide a new route optimization algorithm and proves the effectiveness of the algorithm. &e model has achieved
theoretical results in the design of the bus route network in the megacity of Shenzhen, China.

1. Introduction

Public transportation is one of the important ways to achieve
a balance between supply and demand of transportation,
energy savings, and emission reduction, and it has been
highly valued by cities at all levels worldwide. According to
existing research, transport systems in some countries ac-
count for approximately 20% of total annual greenhouse gas
emissions from the energy sector [1]. Motorized travel is the
main contributor to the worsening global greenhouse effect,
and a reasonable public transportation system is of great
significance in reducing the global greenhouse effect and
achieving global sustainable development [2]. On the other
hand, the public transportation system is the main mode of
travel for residents of large cities. According to a survey
report on residents’ traffic behavior and willingness con-
ducted by the Shenzhen Municipal Government in 2019,

public transportation accounted for 48% of residents’ mo-
torized travel, reaching 61% during peak hours. In terms of
travel experience, more than 40% of residents hope to have a
better travel experience. &e public transportation system
plays an irreplaceable role in the travel of urban residents. A
good public transportation system helps to improve the
people’s happiness index and promotes the economic de-
velopment of the city, which is of great significance to the
development of the city.

Among the existing travel modes, rail transit and bus
transportation are the main forms of public transportation.
&e concept of the transit network design problem (TNDP)
was first proposed by Baaj and Mahmassani in 1991 [3] to
describe the public transport system network design
problem. It is a typical TSP-type multiobjective NP-hard
problem [4]. &e common urban rail transit is mainly based
on the subway, and bus transportation is realized by the
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operation of the bus network. In contrast, bus transportation
has more flexible routes and greater accessibility than rail
transportation, but it is far inferior to rail transportation in
terms of operating speed and load capacity. In cities with a
variety of public transportation, the route network design
method of bus transportation often accommodates some
traffic demands that cannot be met by rail transportation.
&erefore, the design of the bus transportation system is
often more rigorous andmeticulous than rail transportation,
and more influencing factors need to be considered.

In the existing research, most of the route generation
algorithms are studied based on economic benefit indicators
such as route length and optimized based on them [5].
However, in the design of an urban route network, the
priority of the route network’s requirements for accessibility
and demand completion has exceeded the traditional eco-
nomic benefit index. Moreover, the problem of low demand
completion will lead to a general decrease in the quality of
the overall set of alternative routes, which may cause the
results obtained by the algorithm to lose practical value. &is
is particularly prominent in large city network design.
&erefore, a route generation method with the main purpose
of demand fulfillment is of great significance to the design of
an urban route network.

In this paper, a route generation algorithm is proposed.
&e prototype of the algorithm is inspired by the logistics
distribution problem and has similarities with the Particle
Swarm Optimization (PSO). &is paper will construct a
Pseudo Force Field model based on this idea and design a
new route generation method.&emain contributions of the
research are as follows:

(1) &e article explores a new way of route generation.
&is method combines the properties of the PSO
algorithm and the physical force field to provide a
better initial solution set for the Genetic Algorithm
(GA). &e combination of algorithm and GA is
shown in Figure 1. &e article will demonstrate the
advantages of this algorithm compared with the
traditional initial solution generation algorithm
through the first experiment.

(2) Make a fundamental change to the optimization
method of the GA and propose a new optimization
method. &rough this route generation method, the
GA is transformed from the traditional route se-
lection problem to the site ranking problem.
&rough experiment two, the article mainly proves
that this optimization method can ensure the route
network quality of the algorithm in the optimization
process and expand the whole solution set space.

2. Literature Review

Route network analysis is often analyzed by transforming it
into a topology network structure. &rough mathematical
topology techniques, the relative influence between different
routes and the traffic efficiency of the route network is
studied [6]. Rivera-Royero et al. study route network per-
formance from 11 RNP concepts and develop a classification

scheme to map possible relationships and boundaries be-
tween them [7]. Munir et al. provide a template for the
analysis of demand type indicators by evaluating the ef-
fectiveness of travel demand management strategies [8].
Khan and Fatmi provide a metric for assessing the safety of
traffic networks, filling a gap in this field [9]. Jiang et al.
analyzed the impact of route network design on people’s
lives from multiple perspectives, including environmental
pollution, traffic accidents, noise emissions, and so on [10].
&e researchers analyzed the impact of route network design
on urban operation through different angles andmeans.&is
further reflects the importance of route network design and
provides a strong theoretical basis for route optimization
evaluation.

In the early design of the route network, the economic
benefits of the route were the main consideration in the
research. Pentek et al. demonstrated a relatively classic
economical route network design method through the study
of forest route design [11]. In the optimization algorithm,
two-layer planning is the main method of early route net-
work design. &is is a way to optimize the route network
based on the idea of mathematical operations research. &e
research of Ben-Ayed et al. and Zhang and Gao is a typical
example of two different periods of this kind of road network
algorithm [12], [13]. With the introduction of bionic algo-
rithms, traditional mathematical programming methods
such as bilevel programming have been gradually replaced.
Early bionic algorithms are cited, such as Martins and Pato
and Pattnaik et al., who applied the tabu road algorithm and
genetic algorithm, to the problem of bus network design
[14], [15]. Ngamchai and Lovell improved the encoding
method of the route algorithm, which greatly improved the
problem-solving efficiency of bionic algorithms [16]. &e
abovementioned studies are all designed with basic route
attributes such as route length as the research object, and
there are very few algorithms for generating initial routes
according to requirements. However, there are already
relatively mature algorithms for the demand data extraction
of urban traffic systems [17]. Due to the high volatility of
demand data, the relevant fluctuation of demand data
cannot be considered in road network design. &erefore, the
current public transportation network design is based on
deterministic transportation networks and deterministic
travel demand [6]. Zhang et al. provide a study on route
saturation optimization by combining the knowledge of the
golden ratio to improve the genetic algorithm [18]. &is
research is more classical research on the problem of de-
mand nature. Badia et al. further deepen the accessibility of
the demand problem and add the transfer accessibility
problem to the TNDP problem [19].

