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The execution of public roadway maintenance, rehabilitation, and restoration activities disturb normal traffic flows, resulting in
roadway capacity reduction, inducing travel time delays, and promoting traffic safety concerns. While they improve public
roadway performance once complete, the impacts endured in executing these actions is significant. This work seeks a deeper
understanding of the effects of improvement actions on traffic by juxtaposing their effects against those arising from traffic
incidents that cause similar capacity reductions and related negative externalities. This is accomplished through direct and
reverse comparisons with traffic incident impacts. A measure of unit delay that uses observations to determine event location
extent, duration, and propagation direction was computed at both facility and corridor-wide levels to establish the degree to
which improvement actions and traffic incidents are similar or dissimilar. Alternative hybrid machine-learning methods are
proposed to identify and contrast those traffic characteristics that contribute greatest to correct detection of each type of
downtime event. These techniques can detect traffic events and accurately distinguish between event types (whether a collision
or improvement activity). The techniques were applied on seven months of data obtained from 2019 along three corridors
from northern, southern, and western regions of the Commonwealth of Virginia. Those traffic characteristics that contribute
greatest to correct event detection of each event type were identified and their similarities and differences were studied. General
linear, multivariate regression equations were also developed for more general application.

1. Introduction

Public roadway maintenance, rehabilitation, and restoration
activities (together improvement actions), like traffic acci-
dents, disturb normal traffic flows, resulting in roadway
capacity reduction, inducing travel time delays, promoting
traffic safety concerns, and increasing net public cost. This
capacity reduction may be due to blocked traffic lanes or even
a roadway component (e.g. a bridge) that is temporarily
taken out of commission during execution of improvement
activities. This period of reduced capacity from such non-
recurring events is considered, herein, as roadway downtime,
and the inducing events as downtime events.

Reduction in travel time reliability, degradation in ser-
viceability, increase in primary or secondary traffic incidents

[1], and increase in fuel consumption are other consequences
of capacity reduction due to roadway downtime. In the U.S.,
more than 550 million gallons of fuel and 480 million hours
are lost every year due to traffic congestion brought about
specifically by work zones [2]. Also, an estimated 10% of con-
gestion and 24% of unexpected freeway delays are caused by
work-zones [3]. Traffic incident-related delays form another
13 to 30% of the total congestion delay over peak periods [4].
Even after roadway capacity is reinstated, the activity is com-
plete or the event is cleared, degradation in roadway system
performance can be expected for a subsequent period of time.

Improvement actions preserve or increase serviceability
and ultimately improve safety, and travel time reliability for
future operations. As they are undertaken, however, they
negatively impact travel times and travel-time reliability for
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both the facility, and, due to shifts in traffic to alternative
facilities, adjacent roadways. These temporary impacts are
often not explicitly accounted for in the activity planning
process. Yet, in total, these actions are not infrequent and
their effects not negligible; their impacts are realized during
large swaths of time. Moreover, their effects are not only local
but facility-level and network-wide.

This work seeks a deeper understanding of the effects of
improvement actions on traffic by juxtaposing their effects
against those arising from traffic incidents that cause similar
capacity reductions and related negative externalities. This is
accomplished through direct and reverse approaches. In the
direct approach, computed vehicle unit delays are compared
by event type. Computations explicitly account for location
extent, duration, and negative impact propagation direction.
To support the reverse engineering investigation, machine
learning methods, based on concepts of Support Vector
Machines (SVM) or Random Forests (RFs) with K-Nearest
Neighbor (KNN), are proposed and applied to identify those
traffic characteristics that contribute greatest to correct
detection of both types of downtime events, i.e. roadway
improvement actions and traffic incidents. Similarities and
differences in these contributing factors aided in under-
standing their unique qualities. Additionally, findings from
this investigation aided in efficiently identifying key vari-
ables for inclusion in unit delay estimation models.

Application of the developed methods and metrics on
case studies allowed investigation into the: (1) most affected
traffic features for event type; (2) accuracy of hybrid event
detection methods and the transferability of chosen param-
eters; (3) influence of downtime from improvement actions
on corridor performance; (4) unit delay estimates and their
generalizability across corridors; and (5) relationship
between event features and unit delay values. Generally,
the outcomes of this work can be used to produce estimates
of the public cost, whether direct through investments or
indirect in the form of user costs, of highway improvement
projects. These costs can then be weighed against their
benefits.

A key finding of the results is that travel time reliability-
related characteristics contribute more to detection of traffic
incidents than to detection of improvement actions even
when executed during peak hours. This indicates that
improvement actions are less likely to affect traffic perfor-
mance than are traffic incidents. In general, the results show
that traffic incidents have more than five times the impact on
traffic compared with improvement actions. This five-fold
impact was found both through investigation of the contri-
bution of traffic characteristics to correct event detection
and estimated unit delays from both event types, and persists
whether the analysis is conditioned on peak hours.

Also key, 60% of traffic improvement events in the case
studies had nearly zero traffic impact. While not as monu-
mental as traffic incidents, improvement actions blocking
one lane and requiring approximately one hour create 9
minutes delay per vehicle on average (ranging from 0 to 16
minutes with a 90% confidence interval) when executed in
the peak period. Total delays over all vehicles from improve-
ment activities, thus, can be very substantial. However, traf-

fic incidents blocking one lane for one hour in the same peak
hours create 16 minutes delay per vehicle on average. More-
over, each additional lane blocked in a collision increases the
average unit delay by 67%, while in an improvement action,
the average unit delay increases 17%.

The next section reviews relevant literature and fur-
ther establishes the paper’s contributions. This is followed
by details of the methodological approaches used in this
study (Section 2) and results from their application on
three corridors within the Commonwealth of Virginia
(Section 3). Additional findings and their implications fol-
low in Section 4.

2. Literature Review

Several studies have investigated the impact of maintenance
activities on the operation of real roadway facilities and the
economic costs and benefits of investments in public road-
way infrastructure. These works consider the effects of main-
tenance actions in inducing: capacity reduction (e.g., [5, 6]),
secondary incidents (e.g., [7]), and traffic delays (e.g., [2, 8]).
Comprehensive reviews of capacity estimation methods and
work-zone impacts can also be found in ([9, 10], respec-
tively). Findings from these studies indicate that a large
number of factors contribute to the impact of maintenance
activities on roadway performance. These factors when gath-
ered across these studies include as follows: percentage of
truck traffic; pavement grade; number of lanes and lane clo-
sures; lane width, work zone layout (lanes merging, lane
shifting, and crossover), construction type, duration, and
time (on-/off-peak, day/night); pavement/weather condition
(dry, wet, icy, sunny, rainy, snowy); and traveler familiarity
(commuter/noncommuter). Some of these studies provide
an equation. For example, Nassiri and Aghamohammadi
[5] provide a model to predict remaining roadway capacity
for a work zone. These equations require input data that
may be difficult to obtain, and applying their methodologies
in alternative locations requires traffic volumes and/or den-
sity, in addition to speed, data as input, which may be diffi-
cult to obtain.

These studies make important, limiting assumptions on
the direction of speed reduction, and the propagation of
other traffic impacts, activity durations, and extent. Specifi-
cally, they include changes in traffic measures in both traffic
directions equally, use preset activity durations and pre-
sume that the location of the traffic impact is limited to
the work zone and, in some cases, a preset distance
upstream of the work zone. Impacts of maintenance activi-
ties were investigated either within a fixed extent of time
and location (e.g. [7, 8]) or within a dynamic extent defined
over a fixed discharge rate. For example, Du et al. [2]
defined the delay as more than 25% drop in the normal
speed and then, measured the delay cost based on such cri-
teria. The normal speed must be fed into their model as an
input. The methods proposed herein use observations from
the data to determine event location extent, duration, and
propagation direction. They do not require prior informa-
tion on normal speeds.
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While methods that have been proposed for traffic inci-
dent impact analysis have similarly accounted for incident
impact propagation direction and may not require preset
values of incident impact duration and extent, these other
methods cannot be directly applied to work zone impact
analyses. They are designed for and trained on traffic events
with short durations consistent with vehicular accidents.