According to a summary of the existing research, the
route network optimization algorithm has gradually ma-
tured in theory. However, there is still a large gap in the
research on demand orientation, including route generation
and solution. &e algorithm proposed in this paper gives an
example of the research on demand-based goal-oriented
route network optimization. In fact, the algorithm idea has
been adopted as the generation method of the initial route in
the road network design by Sun et al. [20]. In addition, there
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have been similar studies in other fields on the combined
application of PSO and GA, and it has been proven to be
feasible. Taking the research of Pandey et al. as an example
[21], they combined PSO and GA to build a multiobjective
model to solve the problem of increased power loss in the
power supply system. In the design of public transport
network, GA cannot solve the bivariate conflict between
station selection and route generation, which is particularly
prominent in large-scale route network design problems.
&is paper provides a feasible solution for the route gen-
eration of GA by combining the PSO idea and the force field
properties. In the evaluation and discussion in this paper, the

fulfillment of requirements is the most important research
objective.

3. Preliminary Preparation
3.1. Assumptions. In the design of this study, the following
assumptions are made. &ese assumptions are valid in
subsequent model representations and simulation calcula-
tions. Assumptions will better constrain the application
scenarios of the model and improve the operational effi-
ciency of the model.
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Figure 1: &e entire process of route generation and optimization.
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(1) &emodel does not consider the problem of one-way
and two-way traffic on different road sections, and
this aspect is not constrained in the simulation
calculation.

(2) Routes only consider major bus service lines, and
each line must connect two terminal stops at both
ends.

(3) &ere are no isolated bus stations in the station set;
that is, each station connects at least two lines.

(4) &e experimental background assumes that the in-
fluence of the subway on passenger transport is
unchanged, and the influence of the route structure
on the subway is not considered in the calculation.

3.2. Explanation of Symbols. In the algorithm, the latitude
and longitude grid is regarded as a two-dimensional plane
space for calculation, where the longitude is the x coordinate
and the latitude is the y coordinate. &e following variables
are defined as initial variables that do not change in the full-
text discussion. &ey are the origins of other variables. &e
variables are shown in Table 1. In the formula of the article,
“ ∘ ” stands for Hadamard product and “×” stands for matrix
multiplication. “·” stands for number multiplication and
vector multiplication.

First, some special matrices are explained. &ese ma-
trices are used in subsequent formulations. &ey do not have
practical meaning in the discussion of this article.
Ones(X, Y) represents a column matrix whose elements are
all 1 and whose shape is (X, Y). I(A) is a matrix binary
function:

I(A) �
1, A(i,j) ≠ 0,

0, A(i,j) � 0.

⎧⎨

⎩ (1)

&e demand data are contained in the two NEED-type
matrices corresponding to the NEEDlevel (i,j) and NEED
matrices in the above table. Each element in the matrix
represents a requirement, and they are all square matrices
with the same dimension as the number of stations. Among
them, NEED(i,j) represents the demand from the i-th station
to the j-th station. NEEDlevel (i,j) represents the demand level
corresponding to the station i to station j (&e definition of
the demand class will be detailed in the data processing
section). &e OD matrix contains information about the
accessibility of the route, including three matrices OD(i,j),
ODVqxpoint, and ODVqypoint. OD is a square matrix with
the same dimension as the number of stations, and the value
of OD(i,j) represents the length of the route between two
stations; that is, the matrix contains the length information
of the route and reachability information. If the element is 0,
it means that the two points are not reachable. For the two
station vector matrices of Vqxpoint and Vqypoint, each ele-
ment of the matrix satisfies the following:

Vqxpoint (i,j) � Point(j,x) − Point(i,x),

Vqypoint (i,j) � Point(j,y) − Point(i,y),
(2)

where Pointix and Pointiy represent the x-coordinates of the
i-th and j-th stations, respectively; Pointiy and Pointjy

represent the y-coordinates of the i-th and j-th points,
respectively. According to the above formula, the mathe-
matical expressions for ODVqxpoint and ODVqypoint are as
follows:

ODVqxpoint (i,j) � Vqxpoint (i,j) ∘ I(OD),

ODVqypoint(i,j) � Vqypoint(i,j) ∘ I(OD).
(3)

4. Mathematical Model

4.1. Pseudo Force Field Algorithm. In the original PSO, the
algorithm simulates the feeding habits of the bird flocks to
find the optimal solution. Since the optimization process of
PSO is similar to the path generation process, it is often
applied to the line generation problem. In the route gen-
eration algorithm introduced in this paper, the idea of PSO
in the optimization process is borrowed to deal with the
relationship between route generation and demand changes.
Specifically, the Pseudo Force Field algorithm will construct
a fitness function according to different locations and
changing demands during the route generation process and
update the “speed” of route generation.