Numerous studies provide methods for prioritizing
roadway construction projects with a goal of minimizing
total costs, including monetary costs of traffic delay, and
safety from inaction (e.g., [11–17]). A few prior studies
include the negative effects of improvement actions during
their execution (i.e. downtime) in prioritization and schedul-
ing processes [13, 18–22]. These works replicate traffic either
as a user equilibrium (UE) traffic assignment (using a cell
transmission model (CTM) approach or Bureau of Public
Roads (BPR) function), day-to-day route choice problem,
maximum flow problem, or through microsimulation of
traffic.

Using an actor-critic, deep reinforcement learning solu-
tion methodology, DCMAC [23], to solve a bilevel model
in which activities are scheduled in the upper level and a
UE traffic assignment captures the response of traffic in the
lower level, Zhou et al. [22] found that a savings in traffic
delays of between 16 and 28% with up to 15% cost savings
can be achieved by accounting for the construction activity
downtime effects during improvement action prioritization
and scheduling. In a day-to-day setting, Yang et al. [20]
found that work durations of less than 60 days significantly
impact the optimal schedule; while, activities with longer
duration do not.

While accounting for the impacts of work zones in prior-
itization and scheduling, these prioritization and scheduling
works used rough estimates of improvement action impacts
during their execution, e.g. a percent reduction in capacity
given a duration and number of lanes blocked, as inputs to
their models. Event detection methods and unit delay esti-
mates developed herein can support these approaches, pro-
viding specific impact estimates for the considered activities.

The detection of disruptions in traffic was also consid-
ered in the literature and dates back to the 1970s [24–26].
These works developed methods to detect a change in lane
occupancy values beyond a threshold. They proposed
methods based on standard normal deviate, decision trees,
and time-series analysis, respectively. More recent detec-
tion algorithms make use of newer technologies. Data is
collected from loop detectors [27], video cameras [28],
probe vehicles [29], and social media [30]. Other recent
works also propose the application of more involved arti-
ficial intelligence methods (e.g., [30–33]). These machine
learning techniques detect anomalies or outliers within
the traffic data by considering not only lane occupancy
but other factors, such as speed changes. Several works
extended these concepts to detect such anomalies in real-
time (e.g., [34–36]).

While methods for detection of traffic incidents are plen-
tiful, it appears that no prior study has sought to detect
maintenance, rehabilitation or other construction or
improvement related activities. Despite that improvement

actions are planned, and often recorded, it can be useful to
have the capability to detect these events as their exact time
of implementation may not be known, they may not be
implemented exactly as planned due to uncertainties such
as changing weather, and their occurrence may not be
known to all parties. This is especially true for actions with
limited duration. Moreover, it may be useful to be able to
distinguish a detected potential traffic incident from an
ongoing improvement activity in real-time applications.
This paper fills this gap. It further proposes a reverse engi-
neering approach for understanding differences between
downtime from improvement actions and the effects of traf-
fic incidents and introduces a concept of unit delays, com-
puted values of which may have broad utility.

3. Methods

3.1. Event Detection and Critical Factor Identification
through Reverse Engineering. The proposed reverse engi-
neering technique uses traffic characteristics to detect the
occurrence of an event. It estimates the contribution of each
characteristic to detection success (correct event detection)
and failure (misclassification), and with this information
identifies the most critical characteristics for success under
both improvement actions and traffic incidents. Investigat-
ing differences in those characteristics that most contribute
to the identification of these two classes of events aids in
providing a deeper understanding of how improvement
actions are both similar to and different from traffic inci-
dents in terms of their impacts on traffic performance and
public welfare.

Artificial neural network (ANN), support vector machine
(SVM), and random forest (RF) techniques are classical
machine learning methods that have been widely applied in
traffic incident detection studies (e.g. [36–38]). Xiao [39]
noted that well-performing models, such as ANNs, did not
perform as well when applied to a second data set. Motivated
by this, Xiao proposed an ensemble learning method that
integrates SVM and K-Nearest Neighbor (KNN) methods
for incident detection. This work employs similar concepts
to Xiao’s ensemble methodology by creating a hybrid of
SVM (or RF) and KNN procedures, but with a different
structure and application. Here, SVM (or RF) is used first
for detection and KNN second for refinement; whereas,
Xiao’s method seeks confirmation of correct detection by
considering whether the events are selected by both methods
(SVM and KNN) giving more weight to those events identi-
fied in SVM. Moreover, Xiao’s method does not correct for
discontinuities in space and time arising in the detection of
a single event. Thus, it may identify one event as a set of small
events. The proposed hybrid methodology employs four
detection classes to incorporate and distinguish between traf-
fic incidents and improvement actions. Initial runs were
made with a method based on the ensemble design of SVM
and KNN in Xiao, but the sequential version proposed herein
outperformed the ensemble design.

While methods for detection of traffic incidents are
plentiful, it appears that no prior study has sought to
detect maintenance, rehabilitation or other construction
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or improvement related activities. Despite that improve-
ment actions are planned, and often recorded, it can be
useful to have the capability to detect these events as their
exact time of implementation may not be known, they
may not be implemented exactly as planned due to uncer-
tainties such as changing weather, and their occurrence
may not be known to all parties. This is especially true
for actions with limited duration. Moreover, it may be
useful to be able to distinguish a detected potential traffic
incident from an ongoing improvement activity in real-
time applications.

As Xiao [39] found in developing an ensemble learning
method for traffic incidents, combining methods was found
here to enhance detection accuracy. In application to real-
world data (Section 5), the RFF-KNN method outperforms
the SVM-KNN method in terms of detection accuracy. Both
were shown to reduce misclassification errors as compared
with the proposed single-phase SVM and RF methods. The
following subsections present these hybrid learning methods
and their components.

3.2. Hybrid Learning Methods. Traffic event detection can be
regarded as a classification problem as suggested in [29]. The
proposed hybrid learning methods are aimed at classifying
each data instance (a row or record from a dataset—here,
the traffic characteristics associated with one roadway seg-
ment and one point in time) as falling into a nonevent or
event class (improvement action, traffic incident, both). Each
hybrid method is composed of two learning phases. Phase I
starts by training a classification model on a portion, typi-
cally half, of the data. The trained SVM/RF classifier detects
the type of downtime event (class) (at every location (road-
way segment) and time increment (1-minute interval)).
Phase II employs the KNN algorithm to further refine the
results, reducing the number of misspecified instances. Gaps
across time or location for a single event are identified and
their classifications modified for increased consistency by
maximizing homogeneity within and heterogeneity between
downtime event classes.

Let Θðtm, lÞ represent an element of a matrix of traffic
characteristics (e.g., speed and volume) at time interval tm
and location l, DTCat PðIÞðtm, lÞ and DTCat PðIIÞðtm, lÞ be
corresponding elements of matrices of predicted downtime
event types resulting from the phase I and II classifiers for
the specified tm and l. The hybrid learning method, thus,
applies a SVM or RF classifier toΘðtm, lÞ in phase I and refines
the results using the KNN algorithm in Phase II. The final
(refined) prediction, DTCat PðIIÞðtm, lÞ, uses values of
DTCat PðIÞðtm−k, lÞ, …, DTCat PðIÞðtm−1, lÞ, DTCat PðIÞðtm+1, lÞ
…, DTCat PðIÞðtm+k, lÞ, for k a parameter of the KNN algo-
rithm, from Phase I.

An overview of the proposed hybrid method is depicted
in Figure 1. Figure 2 illustrates the steps of this method for a
generic location. Applying a classifier in Phase I of this loca-
tion resulted in detection of an ongoing incident for time
periods 5 to 13, 16 to 21, and 28 to 29. In Phase II, KNN
refines these time intervals to a contiguous interval by add-
ing time instances 14 and 15 to the detection results and

removing time instances 28 and 29. Descriptions of the
SVM, RF and KNN subprocedures follow.

3.3. Support Vector Machine (SVM). SVM is a supervised
machine learning method that was developed for binary
[40] and extended for multi-class [41] classification applica-
tions. The multiclass SVM approach breaks the classes into
multiple binary (two-class) classification problems that each
included the dominant class versus all alternatives. For each,
SVM generates an optimal separating hyperplane that max-
imizes the separating margins of the two classes (e.g. traffic
incidents as the dominant class against a class that includes
all other event types, here, improvement action, nonevent
or both) over a linearly separable sample dataset (here,
speed-related changes) [42].