According to the expression in Sun et al. article, the
pseudo force field algorithm is based on the basic form of
electric field strength calculation [20]. Considering the basic
properties of the electric field, there is the following formula
for the magnitude of the electric field experienced at a point
in the R2 space:

E �  k
Q

r
2 . (4)

&e calculation of the force field for each station in the
route network should not be affected by the demands of all
other stations throughout the route network. When calcu-
lating the effective field force experienced by each calculated
station, the set of stations affecting the calculated station
needs to be determined. Taking the design of shorter routes
as an example, stations that cannot be reached under the
specified route length should be excluded from the station
set [22]. For a route design from a station, the set of stations

Table 1: Notation and name in the paper.

Set Name
I(A) Unitization function
E Unity matrix
Ones(X, Y) All-one matrix
NEEDlevel Demand class matrix
NEED Demand matrix
OD Reachable route length matrix
Vqxpoint, Vqypoint Point vector matrix
ODVqxpoint,ODVqypoint Reachable point vector matrix
k Gravitational coefficient
Pointnum Number of anchors
BGnode Number of terminal stations
roadlen Length of route;
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that have an impact on the calculated station is called the set
of valid stations. It should be the set of all the stops that can
be reached under the conditions of the specified route
length. &erefore, the demand matrix formed by the set of
stations that affect a calculated station should satisfy the
following formula:

NEED∗level � Troadlen+[(BGnode/Pointnum)]

∘NEEDlevel ∘T
T
roadlen+[(BGnode/Pointnum)],

(5)

where

Tn � I OD ∘Tn−1( 
T

+ E 

× Ones(Pointnum,Pointnum),

T1 �
T1 (i,j) � 1, ∀j, i � point,

T1 (i,j) � 0, ∀j, i≠ point,
⎧⎨

⎩

for i, j � 1, 2, 3 . . .Pointnum.

(6)

Point represents the first station of the route; T is a
column matrix of (Pointnum, Pointnum) shape; NEED∗level
represents the Demand Class Matrix generated by all valid
stations. In the parametric design, the setting of the size of
the influence area will be slightly larger than the length of the
route. Its purpose is to solve the problem that the route
length may have reached the target during the route gen-
eration process, but the route has not reached the next

terminal station, resulting in the failure of route generation.
In the simulation calculation, [BGnode/Pointnum] is used
as the expansion volume of the station set, which is designed
based on the density of terminal stations in all stations. If the
rate of generation is slow, the value can be adjusted sub-
jectively according to the actual situation without affecting
the subsequent calculation. In the process of generating the
route, each station is regarded as measuring 0 on R2, and the
charge of the station is its initial demand (the initial demand
refers to the sum of the demand from this point as the
starting station). &e point charge between the points is on
R2, with the Euclidean distance as the distance between the
two. Under the assumption that the difference between
vehicles is not considered, the urban bus network will be
regarded as a simple superimposed electric field, and the
electric field force experienced at each point is the electric
field strength at that point. &e specific presentation in the
route network is shown in Figure 2.

A vector diagram of the local field strength at a point is
presented in Figure 2. At this point, the calculated point is
subjected to the field strength of all valid points (or stations).
&e field strength acting at each point is affected by the
charge at the effective point and the distance between it and
the calculated point.&e vector direction of the field force on
the calculated point in the force field can be obtained by
superimposing the vector of the field strength on the cal-
culated point. Its formula is as follows:

FPointi � 

pointnum

j�1
k ·

NEED∗∗level(j,1) · Vqxpoint(i,j)
����������������������
Vqxpoint(i,j)

2
+ Vqypoint(i,j)

2
 , 

pointnum

j�1
k ·

NEED∗∗level(j,1) · Vqypoint(i,j)
��������������������
Vqx

2
point(i,j) + Vqy

2
point(i,j)

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ . (7)

In the formula, NEED∗∗level represents the matrix formed
by the initial demand (the definition of the actual meaning of
this matrix will be explained in Part 4.2, formula (13)), which
is a (pointnum, 1) matrix. FPoint i represents the resultant
force of point i in the pseudo force field, which is a two-
dimensional vector.

According to the force field vector of the calculated
point, the most suitable approximate path direction at the
point can be obtained at this time. It will direct the route to
areas with more intensive demand to ensure that the route
can complete more demand. In the algorithm, the direction
of the force field vector will be used as an important criterion
for choosing the next station of the route. &at is, the vector

Figure 2: Force analysis in equipotential map.
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here is the direction of the “speed” determined by the
particle at that point according to the demand data. In the
selection of the next station, the station with the smallest
cosine of the angle between the vector of the reachable
station and the calculated station and the force �eld vector of
the calculated station itself will be used as the next station to
be selected. �e speci�c presentation is shown in Figure 3.

In Figure 3, the next reachable station should select the
station with the largest cosine value of the angle between the
two vectors. �e vector direction between two points has
nothing to do with the route; it is only related to the relative
position of the two points in space. In the process of selecting
the next reachable station, the station with the cosine value
of the included angle less than 0 should be eliminated �rst to
avoid the phenomenon of loopback or going back in the
route. In route generation, reachable stations are selected by
looping until the length of the route reaches the given de-
mand and another starting and ending station appears in the
set of route stations. Its basic mathematical formula is
expressed as follows:

F(i, j) �
Fpointi · ODVqxpoint(i,j),ODVqypoint(i,j)( )
Fpointi
∣∣∣∣∣

∣∣∣∣∣ · ODVqxpoint (i,j),ODVqypoint(i,j)( )
∣∣∣∣∣

∣∣∣∣∣
,

newpoint � MAX F(i, j)|for i ∈ Caluated Station,∀j{ },
(8)

where

MAX A{ } �
A(i,1) � 0, F(i, j)≠ max(A),
A(i,1) � 1, F(i, j) � max(A).