Given a dataset of n samples, ðx1, y1Þ, …, ðxi, yiÞ, …,
ðxn, ynÞ where xi ∈ℝn, i = 1,⋯, n is a training vector con-
taining all traffic characteristics for each data sample, and
yi ∈ f1,−1g is the class type (dominant or alternative) asso-
ciated with xi, SVM generates separating hyperplanes as
formulated in [40]:

min
ω,b,ξ

1
2
ωTω + C〠

n

i=1
ξi,

s:t:yi ω
Tϕ xið Þ + b

� �
≥ 1 − ξi,

ξi ≥ 0,

i = 1,⋯, n:

ð1Þ

ω ∈ℝn is the normal vector to the hyperplane (hyper-
plane function: f ðxÞ = ωx + b), b ∈ℝ the intercept of the
hyperplane, C > 0 is a penalty term, and ϕ a manually
chosen kernel function.

As traffic data is not generally linearly separable, nonlin-
ear mapping functions, i.e. kernel functions, transform the
traffic data into a higher dimensional space through which
data points can be linearly separated. A radial basis kernel
is used here and is formulated as Kðxi, xjÞ = ϕðxiÞT∙ϕðxjÞ =
exp ð−γkxi − xjk2Þ, γ > 0, where γ is a parameter that defines
the amount of influence given to a single training data sam-
ple. The performance of SVM relies heavily on the choice of
the kernel function and its parameters (C and γ). As in [43],
to improve the classifier when applied to other datasets and
avoid overfitting the model to the test data, incremental
grid-searches on C (ranging from 1 to 10 with step size of
1) and γ (ranging from 0.1 to 1 with step size of 0.1) were
completed. Values of C and γ were chosen to provide the
highest average V-fold cross, with V = 10, validation accu-
racy. See [44] for background on cross validation method.
Once optimal hyperplanes are generated for each two-class
problem, the predicted class of a data sample is determined
according to the two-class problem with the highest predic-
tion score.

3.4. Random Forests (RFs). RFs, originally proposed by Brei-
man [45], are constructed on a collection of tree-structured
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classifiers similar to decision trees. Each tree casts a single
vote (i.e. identifies one of the possible classes (event types))
toward the most popular class via mode or mean for each
data element of a given data set. A RF is formed from an
ensemble of randomly generated tree classifiers. Inserting
randomness into constructing the tree classifiers makes for
a more robust method that is less influenced by outliers
and unbalanced datasets and is protected some from overfit-
ting. RFs have been used in traffic incident management and
safety studies in recent years (e.g., [46]). Through variable
elimination, it has a secondary benefit of providing a mea-
sure of variable importance [47, 48].

Here, RF is proposed for detecting event types (traffic
incident occurrence, improvement action, both, neither)

given a data set containing traffic characteristics, such as
speed changes. Tree classifiers are grown to produce a forest.
Each tree classifier is grown by applying conditional state-
ments to a randomly chosen, fixed number (mtry, a parame-
ter) of the event’s data items (e.g. mtry traffic characteristics
from a row (a sample) in the dataset) creating a decision
tree. RF constructs ntree such decision trees, each predicting
a sample’s event type. It votes accordingly. Here, the result
of each decision tree is one of the four event types (traffic
incident, improvement action, both, and neither). The event
type with the largest mode over decision tree predictions is
taken as the final outcome.

The final chosen type for a given sample is obtained
from the total collection of votes, one from each tree in the

Traffic
data

Replace
missing values

Event
data

Compute event
speed changes

Split data

Training
data Test data

Balance
data

Classify events
via RF or SVM

Detect
event type

0 Data preparation

3

1 Model training

2 Downtime detection (Phase I)

3
Refinement of misspecified
Instances (Phase II)

Refine types
(KNN)

Assess accuracy
& sensitivity

Extract traffic
features from data

Final event
classifications

21

0

Figure 1: Hybrid learning method overview.

Figure 2: Illustrative example of the proposed hybrid method.
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RF for the test dataset. The accuracy of classification is
affected by the chosen (tuned) parameters, mtry and ntree.

3.5. K-Nearest Neighbor (KNN). KNN is a classification
method that labels a data instance according to the classes
of the nearest k instances. The data instance is labeled based
on a majority vote from these k neighbors when weighted by
their respective distances. That is, those neighbors closest to
the data instance will have greater contribution.

Here, KNN is used to refine classification determinations
made from either SVM or RF classifier creating two hybrid
techniques: SVM-KNN and RF-KNN. Consider a dataset
of event classifications organized by segments over time cre-
ated from running SVM or RF. For the subset of data
records associated with roadway segment l, classification y∗i
is obtained from its k nearest (in time) records: y∗i = ½wj� ×
½yj�∀j∈fi±1,⋯,i±k/2,j≠ig. In the voting process, each neighbor

j ∈ fi ± 1,⋯, i ± k/2, j ≠ ig is given a weight wj as a func-
tion of its time difference from time ti: wj = 1/jti − t jj
for ti and t j the time of data instances i and j, respec-
tively. This is illustrated on an example in Figure 3 for
k=10.

4. Case Study

Three case studies were conducted involving corridors in
Virginia, each with a freeway segment and parallel, alterna-
tive arterial. The corridors are between 12 and 30miles in
length and each varies in terms of number of lanes (capac-
ity), speed limit, average daily traffic (ADT), percentage of
truck traffic, and presence of horizontal and vertical curves.
This section describes the case study locations with relevant
input data, analysis outcomes, and ultimate findings.

4.1. Locations and Data Sources. Case studies were selected
from northern, southern, and western regions of the Com-
monwealth of Virginia. Their locations are depicted in
Figure 4 and are specified as follows:

Case study I: A 12-mile stretch of the I-66Westbound
corridor between Leesburg Pike (Exit 66) and US-29 (Exit
52) and adjacent roadway sections of US-50 Westbound
(between Graham Rd and US-29/VA-237/Old Lee Hwy)
and US-29 (between US-50/VA-237/Old Lee Hwy and I-66
(Centerville)) in Fairfax County.

Case study II: A 30-mile stretch of the I-81 Southbound
corridor between I-64/Exit 221 and I-64/Exit 191 and adja-
cent roadway sections of US-11 Southbound between VA-
262 and I-64 in Augusta and Rockbridge Counties.

Case study III: A 25-mile stretch of the I-64Westbound
corridor between Croaker Rd/Exit 231B and US-60/Exit
200 and adjacent roadway sections of US-60 Westbound
between Croaker Rd and I-295 in James City and Henrico
Counties.

4.1.1. Traffic Data. Traffic data, including information
related to speeds and travel times, were obtained from the
I-95 Vehicle Probe Project (VPP) II contract under the
INRIX suite. The data, which provide space-mean speeds,
were collected through the INRIX traffic message channel
(TMC) monitoring platform. INRIX reports traffic data by
road segment, each referred to as a TMC segment. Selected
stretches of I-66, I-81, and I-64 include a total of 16, 16,
and 14 TMC segments, respectively. Lengths of these TMC
segments range from less than 1 mile to 6 miles. INRIX data
are widely utilized in transportation studies (e.g. [51, 52]).

The case studies relied on seven-month historical TMC
segment data from April 1 to October 31 in 2019. Traffic
data were retrieved and aggregated at 1-minute increments
(as in [53] for each TMC segment. This choice of a 1-
minute resolution for event detection aligns with the
reporting frequency of data in the event dataset, and is
of the highest level of granularity achievable with the data-
sets that are used. Traffic data of each TMC segment
includes a reference speed (speed limit), current speed,
historical average speed, and time required to traverse the
segment. For the studied TMC segments, the number of 1-
minute traffic data records collected in this 214-day period

Figure 3: Refining classification of a data record through K-Nearest Neighbor.

6 Journal of Advanced Transportation



is 4,930,560, 4,930,560, and 4,314,240 in total for I-66, I-81,
and I-64, respectively. Additional data associated with TMC
segments 3 miles upstream of the study location start points
and 1 TMC segment downstream of the end points were also
obtained. These additional data were included to catch event
impacts that may persist beyond the study locations. The for-
mat of the collected traffic data by TMC segment is shown in
Table 1. Table 2 provides a snapshot of additional informa-
tion from the INRIX dataset that is used in identifying loca-
tions associated with events and their impacts.

To minimize random variations and impacts from ran-
dom errors in the traffic data, the traffic data given in 1-
minute increments were smoothed using a weighted and
centered moving-average that weights the data according
to INRIX-supplied observation confidence scores. Less than
0.5% of the data were missing. Since the missing data were
limited to a small number of observations and rarely
occurred over consecutive periods of any extended length,
the missing data were replaced by the mean values for prior
and subsequent time increments. Such instances of missing

data were assumed to result from temporary failures arising
within the TMC system. An approach that imputes missing
values from their nearest neighbor values while considering
time, location, hour of the day, weekend/weekday, and
annual average daily traffic was tested, but resulted in
replacement values that were inconsistent with prior and
subsequent data values. To obtain speed profiles under
recurrent conditions and further calculate unit delays,
Recurrent Speed Profiles (RSPs) were computed through
methods presented in [54].

4.1.2. Event Data. An event dataset was created that includes
traffic incidents of vehicular collisions only, with subcate-
gories of single-vehicle accidents, multiple-vehicle acci-
dents, and tractor trailer accidents, and improvement
actions with work zone details. Improvement actions include
as follows: bridge inspection work, guardrail repairs, ITS
equipment repairs, paving operations, pothole patching
operations, rehabilitation project activities, resurfacing oper-
ations, survey work, median/jersey wall repair/installation,

(a)

(b)

(c)

(b)b)b

(b)

2020 Mapbox © Openstreetmap 

I-81 S US-11 S 2020 Mapbox © Openstreetmap
I-66 W US-50 W/ US-29 W

2020 Mapbox © Openstreetmap
I-64 W US-60 W

0 15 30 60 Miles

© cccarto.com

N

US-50US-29

Figure 4: Case Study Locations across the Commonwealth of Virginia (Developed Using Tools in CHUBB Custom Cartography, [49]): (a)
I-66 and US-50 Westbound, (b) I-81 and US-11 Southbound, and (c) I-64 and US-60 Westbound [50].
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new roadway construction, and road widening project activi-
ties. The events’ data used in the case studies were retrieved
from a nation-wide traffic event data archiving system
Regional Integrated Transportation Information System
(RITIS). The Virginia Department of Transportation (VDOT)
manages information about work zones, incidents and other
types of traffic disruptions arising in Virginia with the aim of
providing travelers with traffic information and facilitating
roadway services. Table 3 synthesizes this database of studied
collisions and improvement actions for the study locations
during the study period. The events’ data include basic infor-
mation related to timing to the minute and location in terms
of geographic coordinates, duration, maximum number of
lanes closed, and brief text with description.

4.2. Data Preparation

4.2.1. Relating Traffic Event Occurrence to Traffic Performance.
The collected traffic data from INRIX was sorted to create a
time-ordered and TMC-segment sequenced set of records. In
an event occurrence, upstream traffic will often travel at slower
speeds while downstream speeds may be higher in compari-
son. Other traffic characteristics may be similarly affected up
and downstream of the event. To investigate such possible

changes over the course of an event’s impact, 17 additional
traffic-related variables were developed. 16 relate to traffic
characteristics and the remaining is associated with time.
These variables build on the speed profiles of TMC segments
and relate either to traffic or the event impact’s temporal char-
acteristics. A reduction in the speed ratio (SpR) can be
expected at the time and location of an event. At the very
moment of the event, the average speed ratio in both upstream
and downstream segments is expected to be greater than that
in the location of the event. At later time increments, as delays
propagate, this will not be the case. Observations of the
dynamics aid in event detection.

Several of the listed traffic-related variables are defined
based on a metric for travel time reliability, Extra Buffer
Time Index (EBTI), previously introduced by Tavassoli
Hojati et al. [55]. In general, extra buffer time is defined as
the extra delay caused by an event. It indicates the extra
travel time needed to arrive at a destination on time with
95% certainty in a traffic event. Details of EBTI calculation
can be found in [55].

Temporal characteristic, including peak hour and week-
end indicators, acts as a dummy variable. Table 4 consolidates
the potential explanatory variables, including spatiotemporal
traffic characteristics and time-related variables, for event
detection. The response variable to these explanatory variables
is the event class for a given location-time pair ðl, tÞ.

4.2.2. Balancing the Data. It is reasonable to expect that for
any location, there will be a disproportionate number of
location-time pairs in which no event (neither traffic inci-
dent nor improvement activity) has occurred. This leads to
an imbalance in data supporting to the four detection out-
comes (no event, traffic incident, improvement activity, or
both traffic incident and improvement activity). Consider

Table 1: Traffic data format.

TMC code Timestamps
Speed
(mph)

Historical average
speed (mph)

Reference speed
(mph)

Travel
time
(sec)

Confidence
score

110P04174
2019-04-01
00 : 00 : 00

57 60 60 30.76 30

110P04174
2019-04-01
00 : 01 : 00

53 60 60 33.08 30

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

110P04175
2019-04-01
09 : 00 : 00

65 61 57 52.86 30

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 2: TMC segments information format.

TMC code
Freeway information Start coordinates End coordinates

Length (mile)
Name Intersection Latitude Longitude Latitude Longitude

110P04174 I-66W VA-7/exit 66 38.90079 -77.19357 38.89674 -77.20097 0.487071

110+ 04175 I-66W I-495/exit 64 38.89674 -77.20097 38.88978 -77.21302 0.806837

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Table 3: Frequency of events by type for April 1 to October 31 in
2019.

Event type
Case study

I-66W I-81 S I-64W

Collisions 516 72 220

Improvements 729 104 151

Total 1245 176 371
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the case study on the I-66W corridor. With its 4,930,560
data records, only 231,711 data records, 4.7% of the data
set, relate to an event. This data imbalance can lead to issues
of bias, misclassification, or low accuracy/sensitivity in
detection outcomes.

To avoid issues of low sensitivity or accuracy, methods
for balancing the data are often applied. In works in the lit-

erature, oversampling and undersampling techniques were
used to balance the data by duplicating instances of the
minority class and removing random instances of the major-
ity class, respectively. A downside to these techniques is that
they are known to cause issues of over- or underfitting to the
data. To address this concern, [56] introduced Synthetic
Minority Oversampling Technique (SMOTE). SMOTE

Table 4: Potential explanatory cariables (at 1-minute increment for a given TMC segment) and their definitions.

Variable Description/value

Traffic characteristics

Speed-related

SpR (t, l) Ratio of speed at time t in segment l to recurrent speed at the same time and location.

SdR (t-15: t+15, l) Standard deviation of SpR from 15 mins before to 15 mins after time t in segment l.

UpSdR (t-15: t+15, l+1, l) Ratio of SdR in upstream segment (US) at the same increment of time.

DownSdR (t-15: t+15, l-1, l) Ratio of SdR in downstream segment (DS) at the same increment of time.

AvgR (t: t+15, l) Average of consecutive SpRs from time t to 15 minutes after in segment l.

UpAvgR (t: t+15, l+1) AvgR of US within same increment of time.

DownAvgR (t: t+15, l-1) AvgR of DS within same increment of time.

U/CAvgR (t: t+15, l+1, l) Ratio of AvgR in US to chosen segment at the same increment of time.

D/CAvgR (t: t+15, l-1, 1) Ratio of AvgR in DS to chosen segment at the same increment of time.

D/UAvgR (t: t+15, l-1, 1+1) Ratio of AvgR in DS to US at the same increment of time.

Travel time-related

EBTI (t: t+15, l) EBTI of consecutive timestamps from time t to 15 minutes after in segment l.

UpEBTI (t: t+15, l+1) EBTI of US within same increment of time.

DownEBTI (t: t+15, l+1) EBTI of DS within same increment of time.

U/CEBTI (t: t+15, l+1) Ratio of EBTI in US to chosen segment at the same increment of time.

D/CEBTI (t: t+15, l-1) Ratio of EBTI in DS to chosen segment at the same increment of time.

D/UEBTI (t: t+15, l-1, 1+1) Ratio of EBTI in DS to US at the same increment of time.

Temporal characteristic

Peak 1 = weekday peak period (5 : 30 – 9 : 30, 15 : 00 – 19 : 00); 0 = otherwise.

Table 5: Number of disruptions by type for case study locations.