 (9)

In the above formula, newpoint represents the selected
reachable stations. Suppose its node ID as i, then matrix

newpoint is a (Pointnum, 1) shape which elements are 0
except newpoint(i,1) as 1. �e route generation algorithm
makes the route go to the demand-intensive area as much as
possible under the constraint of the speci�ed route length to
solve the problem that the route avoidance demand pro-
duces invalid routes to optimize some demanding goals in
the algorithm solution. In this algorithm, the size of the
algorithm’s “speed” does not change. �e algorithm only
uses the direction of “speed” for station selection, and the
distance traveled each time is one station. �e inertia index
of the algorithm is 0. �at is, the speed calculation at each
station (or position) is completely determined by this point,
regardless of the “speed” of the previous stations.

4.2. Model Optimization. �rough the Pseudo Force Field
algorithm, the route design problem can be transformed into
stations or station groups ranking problem, and the optimal
Pareto frontier can be obtained by combining the GA al-
gorithm. However, in the process of generating the route, the
algorithm often encounters many problems, such as loop-
back and interruption. For this, more �ne-grained con-
straints must be placed on the model. In this work, the
following three basic requirements are put forward for route
generation:

(1) Generated routes without loopbacks or station
duplication;

(2) �e �rst and last points of the generated route must
belong to the set of terminal stations;

(3) �e route length is equal to or greater than the re-
quired length threshold.

: bus station

: bus route

Calculated Station

Valid Station 1
(Unreachable)

Valid Station 2
(Reachable)

: bus station

: bus route

culated Station

ValVVV id Station 
(Unreachable

Valid Statataata
(Reachachachchchchchachachchchhhhhhhhhhhacchhhhchhhchh

Valid Station 3
(Reachable)

θ 1

θ2

cosθ2>cosθ2
Valid Station 3 is chosen as the next station

= + +

Figure 3: Station selection in pseudo force �eld.
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If the generated route cannot meet the above constraints,
it is considered that the route generation fails and the route
needs to be discarded.

For the nonreordering that already has a set of stations or
station groups, if the station is directly sorted, it is enough to
loop through the station sequence. If sorting by station
group, to generate several groups of routes with lengths A1,
A2, A3, . . ., and the number of routes a1, a2, a3, . . ., it is
necessary to assign tasks to the station groups. Since the
number of stations in a station group is not necessarily the
same, the number of routes undertaken by each station
group should also vary. For a station group E, let the ratio of
the number of sites it contains to the total number of stations
be E′. For n types of routes with different lengths, there is the
following formula for the number of routes undertaken by
the station group:

worknum � 
n

i�1
E′ · ai . (10)

Each item of the series in the formula represents the
corresponding number of routes undertaken by this station
group for a certain type of route length and then assigns the
number of routes to each station group. In generating routes,
the choice of stops within a station group is random. (&e
random selection will be explained in detail in the data
processing section later.) In the process of generating a
route, regardless of whether there is a route output, each

time a station is selected, the station will be removed from
the station group. &is method avoids the fact that multiple
routes are generated at the same site at the same time,
resulting in a high degree of route coincidence, which will
cause the route generation effect to decrease. If the stations
of a station group have completely taken the station group,
but the route task has not been completed, record the
remaining route task amount and temporarily skip the
station group. After completing the tasks of all other station
groups, retraverse the station groups and complete the
original unfinished build tasks for each station group. In the
classification, a certain station group may account for a very
small proportion of the entire number of stations, so the
station group cannot be allocated to line tasks according to
the proportion. At the beginning of assigning tasks, if the
number of routes undertaken by the station group is 0, then
add 1 to the number of routes for this station.&is may cause
the number of routes to be inconsistent with the originally
designed number of routes, but it guarantees the number of
routes.

After a route is generated, the generated route will affect
the demand data, so it is necessary to reduce the demand
level of the corresponding demand satisfied by the route.&e
specific formula is as follows:

NEED(new)level � NEEDlevel − Re Road,NEEDlevel( , (11)

where

Re Road,NEEDlevel(  �

NEED(i,j) � 1, if i, j both in Road andNEEDlevel(i,j) ≠ 0,

NEED(j,i) � 1, if i, j both in Road andNEEDlevel(j,i) ≠ 0,

NEED(i,j) � 0, f i or j not in Road.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

Assuming that the route can connect station i and station
j, reduce the demand level from station i to station j and
station j to station i by 1 level (the basis for the reduction will
be detailed in the data processing section below). If the
demand level is 0, keep the original value level unchanged.
&e final output of the Re function is a matrix with the same
shape as the initial parameters of NEEDlevel. NEED(new)level
and NEEDlevel are the same variable. NEED(new)level is a
temporary representation of NEEDlevel after the update. &is

part of the modification will affect matrix NEEDlevel. &e
meaning of which is more intuitively represented by
Figure 4.

In the process of generating the route, the route is
processed by the needs of the station to avoid the reverse
situation and so on. Take a columnmatrix of Pointnum rows
of NEED∗∗level to represent the tentative demand in the route
generation process. Among them, NEED∗∗level (i,1) represents
the sum of the demand level of the point with node ID i; that
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is, the charged amount of this point. NEED∗∗level only takes
effect in this route generation and does not affect the original
demand data.

In the process of route generation, NEED∗∗level should be
changed as the route is extended. When the route selects a
new station, demand should change as follows.

(1) &e demand (or charge) in NEED∗∗level of the passed
stations should be defined as 0. &is ensures that
routes do not loop back or be chosen repeatedly.

(2) When a new stop is selected for the route, all demand
starting from the new stop should be “activated.” In
other words, for all the demands starting from this
station, the target station of this demand needs to
increase the corresponding demand (or charge) in
NEED∗∗level. &e amount of increase is determined by
the level of that requirement.

NEED∗∗level � NEED∗level × Ones(pointnum, 1), (13)

NEED(new)
∗∗
level � NEED∗∗level+NEED

∗∗
level

× I(C − Ones(pointnum, 1)),
(14)

NEED(new)
∗∗
level � NEED∗∗levelOD, (15)

where

C �
C(i,1) � 0, for point i is Selected Point,

C(i,1) � 1, for point i isn′t Selected Point,
⎧⎨

⎩

D �
D(i,1) � 0, for point i in Road,

D(i,1) � 1, for point i not in Road.

⎧⎨

⎩

(16)

Formula (13) explains the relationship between NEED∗∗level
and NEED∗level. &e definition of NEED∗level is already given in
formula (5). In addition, formulas (14) and (15) show that
NEED∗∗level is constantly changing during route generation.
&ese changes will only take effect for this route generation,
not for other routes. NEED(new)∗∗level and NEED∗∗level are the
same variable. NEED(new)∗∗level is just a temporary repre-
sentation of NEED∗∗level after making the previous two changes.
C, D are two matrices of shape of (pointnum, 1). In formula
(14 and 15, formula (14) needs to be performed before

formula (15) in each processing. &is guarantees that the
demand (or charge) of each passed station is 0. &e specific
generation process is shown in Figure 5.

In the selection of the length of the line, the short line
missions are given priority. On the one hand, during the task
of generating short lines, the set of stations that are valid for
the calculated station can be determined according to the
scope of influence and will not be affected by the distant
unreachable stations. On the other hand, short and small
routes can clear the demand in small areas, reduce the
complexity of demand data so that further long routes will
not be affected by the demand in small areas, and better
complete some cross-regional demand work, maximizing
the realization of the value of long lines.

4.3. Evaluating Indicator. In modern bus networks, route
network analysis should consider the operational efficiency
and comfort of the network [23]. According to the actual
situation, two indicators are used as measurement standards
in the calculation, namely, the load degree of the network
and the complexity of the route network.

&e route index mainly involves the travel demand of
passengers and the length of the route, which reflects the
complete efficiency of the route to the demand and the
comfort of passengers. In the calculation, the average load
level of all routes in the entire route network is used as the
rating index, which is the ratio of the passenger turnover of a
route to the total vehicle mileage. Its mathematical formula
is as follows:

Weightneed (i,j) �
NEED(i,j)

N
, (17)

Weightroad � 
i∈P,j∈P

Weightneed (i,j)

Roadlen
, (18)

Weightnetwork � 
Weightroad
Roadnum

. (19)

In the formula, N represents the number of routes that
can satisfy the demand between stations i and j; P is the set
of all stations that the route passes through; Roadlen rep-
resents the length of the route segment from the i-th station
to the j-th station on the route; Roadnum represents the
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number of routes; Weightroad represents the load of a single
route in the route network.

&e complexity of the route network can intuitively
reflect the load balance of all routes in the bus network. &e
indicator adopts the Lorentz curve model and is calculated
based on the Gini coefficient formula that reflects fairness.
Its specific formula is as follows:

H �
2

Roadnum
i�1 i · Weightroad i

Roadnum · 
Roadnum
i�1 Weightroad i

−
Roadnum + 1
Roadnum

.

(20)

All routes are arranged in ascending order according to
parameter Weightroad in formula (18), Weightroad i in for-
mula (20) represents the value of the i-th route in the ar-
rangement on parameter Weightroad.

&e abovementioned Weightnetwork in formula (19) and
H in formula (20) are themain bases for obtaining the Pareto
frontier. &e subsequent optimization process and results
will revolve around the above two indicators.

4.4.GeneticAlgorithmDesignandParetoFrontier. Due to the
large number of terminal stations, the terminal stations can
be classified into several station groups by K-Means clus-
tering (the details of this part will be explained in detail in the
Data Processing, Part 5.2.1). In the population structure,
each group of bus networks is regarded as an individual, and
the multiple groups of bus networks generated by the or-
dering of multiple groups of different terminal stations are
regarded as a population. According to this situation, the
fitness determination in the genetic algorithm will also be
analyzed based on the score of each bus network individual
on the two indicators.

Before detailing the GA, the application of the Delaunay
algorithm to the Pareto Frontier needs to be supplemented.
&e Delaunay triangulation algorithm can construct several
points on a two-dimensional plane into a nonconcave tri-
angular network. According to this algorithm, all edges and
edge points can be extracted through the triangular network.
According to the basic principles of data envelopment
analysis (DEA), it is not difficult to prove that the Pareto
front must be composed of several edge points and edge
segments of the triangulation. &erefore, the Pareto Frontier
of the two-dimensional plane point can be obtained by
reasonably sorting the edge points extracted by the trian-
gulation network in the calculation. In the specific calcu-
lation, the minimum value of any index in the edge point set
is selected as the first selection point. Set it as M1 � (x1, y1);
then, in the solution set DM composed of frontier solutions,
the correspondence between other frontier points and this
point should conform to the following formula:

Mi+1 � xi+1, yi+1(  ∈ DM, (21)

where

xi+1 >xi,

yi+1 <yi.
 (22)

According to the above formula, all the selected edge
points and edges are connected to form a polyline as the
Pareto front. With Delaunay’s nonconcave triangular
network properties and the basic theory of DEA in the
Pareto frontier, it is not difficult to prove that all other
solutions of Pareto support can be realized for this set of
Pareto frontier points, which has been confirmed in other
fields [24].