Case Event type Imbalanced training Imbalanced test Imbalanced Total Balanced training

I-66W

Collision 12,391 (0.45%) 18,348 (0.85%) 30,739 (0.62%) 139,934 (14.01%)

Improvements 188,979 (6.81%) 77,751 (3.60%) 266,730 (5.41%) 188,979 (18.92%)

Both 584 (0.02%) 685 (0.03%) 1,269 (0.03%) 70,561 (7.06%)

None 2,571,486 (92.72%) 2,060,336 (95.51%) 4,631,822 (93.94%) 599,386 (60.01%)

Overall 2,773,440 2,157,120 4,930,560 998,861

I-81 S

Collision 1,846 (0.07%) 2,279 (0.09%) 4125 (0.08%) 141,802 (16.78%)

Improvements 36,859 (1.50%) 33,707 (1.37%) 70,566 (1.43%) 143,867 (17.02%)

Both 76 (0.003%) 29 (0.001%) 105 (0.002%) 56,967 (6.74%)

None 2,426,499 (98.43%) 2,429,265 (98.54%) 4,855,764 (98.48%) 502,596 (59.46%)

Overall 2,465,280 2,465,280 4,930,560 845,232

I-64W

Collision 25,171 (1.17%) 3,854 (0.18%) 29,025 (0.67%) 138,654 (16.15%)

Improvements 358,359 (16.61%) 355,936 (16.50%) 714,295 (16.56%) 142,859 (16.64%)

Both 9177 (0.43%) 2,573 (0.12%) 11,750 (0.27%) 66,654 (7.76%)

None 1,764,413 (81.79%) 1,794,757 (83.20%) 3,559,170 (82.50%) 510,546 (59.45%)

Overall 2,157,120 2,157,120 4,314,240 858,713
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generates synthetic data records of the minority class for the
K-Nearest Neighbors of a minority sample.

In this work, the dataset is split into training (including
2,773,440 records for 9 continuous segments of I-66W,
2,465,280 records for 8 continuous segments of I-81 S, and
2,465,280 records for 7 continuous segments of I-64W)
and test (including 2,157,120 records for 7 continuous seg-
ments of I-66W, 2,465,280 records for 8 continuous seg-
ments of I-81 S, and 2,465,280 records for 7 continuous
segments of I-64W) datasets. Parameters of the machine
learning techniques are set on the training data and then
applied within the machine learning method in the analysis
completed on the test data. Table 5 provides a count of the
event records and final number after applying SMOTE by
event type for each of the three case study locations. Event
records are between 0.01 and 7% of the records in the orig-
inal training datasets. Records from the three event classes
are considered as minority classes, while nonevent records
form the majority class.

A mixed technique of adding synthetic minority records
and removing majority records was applied to achieve the
best compromise between data size and algorithmic perfor-
mance. First, SMOTE with k = 5 was applied to the training
datasets to create synthetic minority records for inclusion.
The application of SMOTE was completed separately for
each minority class. Second, a random set of the majority
class (nonevent) records was removed producing a roughly
1 : 4 ratio of event to nonevent records. This ratio is consid-
ered a golden standard and, thus, follows standard methods
from case-control studies [57]. The parameters of the event
detection models were calibrated on the balanced training
dataset.

5. Results and Discussion

The importance of traffic features to the accurate detection
of event occurrence by type is analyzed in this section.
Event-based unit delays at facility- and corridor-levels were
estimated for each of the case study locations. Commonali-
ties and differences between improvement actions and traffic
incidents can be discerned from event detection model
results. Factors affecting these unit delays were identified
through multivariate statistical analysis. Before proceeding
to apply the detection methods, their performance on the
case study locations is analyzed.

To evaluate the performance of the SVM, RF, SVM-
KNN, and RF-KNN methods in classifying each Θðtm, lÞ,
each data element for each time interval tm and location l
as being associated with one of the four event (or nonevent)
types, a confusion matrix is created from the results of each
method that includes classification errors by event type, and
an overall prediction accuracy is computed from the matrix.
The confusion matrix concept was first introduced in [58]
and is illustrated for this application in Table 6. In the con-
fusion matrix, pij gives the number of instances of event
type i that are predicted to be of event type j and rij gives
the ratio of instances of event type i that were predicted to
be of event type j to the total number of instances of type
i, Ni: rij=pij/Ni. Thus, rii is known as the detection rate
for type i. The overall predictive capability of a method for
a given application then is determined by Acctotal =∑L

i=1pii/
∑L

i=1Ni.
Either of the developed hybrid techniques can be

designed around various input traffic characteristics. Those
characteristics that contribute in the method’s specification
with the greatest accuracy provide additional insights into
which characteristics from the data contribute most to the
event type. Different characteristics may contribute more
to one or another event type.

In applying either proposed hybrid method, some
improvement actions were not detected. The occurrence of
false positive and negative findings, in part, can be explained
by the differences in the effects of improvement actions on
traffic performance as a function of lanes blocked, duration
of implementation, and other factors. Understanding which
features make an activity less detectable can provide further
understanding.

5.1. Event Detection Method Performance. The proposed
detection methods were executed on balanced training data-
sets. The default value of mtry needed for the RF-based pro-
cedures suggested in the literature can be obtained from the
square root of the number of explanatory variables in the
training data set [59]. Larger values of mtry , though, have
been found to lead to better performance (e.g., [46, 60]),
but larger values result in greater computation time. Runs
with mtry between 3 and 8 were completed as 8 variables
were chosen for inclusion. It was found that an mtry of 6
performed best. For the SVM-based methods, parameters
C (set to 10 for all locations) and γ (set to 0.6 for locations
I and III and 1 for location II) were set to achieve the highest
average 10-fold cross validation accuracy for all locations.
Additional parameter settings include k (for KNN) set to

Table 6: Confusion matrix of an event type detection method.

Event type
Predicted Actual number

of instances1 2 … L

Actual

1
p11

1 p12 … p1L
N1

r11
2 r12 r1L

2
p21 p22 … p2L N2
r21 r22 r2L

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

L
pL1 pL2 … pLL NL
rL1 rL2 rLL

Table 7: Overall accuracy rates.

Case study
Detection method

RF RF + KNN SVM SVM + KNN
I-66W 95.38% 96.52% 80.95% 81.21%

I-81 S 98.42% 99.09% 87.68% 88.04%

I-64W 90.17% 91.02% 86.74% 86.96%
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Table 8: Confusion matrix.

Case study Downtime class Method
Detected

pij rij
Both Col.1 Imp.2 None Both Col. Imp. None

Case Study I (I-66W)

Both
N = 685

RF 685 0 0 0 100% 0.00% 0.00% 0.00%

RF + KNN 678 0 7 0 98.98% 0.00% 1.02% 0.00%

SVM 501 0 97 87 73.14% 0.00% 14.16%% 12.70%%

SVM + KNN 502 0 98 85 73.28% 0.00% 14.31% 12.41%

Collision
N = 18348

RF 7 14944 275 3122 0.04% 81.45% 1.50% 17.02%

RF + KNN 0 16237 88 2023 0.00% 88.49% 0.48% 11.03%

SVM 386 9073 3068 5821 2.10% 49.45% 16.72% 31.73%

SVM + KNN 363 9140 3002 5843 1.98% 49.81% 16.36% 31.85%

Imp.
N = 77751

RF 8 39 53282 24422 0.01% 0.05% 68.53% 31.41%

RF + KNN 23 5 56882 20841 0.03% 0.01% 73.16% 26.80%

SVM 1368 1669 28986 45728 1.76% 2.15% 37.28% 58.81%

SVM + KNN 1291 1626 29043 45791 1.66% 2.09% 37.35% 58.89%

None
N = 2060336

RF 177 7129 64565 1988465 0.01% 0.35% 3.13% 96.51%

RF + KNN 82 5522 46520 2008212 0.00% 0.27% 2.26% 97.47%

SVM 11379 78985 262285 1707687 0.55% 3.83% 12.73% 82.88%

SVM + KNN 10700 78822 257779 1713034 0.52% 3.83% 12.51% 83.14%

Case Study II (I-81 S)