In the model solution, several stations or station groups
are randomly arranged and the corresponding bus network
is generated as the initial population. According to the
Pseudo Force Field algorithm, each station ranking repre-
sents a set of definite and unique bus networks; that is, the
station ranking can form a one-to-one mapping relationship
with the bus network. &e two negative indicators of the
network are combined with the Delaunay algorithm to
obtain the Pareto frontier individuals in the population [25].
&e two index values of each individual are used to map the
point Q on the two-dimensional coordinate system, connect
the point to the origin, and the intersection P of the straight
line and the Pareto frontier, with the formula:

Mark �
d
2
(P, O)

d
2
(Q, O)

. (23)

Solve Mark as fitness in GA, which is shown in Figure 6.
In the processing of the optimization algorithm, the

traditional sorting genetic algorithm is used for calculation.
Because this paper does not study the performance of the
optimization algorithm, very precise considerations are not
adopted in the GA optimization process. In the subsequent
calculation work, the GA algorithm will face the optimi-
zation of the sequence number sorting problem without
repetition.&e specific crossover and mutation processes are
shown in Figures 7 and 8.

In addition, in the GA algorithm, individuals are selected
in the form of roulette. &is selection is made depending on
the probability constructed according to the fractional
proportions defined above.&e specific GA process is shown
in the following pseudocode.

Variable 1

Variable 2

Q

P

( , )

( , )

O

Figure 6: Fitness score in GA.
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To improve the convergence speed of the calculation, an
elite retention strategy is adopted in the algorithm. Each
time a Pareto frontier solution is generated, the value of the

frontier solution, including the station group ordering
corresponding to the value, and the generated bus network
will be retained to the next generation to participate in the

B C D EA

Crossover

B CD E A

B E A

B C D
take out

B C D EA

B CD E A

B E A

exchange area

B C D

protected area

BC D E A

B C DE A

Delete duplicate numbers 
outside the protected area

Figure 8: Crossover in GA.

B C D EA

C

E

B CDEA

Figure 7: Mutation in GA.

Algorithm: GA
Input: Demand, terminal station, station
Output: route network

(1) def Pseudo Force Field (terminal station sequence):
(2) output route network
(3) def Evaluation (route network):
(4) output Pareto Front
(5) begin
(6) initialize terminal station sequence
(7) T⟵ 0
(8) while (T< cycle times):
(9) T�T+ 1
(10) route network⟵Pseudo Force Field (terminal station sequence)
(11) Mark⟵Evaluation (route network)
(12) new sequence⟵ Inheritance, Crossover, Mutation by Mark
(13) terminal station sequence⟵ new sequence
(14) end while
(15) end

ALGORITHM 1: Pseudocode for the optimization algorithm.
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construction of the Delaunay triangulation and the com-
petition for survival. If a new solution replaces or joins the
original frontier solution, the solution becomes part of the
frontier solution, and the replaced frontier solution is treated
as a common solution, participating in algorithms such as
selection and intersection. It can enrich the frontier solution
set of the results and provide more data for analyzing ex-
cellent route network results.

5. Numerical Experiment

&e results will mainly show the advantages of the algorithm
from two aspects: the change in demand completion in route
generation and the changes in demand completion in the
optimization process. &e experiment uses K-Shortest-Path
(KSP) algorithm for comparison. &e KSP algorithm is the
most commonly used initial route generation algorithm. In
the GA of a large route network, it is the main way of
generating the initial route set. As a comparison, the ef-
fectiveness of the algorithm in this paper can be visually
demonstrated. &e approximate data of the computing
environment of the two algorithms are shown in Table 2.

For the selection of route number, it needs to be set
before the experiment.&e design of these parameters will be
affected by the actual situation. &e city of Shenzhen has
2,406 simplified stations after sorting, with a total of ap-
proximately 900 conventional lines. For the theoretical route
generation design of 512 stations, that is, approximately 1/5
of the area of Shenzhen, the theoretical estimate of the
number of routes should be approximately 180. Using the
period of maximum passenger flow among all periods of the
regular day as the calculation data, the number of routes is
set to be 5% more than the regular number. In the calcu-
lation, 200 routes will be generated.

5.1. Performance of Route Generation. In the first experi-
ment, more than 180 routes were generated and recorded
with random station ordering using the Pseudo Force Field
algorithm. In the generated route group, the routes with the
same start and end station pairs are excluded. In the KSP
algorithm, the generated route starting and ending station
pairs are used and the shortest route is generated. Again, the
routes generated in this section follow the guidelines
mentioned earlier. &ese guidelines are relisted in the fol-
lowing sections:

(1) &e generated route does not have loopbacks.&at is,
there are no duplicate stations in the route;

(2) &e generated route must use the terminal station as
the start and end of the route;

(3) &e route length must be longer than or equal to the
length of the route task design;

(4) &e route does not allow the same terminal stations.

Routes that do not meet the above requirements need to
be eliminated during the generation process and are
regarded as invalid routes. In the subsequent optimization
experiments and generation comparison experiments, the
above basic constraints need to be observed.

5.1.1. Comparison. For the route algorithm proposed in this
paper, routes of length 30 (according to the algorithm, it may
be longer than 30) are generated in the calculation, and the
number of routes keeps adding up. &e route is assumed to
fully complete all requirements traversed, regardless of route
affordability. &is means that the reduction of the demand
level mentioned in Part 4.2 should be defined here as zero for
passing demand.Moreover, each demand is defined as 1, and
no demand grading is performed anymore. &e variation
between the route and demand completion of the two al-
gorithms is shown in Figure 9.

As shown in Figure 9, the Pseudo Force Field algorithm
has a better performance in demand completion. In the same
process of generating 184 routes, the Pseudo Force Field
algorithm can complete 41% of the demand. In contrast, the
KSP algorithm fulfills approximately 15% of the demand. It
means that within a reasonable number of routes, the Pseudo
Force Field algorithm is more efficient for demand com-
pletion. Experiments with more routes were not performed
and shown because they were considered to be in excess of
reasonable numbers. Too many routes are meaningless for
transit network design, even if it performs better in demand
fulfillment.

&rough the above experiments, the line generated by
the Pseudo Force Field algorithm has a high completion
efficiency for demand. &is has an excellent performance in
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Figure 9: Comparison of KSP algorithm and pseudo force field
algorithm.

Table 2: Attribute parameters.

Parameters Value
Point number 512
Number of terminal stations 117
Route number 200
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large urban road networks. In the following experiments, we
will further demonstrate the performance of the Pseudo
Force Field algorithm in optimization.

5.2. Performance of Optimization Process. Based on the
Pseudo Force Field algorithm, a set of route networks can be
generated in sequence through an ordered station code.
�erefore, the problem of bus network design will be
generated from the original route and transformed into the
problem of arranging the terminal stations. �is experiment
will demonstrate the stability of the generative algorithm to
satisfy the demand during the optimization process through
two indicators related to the demand.

5.2.1. Data Processing. �ere are 117 terminal stations in-
cluded in the 512 stations in the selected range. Due to the
limitation of computing power, it is not possible to directly
optimize the ranking of the stations in the calculation.
�erefore, the K-Means clustering method is used in the
simulation calculation, and the starting and ending stations
are divided into a limited set of station areas [26]. Each area
contains several terminal stations, and the 117 station codes
are converted into station group codes. Since the selection of
stations within the station group is random in route gen-
eration, the station group code and the road network cannot
form a meaningful mapping. To ensure the successful
convergence of the algorithm, the station classi�cation must
satisfy the stability of the mapping between the ranking code
of the same station group and the score generated route
network. �at is, the score ¥uctuation should be within a
small range. It is not di¦cult to see that for a �xed set of
terminal stations, the fewer station group categories, the
higher the volatility of the score. �erefore, it is necessary to
�nd a suitable number of station classi�cations through
experiment.

Based on the above theoretical basis, the K-Means
clustering method is used to continuously reduce the
number of classi�cation categories from 100 categories. Each
time the same station group is sorted and encoded to
generate 50 groups of route networks, the similarity between
the route networks is calculated, and the stability of the
classi�cation method is analyzed from the degree of dis-
persion of the road network on the two index data [27]. Its
speci�c calculation formula is as follows:

Ge x1, x2, . . . . . .xn( ) �∑
n

i�1
∑
n

j�1
d2e xi, xj( ). (24)

In the formula, the data x represent the vector on the R2

metric space distributed on the two indicators of route
network complexity and route network load in this problem,
and xi represents the value of the i-th data.

In addition, to account for the order of magnitude dif-
ference between the two indicators, the variance calculation
uses the degree of change relative to the mean as the raw data.
�at is, the raw data are processed by the following formula:

D �

�������������
∑ni�1 μi − μ/μ( )2
√

n
, (25)

where μ represents the original value and n represents the
number of route network groups.

According to the information entropy obtained by the
above formula, combined with the respective variances of
the two indicators, 48 route networks are generated for each
classi�cation method for data analysis. �e speci�c data
performance is shown in Figure 10.

When the overall data are in the 10–60 categories, there
will be large numerical ¥uctuations in the overall degree of
confusion and the variance of the load degree, and the
reference as a basis for classi�cation is poor. After the data
are greater than 60 categories, the variance of the load
degree, the variance of the complexity, and the overall degree
of confusion all show a relatively stable or declining trend.
�erefore, when choosing the number of clustering cate-
gories, more than 60 categories should be preferred for
K-Means area two-dimensional clustering. In the simulation
calculation, the K-Means clustering method is adopted to
divide the terminal stations into 70 station groups, and the
route is generated and solved.

According to Article 4 of “Technical Conditions for Safe
Operation of Motor Vehicles” issued by China in 2004, the
¥oor area for standing passengers in urban buses and
trolleybuses shall be not less than 0.125 square meters per
person. In summary, the standard bus design veri�cation
number is 45 people, and the bus operation standard is 5min
during the peak period.�erefore, according to the three bus
scheduling standards formulated by Sheu [28], the bus
dispatch frequency is set to be time-invariant, and real-time
passenger demand data are considered to be collected
through advanced intelligent transportation system tech-
nologies (such as automatic passenger counting systems),
regardless of changing passengers arriving at the terminal
and arriving at the originating station. In the calculation, it is
assumed that each bus line theoretically takes 540 passengers
for each one-hour demand, and the subsection clustering
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Figure 10: Index confusion under diªerent classi�cations.
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method is used to classify all demands. In the processing of
demand data, for a certain station pair, the maximum de-
mand of the station pair in all periods on a regular day is
selected as the original demand data to construct a demand
matrix. In addition, with 540 as the dividing line, the raw
demand data are graded; that is, in the case of legal trans-
portation, each time a vehicle passes through, the weight of
this station is reduced by one unit. �erefore, the demand
level of each point where demand is not 0 can be expressed as
follows:

DemandDegree �
Demand

540
[ ] + 1. (26)

�e practical signi�cance of this division is that the
demand from the i-th station to the j-th station satis�es the
required optimal number of routes.