Both
N = 29∗

RF 0 0 0 29 0.00% 0.00% 0.00% 100.00%

RF + KNN 0 0 0 29 0.00% 0.00% 0.00% 100.00%

SVM 0 0 0 29 0.00% 0.00% 0.00% 100.00%

SVM + KNN 0 0 0 29 0.00% 0.00% 0.00% 100.00%

Collision
N = 2279

RF 0 1898 2 379 0.00% 83.28% 0.09% 16.63%

RF + KNN 0 1962 0 317 0.00% 86.09% 0.00% 13.91%

SVM 0 1390 111 778 0.00% 60.99% 4.87% 34.14%

SVM + KNN 0 1389 109 781 0.00% 60.95% 4.78% 34.27%

Imp.
N = 33707

RF 0 7 19324 14376 0.00% 0.02% 57.33% 42.65%

RF + KNN 0 0 19901 13806 0.00% 0.00% 59.04% 40.96%

SVM 259 69 16729 16650 0.77% 0.20% 49.63% 49.40%

SVM + KNN 244 61 16710 16692 0.72% 0.18% 49.57% 49.52%

None
N = 2429265

RF 139 1025 22987 2405114 0.01% 0.04% 0.95% 99.01%

RF + KNN 19 603 7654 2420989 0.00% 0.02% 0.32% 99.66%

SVM 40598 6096 239237 2143334 1.67% 0.25% 9.85% 88.23%

SVM + KNN 37883 5846 233229 2152307 1.56% 0.24% 9.60% 88.60%

Case Study III (I-66W)

Both
N = 2573

RF 2295 7 64 207 89.20% 0.27% 2.49% 8.05%

RF + KNN 2381 0 53 139 92.54% 0.00% 2.06% 5.40%

SVM 1998 90 47 438 77.65% 3.50% 1.83% 17.02%

SVM + KNN 2035 80 45 413 79.09% 3.11% 1.75% 16.05%

Collision
N = 3854

RF 3 2985 52 814 0.08% 77.45% 1.35% 21.12%

RF + KNN 0 3117 29 708 0.00% 80.88% 0.75% 18.37%

SVM 20 1830 40 1964 0.52% 47.48% 1.04% 50.96%

SVM + KNN 5 1856 40 1953 0.13% 48.16% 1.04% 50.67%

Imp. N = 355936
RF 131 124 188290 167391 0.04% 0.03% 52.90% 47.03%

RF + KNN 160 272 202150 153354 0.04% 0.08% 56.79% 43.08%

SVM 2201 10409 136838 206488 0.62% 2.92% 38.44% 58.01%
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10 in all runs and RF’s ntree at 200 for location I and II and
150 for location II.

Table 7 reports detection accuracies. The accuracy of all
tested methods was very high with the best performing
method ranging from approximately 91 to 99%. Results of
the event detection methods are reported in a confusion
matrix (Table 8) giving prediction counts and detection rates
for each event type and case study location with parameter
settings as identified earlier. Incorporating KNN to create
the hybrid approaches increased detection rates by as high
as 7 percentage points (81.5 to 88.5%), and, thus, decreased
misclassifications similarly. The KNN addition also
improved the method’s accuracy for all case studies and
nearly all event types when added to both SVM and RF
methods. Generally, the RF-based approaches outperformed
the SVM-based methods with and without incorporating
KNN.

Note that the parameters applied in Case Studies I and
III are identical and differ only minimally from those used
in Case Study II. If these parameters are used on Case Study
location II, the results diminish in accuracy only minimally.

5.1.1. Misclassified Improvement Event Instances. Between 26
(Case Study I) and 41% (Case Study III) of improvement

actions were misclassified as nonevents. These results were
further analyzed by conditioning on time of day (Figure 5),
maximum number of lanes closed (Figure 6) and improve-
ment type (Figure 6). From Figure 5, it can be noted that
improvement actions were most likely to be misclassified
when they were executed in off-peak hours. In Case Study
I, the misclassification rate when aggregated over the day is
27%, however, when conditioned on the time of day, this
value ranges between 8% and 45%, 45% occurring in off-
peak hours. The variability over the day in misclassification
rates is not as severe in the other two, more rural case study
locations.

The procedures are generally able to distinguish between
improvement actions and traffic incidents, implying that
impact traffic differently. However, the ability to distinguish
between this event types may be because improvement
actions tend to be executed in off-peak hours and traffic inci-
dents are more likely to occur in peak hours. Thus, the
increased detection rates of improvement actions in off-
peak hours may be from taking advantage of knowledge of
the time of day in which the event occurs. That is, if the
event arises in the off-peak hours, it is best to guess that it
is an improvement event. Conditioning on time of day, den-
sity plots and means of AvgR (Figure 7) and EBTI (Figure 8)

Table 8: Continued.

Case study Downtime class Method
Detected

pij rij
Both Col.1 Imp.2 None Both Col. Imp. None

SVM + KNN 2005 9764 137300 206867 0.56% 2.74% 38.57% 58.12%

None
N = 1794757

RF 392 1546 55268 1737551 0.02% 0.09% 3.08% 96.81%

RF + KNN 237 762 38043 1755715 0.01% 0.04% 2.12% 97.82%

SVM 3438 42634 18274 1730411 0.19% 2.38% 1.02% 96.41%

SVM + KNN 2959 39600 17469 1734729 0.16% 2.21% 0.97% 96.66%
1Collisions, 2Improvement actions. ∗Note that in Case Study II, there is only sparse data for the both category with 29 time-space instances.
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Figure 5: Correctly classified vs. misclassified improvement actions when conditioned on time of day for each case study location.
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traffic performance metrics were further studied. Note that
density gives the probability scaled by bin width. This is pro-
ceeded by investigation into the travel time delays from each
event type. Statistics of AvgR and EBTI conditioned on type
and time of occurrence are summarized in Table 9.

Sharp peak values around a ratio of 1 for AvgR and very
low EBTI values with some difference in AvgR, but no signif-
icant difference in EBTI between peak and off-peak time
periods, were observed. This indicates that improvement
actions have little impact on travel time reliability at any
time of day, but have higher impact on speeds in peak hours.
Additionally, when misclassified, regardless of time of day,
the improvement activity was presumed to be a nonevent.

The results in Figure 6 from studying improvement
detection rates conditioned on type and number of lanes
blocked shows that the greater the reduction in roadway

capacity caused by the event, the more likely the event is to
be correctly classified. Pothole patching, which typically
has low impact on capacity, was further studied by compar-
ing results in Figure 5 with the timing of events as illustrated
in Figure 9. These events were misclassified as nonevents in
between 50% and 70% of all occurrences for the case studies.
The results indicate that time-of-day is not a relevant factor.
This finding was useful in designing the unit delay estima-
tion models.

5.1.2. Feature Importance in Event Detection by Event Type.
Features that contributed most to correct event occurrence
and type detection for events involving either traffic incidents
or improvement actions were identified to understand how
improvement actions differ from traffic incidents in terms
of their impact on traffic. For this purpose, feature
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Figure 6: Improvement detection rates conditioned on types and number of blocked lanes.
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importance scores were computed through a permutation-
based approach employed in training the detection portion
of the RF-KNN hybrid method. In this approach, a baseline
model is created on a given dataset with various traffic fea-
tures and its accuracy and detection rates are recorded. Then,
values from one feature are randomly shuffled, and the mod-
ified dataset is passed to the model update accuracy and
detection rates. The feature importance scores are computed
from the difference between detection rates of the baseline
and permuted models. This difference is known as the Mean

Decrease Accuracy (MDA). The higher the MDA value of a
traffic feature, the more important is that feature. Table 10
reports the MDA values computed for each of the case study
locations and highlights the top 7 features for each event type
and case study location.

Eight features were of greatest importance over all loca-
tions for improvement and collision event types are as fol-
lows: UpSdR, U/CAvgR, D/CAvgR, AvgR, SdR, D/CEBTI,
DownAvgR, and UpAvgR. These features were supplied as
candidates for inclusion, and various combinations of six
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Figure 7: AvgR density plots.

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

EBTIEBTIEBTI

D
en

sit
y 

(B
in

w
id

th
 =

 0
.1

)

On-peak collision
Both

Off-peak collision None

On-peak improvement
Off-peak improvement

Case II (I-81 S) Case III (I-64 W)Case I (I-66 W)
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Table 9: Statics of AvgR and EBTI.

Type
Case studies

Case Study I (I-66W) Case Study II (I-81 S) Case Study III (I-64W)
Mean of AvgR1 Mean of EBTI 2 Mean of AvgR Mean of EBTI Mean of AvgR Mean of EBTI

Both 0.9631 0.0648 1.0232 0.0102 0.5856 0.7084

On-peak collision 0.8877 0.2385 0.7975 0.3147 0.8186 0.1984

Off-peak collision 0.8557 0.2606 0.7552 0.2900 0.8596 0.1699

On-peak improvements 0.9362 0.0719 0.9498 0.0199 0.9451 0.0667

Off-peak improvements 1.0004 0.0696 1.0014 0.0202 0.9951 0.0612

None 1.0012 0.0688 1.0003 0.0249 1.0019 0.0515
1Average of consecutive speed ratios, 2Extra Buffer Time Index.
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(mtry = 6) of the eight were included in the developed
improvement action/collision detection methods.