5.2.2. Result of Calculation. In the calculation, multi-
threading can be used for the generation to speed up the
calculation speed. According to actual conditions, a total of
200 lines of 10, 20, and 30 are generated in the calculation.

�e proportion of routes is approximately 3 : 3 : 4, and the k
value is selected as 1.5 for testing. According to the above
algorithm, the variables in Table 3 for the experiments are
determined in the calculation.

In the experiment, an i7-11700k is used to calculate in
the Windows 10 environment, and without GPU acceler-
ation, the time to generate 50 sets of lines by multiprocessing
is 5mins. In the presentation of the results, the solution with
the minimum distance from the origin in the frontier so-
lutions of each generation of the population will be pre-
sented as the overall population level. �e two indicators
corresponding to the optimal route network are shown in
Figures 11 and 12.

�e coordinates on the left represent the distance be-
tween the Pareto frontier and the origin, in which the
minimum value of the multiplication of the two indicators in
the entire Pareto frontier is used as the numerical result. �e
right side represents two demand completion degrees,
namely, the accessibility rate in the case of direct access and
the accessibility rate in the case of one transfer. �e image
shows that in the process of solving the Pareto frontier, the
algorithm ensures that the direct access rate is stable above
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Figure 11: Achievable e¦ciency and index optimization.

Table 3: Parameters used in calculation.

Parameters Value
k 1.5
Route kind 1 Length: 10 number: 80
Route kind 2 Length: 20 number: 60
Route kind 3 Length: 30 number: 60
Classi�cation number of terminal stations 70
Number of individuals per generation 50
GA cycle numbers 800
Crossover length 30
Crossover probability 0.8
Mutation length 5
Mutation probability 0.2
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60% and the one-time transfer reachability rate is above 80%.
�e algorithm ensures the stability of the requirement
completion degree and realizes the optimization of the
target. It should be noted that the demand for this exper-
iment is de�ned in the context of demand strati�cation. It
means that completing the same demand multiple times can
repeatedly reduce the remaining value of the demand. �is
resulted in data-level diªerences between the two
experiments.

Figure 12 shows the performance of the two indicators
on the GA. In Figure 12, the left ordinate represents the load
of the corresponding optimal route network in each itera-
tion, and the right side represents the complexity of the route
network. Both index values steadily decrease in the iterative
process. �e main data changes in the experiments are
shown in Table 4.

6. Conclusion

�e above results and analysis suggest that the Pseudo
Force Field has higher performance in demand comple-
tion than traditional route generation algorithms. On the
other hand, the Pseudo Force Field algorithm gives re-
searchers a unique optimization method and guarantees
the quality of the route during the optimization process.
Compared with the traditional route generation algo-
rithm, the Pseudo Force Field has a larger solution space.
For example, faced with a basic route network design
problem with k starting and ending stations. Without
considering the constraints, in the traditional optimiza-
tion method, the number of combinations of n lines se-
lected from m lines is Cnm. In contrast, there are kn cases
where there can be duplicate station orderings and k! cases
where there can be duplicate station orderings (this paper
uses nonrepeated sites for experiments). �e explosive
growth of the solution set space makes the advantages of

Table 4: Changes in experimental indicators.

Iteration Load degree Complexity Distance Direct rate One-time transfer
1 3,477.01 0.3000 1,043.25 0.6200 0.8260
2 3,432.68 1,029.95 0.6200 0.8260
4 3,387.33 1,016.35 0.6279 0.8217
6 0.2963 1,003.85 0.6279 0.8217
8 3,329.92 986.83 0.6200 0.8146
11 3,308.07 980.36 0.6176 0.8125
13 0.2958 978.82 0.6176 0.8125
18 3,308.07 973.63 0.6266 0.8601
22 0.2915 964.53 0.6266 0.8601
44 3,275.94 955.16 0.6325 0.8424
45 0.2855 935.46 0.6325 0.8424
60 0.2840 930.53 0.6325 0.8424
82 3,242.2190 920.95 0.6069 0.8301
368 0.2831 917.97 0.6112 0.8301
686 0.2765 896.74 0.6170 0.8302
800 3,242.2190 0.2765 896.74 0.6170 0.8302
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Figure 12: Changes in two indicators.
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the Pseudo Force Field algorithm particularly prominent
in large route networks. &is means that the Pseudo Force
Field algorithm can provide a route generation method
with greater potential for better optimization methods in
the future and further improve the route network opti-
mization results.

It is not difficult to see in the research that the common
sorting GA algorithm cannot satisfy the convergence of such
a large-scale solution set space. In addition, the completion
of the route still needs to be improved. In the experiment, the
processing method of the demand has a great influence on
the generation effect of the route. Due to the lack of pro-
cessing methods for changing demand, the algorithm should
be more precisely considered in follow-up work to further
improve the generation effect.
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