The results indicate that EBTI-related metrics were not
among the top important features for almost any event
type and location. Additionally, these metrics were among
the least important features for improvement activities.
This confirms the earlier claim that improvement actions
have little impact on travel time reliability.

Also, of note is that the feature importance score is gen-
erally greater (almost five times on average) for all metrics
associated with collisions than for those associated with
improvement actions. As expected, it was observed that traf-
fic conditions on upstream segments were more important
than for downstream segments. On the other hand, the ratio
of changes of traffic conditions in downstream segments to
changes of traffic conditions in the segment containing the
event (D/CAvgR and D/CEBTI) played a more important
role than a similar ratio for upstream segments (U/CAvgR
and U/CEBTI). This may indicate that the rise in speed
downstream of the event location is more significant than

the drop in speed upstream of the event location. This differ-
ence was greater for collisions than for improvement
activities.

5.2. Unit Delay Estimates. Using traffic data collected by
probe vehicles, traffic conditions are assessed to determine
if an event has arisen and has impact. An approach proposed
in [54] that uses k-means clustering was employed to classify
a location- (roadway segment) time pair as having or not
having a significant change in speed as per the speed ratio.
Following rules of contiguity, the spatial and temporal extent
of change in speed ratio as a consequence of the event is
delineated and is referred to as the event’s impact area. Vehi-
cle unit delays, a measure of extra travel time incurred due to
a reduction in speed, are computed based on speed differ-
ences over the event’s impact area. Specifically, the extra
travel time incurred per vehicle along each roadway segment
that falls in the delineated impact area is calculated as the
difference between the inverse of both average observed
and average recurrent speeds multiplied by the length of that
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Figure 9: Timing of pothole patching actions.

Table 10: Feature importance scores from RF method.

Features
MDA in detection of type (percent):

Case Study I Case Study II Case Study III
Both Coll.1 Imp.2 None Both Coll. Imp. None Both Coll. Imp. None

AvgR 29.01 32.76 8.47 9.86 28.16 46.38 16.38 5.87 55.16 55.09 8.42 7.85

D/CAvgR 54.22 49.61 12.11 9.64 32.53 45.32 19.48 3.58 54.48 53.46 8.89 6.74

D/CEBTI 30.27 17.48 4.10 2.01 47.88 25.77 26.53 3.82 28.14 26.02 2.29 3.10

D/UAvgR 44.79 43.27 8.99 8.75 21.97 36.84 18.85 4.75 35.85 35.67 4.95 5.25

D/UEBTI 18.12 16.28 3.59 1.96 25.32 17.93 9.59 1.83 24.25 25.90 1.57 2.20

DownAvgR 51.03 38.71 7.61 8.32 35.85 23.15 17.87 5.23 38.07 37.73 5.17 6.51

DownEBTI 20.99 21.31 5.28 3.14 36.01 14.72 14.03 2.39 31.23 34.84 2.47 3.56

DownSdR 41.74 40.95 11.74 3.98 58.94 26.74 25.19 1.76 37.76 34.57 3.13 2.88

EBTI 31.58 20.17 4.62 3.63 23.34 19.20 13.39 3.20 26.20 25.37 1.79 3.53

Peak 21.99 27.67 6.33 1.77 14.44 13.92 9.51 0.22 12.26 12.94 1.49 0.35

SdR 45.07 42.08 11.47 7.01 41.66 39.66 31.98 2.25 33.89 30.60 4.09 2.16

SpR 39.72 33.17 7.93 5.72 36.39 46.28 14.44 2.12 45.88 42.01 6.34 3.16

U/CAvgR 45.47 42.82 12.17 10.00 44.40 39.89 26.59 4.55 35.24 36.60 4.80 4.53

U/CEBTI 15.51 15.64 4.69 2.46 25.33 19.22 15.99 3.11 27.76 21.86 1.74 3.29

UpAvgR 36.45 40.73 9.63 9.46 51.32 39.19 20.53 6.08 33.09 35.81 3.58 5.37

UpEBTI 32.30 24.78 5.47 4.22 35.85 20.41 13.27 2.41 26.03 24.53 1.65 2.94

UpSdR 43.77 43.54 13.95 5.37 54.78 29.45 23.59 2.58 36.94 32.44 3.69 2.27
1Collision, 2Improvement actions.
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segment. Summing the extra travel time per vehicle incurred
over all segments falling within the impact area and dividing
by the event’s impact duration gives the vehicle unit delay
for the event.

Unit delays were computed for improvement action and
collision event types at both facility and corridor levels, as
well as by case study location and in the aggregate. Unit
delays were also computed for the minor, adjacent facilities
to the main study roadways where the events took place.
To study the network-wide impacts of an event, unit delay
calculations are completed over a more inclusive impact area
that incorporates not only the impacted segment(s) of the
facility on which the incident or activity arises but portions
of a parallel facility and relevant connectors (including on-

and off-ramps) to this facility to which traffic diverts. Thus,
the vehicle unit delays are computed across a broader geo-
graphical area.

Similar to the speed-ratio matrix developed in [54], a
second speed-ratio matrix was developed over observed traf-
fic conditions at time intervals after the event on all poten-
tially impacted segments of the minor facility. In the minor
facility, the extent of the event’s impact over space and time
was restricted to only those segments of the facility that fall
within a 2- or 3-mile radius of the event’s location. The same
time intervals as used in studying the event impact on the
major facility were applied in studying the impact on the
minor facility. Traffic conditions at the on- and off-ramps
in affected segments of both facilities were further analyzed.

Figure 10: The area of investigation of a 2-mile radius, at which the potentially impacted segments of US-50W are selected.

6:27

8:21

Ti
m

e

151413121110
US-50 W segment

(b)

6:27

8:21

Ti
m

e

CDEFGH
I-66 W segment

(a)

B A
0.0
0.1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
>1.0

Speed-ratio

0.2

...
...

...
...
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Since the lengths of the segments that contain the ramps are
unequal, unit-delays normalized to segment length are
reported.

Figure 10 shows the process of identifying the potentially
affected segments of US-50W (minor facility of Case Study
I). Segments 10 to 15 of US-50W fall within the extent
boundary (i.e. the 2-mile radius). Segment H of I-66W
and 13 of US-50W contain interchanges that fall within
the bounded area. It is hypothesized that traffic may detour,
leaving the major facility (I-66W) at segment H and enter-
ing the minor facility (US-50W) at segment 13. Normalized
unit-delays of each minor facility (US-50W) segment are
also plotted in this figure. Speed ratio matrices associated
with a single collision event occurring on 9/4/2019 at
6 : 27 : 00 are given in Figure 11 for both major and minor
facilities.

Normalized unit-delays associated with impacted seg-
ments (in both major and minor facilities) for a randomly
selected set of events arising in Case Study I are reported in
the plots of Figure 12. This case study was selected for this
additional analysis, because the roadway segments were
small enough to be able to investigate traffic changes near
the intersections. From this additional analysis, it was found
that higher normalized unit-delays in collision events
occurred along the upstream segments of the segment con-
taining the intersection connecting the minor facility (US-
50W) to the major facility (I-66W). This supports the
hypothesis that drivers are diverting to an alternative road-
way in collision events. The same was not noted for improve-
ment actions.

The results indicate that major and minor facility unit
delays were greater for collisions than improvement actions.
Table 11 and Figure 13 show the statistics and histograms of
major and minor facility unit-delays, respectively. Figure 13
further indicates that approximately 60% of the improve-
ment actions have almost no impact (near zero unit delay)
at the facility level while 30% of collisions had similar limited
traffic impact. By comparing aggregate mean unit delays on
the facility itself against the delays in the adjacent facility, the
relative difference between the roadways for collisions is less
than that of improvement actions. This is reasonable as
drivers may choose their routes with foreknowledge of
improvement actions. This indicates the importance for
studies of improvement activity impact on roadway perfor-

mance to investigate the impacts beyond the facility in which
the activity is executed.

Broadening the area of investigation from a radius of 2
miles to one of 3 miles produced greater values of unit-
delays with an increase of 26% for collisions and 46% for
improvement actions. It may be that the wider radius
catches more of the delays caused by the event on the major
road, but it may also catch delays from other events occur-
ring on the minor roadway or other roadways in the larger
roadway network. Additionally, speed data may not be as
accurate along secondary roadways, causing potential inac-
curacies in the computations. Further investigation on the
appropriate radius to use might consider dependencies on
roadway geometry (e.g. number of on- and off-ramps) and
event characteristics (e.g. severity of a collision).

To estimate the specific impact of the event type on traf-
fic performance, an analysis of the relationship between
event features (e.g. number of blocked lanes, time of day)
and resulting delays at the facility level was completed.

Censored multivariate regression models, specifically
Tobit regression [61], for estimating facility level unit-
delays (minutes/vehicle per 1-minute interval of event dura-
tion) for improvement actions and collisions were developed
to explore the significance of chosen independent variables,
such as number of lanes blocked, event duration, time-of-
day, percentage of trucks, and day-of-week. These variables
were chosen to use insights gained from application of the
event detection methods, results of which highlighted the
most important features. Independent variables of signifi-
cance included roadway and traffic characteristics (Annual
average daily traffic (AADT), K-factor, and number of lanes)
and event features (e.g. number of blocked lanes, event type,
and time-of-day). A difference in parameters of these models
and which independent variables are significant for traffic
incidents versus improvement actions provides important
additional insight into improvement action impacts. Results
of the Tobit regression are reported in Table 12.

With these equations, vehicle unit delays can be esti-
mated for a facility with similar characteristics. These equa-
tions can also be used for future planning for the same or
other roadway segments with similar traffic characteristics.

Regression model coefficients indicate that for each addi-
tional lane blocked, the average change in mean unit-delay
from a collision or improvement action is 1.497 (a 67%

Table 11: Facility and Corridor Level Unit Delays by Event Type in the Aggregate and Across Case Studies.

Event type Frequency
Mean of unit-delays (mins/Veh/1-min event duration) at:

Main facility Minor facility (2-mile) Minor facility (3-mile)

Case I
Collision 516 1.677 0.948 1.209

Improvements 729 0.439 0.349 0.524

Case II
Collision 72 2.808 0.291 0.322

Improvements 104 0.092 0.089 0.115

Case III
Collision 220 3.099 0.179 0.221

Improvements 151 0.417 0.146 0.161

Agg∗
Collision 808 2.165 0.680 0.861

Improvements 984 0.399 0.293 0.428
∗Aggregated (via weighted average).
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increase) or 0.067 (about a 17% increase), respectively. That
is, each additional lane blocked in a collision has four times
the percentage increase of an additional lane blocked in an
improvement event. An improvement action event occur-
ring in the peak hour has twice the percentage increase in
average unit delay as that of a collision. Moreover, the
impacts of AADT and K-factor are significant only for
improvement actions. Each 10,000 vehicles per day increase
in AADT (for the same number of lanes) will increase the
unit delay for improvement actions by 0.55 minutes on aver-
age, while a 1% increase in the K-factor decreases unit delays
of improvement actions by 0.15 minutes on average. More-
over, it was found that if multiple vehicles were involved in
a collision, an increase in unit-delay by 1.149 minutes on
average (a nearly 55% increase) can be expected. Given a typ-
ical road as in case study 1 (AADT = 83000, K − factor =
0:0789, NofLanes = 4), unit delay for an improvement activ-
ity executed in the peak period and blocking one lane is esti-
mated to be 0.146 minutes per vehicle per minute of impact
duration.

6. Conclusions

This investigation culminated in the creation of mathemati-
cal tools, insights, and outcomes. Machine learning tech-
niques (SVM, RF, and hybrid methods SVM-KNN and
RF-KNN) were introduced to detect the occurrence of both

improvement actions and traffic incidents for use both off-
and on-line that rely on only widely available data. With
these techniques, system operators can take action to divert
traffic and/or provide appropriate services to clear an event
in a timely manner when events are detected in real-time.
These techniques can be extended to detect multiple, simul-
taneous events from one or more event type. The develop-
ment of algorithms for detecting improvement activities
during their execution also serves as a reverse engineering
approach for better understanding the impacts of these
activities on traffic. Employing these methods on the case
studies revealed similarities and differences in the impacts
of these activities with the impacts of traffic incidents. This
deeper understanding of the effects of downtime from road-
way improvement activity execution can be useful in optimal
activity scheduling.

A secondary contribution to the literature on traffic
event (collision and improvement action) detection is also
made through the proposed hybrid learning-based
methods that rely on readily available speed data. The
hybrid learning methods were shown to reduce misclassifi-
cation errors as compared with single-phase machine
learning methods of SVM and RF. Thus, they are useful
tools in detecting and distinguishing between collisions
and improvement activities.

Unit-delay estimates can be used to plan and prioritize
improvement actions. They can also be used in scheduling
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Table 12: Collision and improvement actions unit delay models: coefficients from estimated tobit regression analysis (minutes/vehicle/1-
minute event duration).

Variable ∗ ,+ Description
Coefficient of parameter (Z value)
Collision Improvements

Constant 0.778 (1.282) -0.364 (-0.357)

NofLanes Roadway number of lanes (2-4) -0.661 (-4.082) 0

NofLBlocked Number of lanes blocked (1-4) 1.497 (10.391) 0.067 (2.643)

Peak Event occurs at least in part in peak hour 1 = yes; 0 = no 0.797 (2.741) 0.282 (2.297)

AADT/NofL AADT divided by NofLanes 0 5.55 e-05 (2.083)

K-factor Portion of total daily traffic volume during peak/design hour 0 -12.55 (-2.125)

MultiVehicle Multi-vehicle collision event 1 = yes; 0 = no 1.149 (3.153) NA

∗Statistically insignificant variables tested: distance from closest central business district, tractor trailer, type of improvements, % truck traffic. +All included
variables were significant at ≥95%. For collisions: R2 = 0:63. For improvements: R2 = 0:48.
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models for prioritizing improvement actions. Findings of
this work can also assist with comparison of maintenance
and rehabilitation options across different locations consid-
ering their characteristics (e.g. K-factor and AADT). By
plugging in the K-factor, AADT, and number of lanes of a
roadway, the unit delay incurred for improvement action
options can be assessed and compared by also plugging in
the corresponding lanes blocked by the action and time of
day the action is to be executed. The total delay of an action
that, for example, closes 3 lanes for 2 days can be compared
to another action that closes 1 lane for 6 days. The relative
impact of these actions may also differ on other roadways
with different K-factors and/or AADT values.

Application of these approaches on three case study
locations led to numerous insights. In terms of the solution
methodologies, it was found that the addition of KNN to
create the RF-KNN method improved the sensitivity by up
to 7 percentage points over the single-phase RF method.
Improvement actions and collisions were detected 74 and
88 percent of the time, respectively. Improvement actions
did not significantly impact travel time reliability, even if
they are executed in peak periods, yet collisions impact
travel time reliability by up to 32%. Pothole patching activi-
ties were found to be the least detectable type of improve-
ment action, while other pavement-related operations,
along with utility works, were found to be the most detect-
able types of the improvement actions. This is important,
because the easier to detect, the greater the impact. The
impact of events on traffic performance was estimated in
terms of unit delays. Unit delay estimates indicate that more
than 60% of improvement actions and more than 30% of
collisions have no impact on traffic. Paving operations and
multivehicle accidents were found to have the highest unit
delays associated with improvement actions and collisions,
respectively. Future work might examine additional vari-
ables, including weather and sight distance, in unit delay
computation. The proposed RF-KNN detection model
might be compared with other state-of-the-art anomaly
detection models in future studies.

Network-level analysis uncovered greater tendency for
roadway switching in collision events than during improve-
ment activities. Consistent with this, facility- and network-
level unit delays are closer in value for improvement actions
than for collisions. It is likely that this occurs because drivers
will more likely have foreknowledge of improvement activi-
ties than of collisions.

Based on feature importance scores from event detection
models, as well as from the calibration of the Tobit regres-
sion model for projecting vehicle unit delays, the impact of
traffic incidents on roadway performance (in term of delays)
was found to be five times greater than that of improvement
actions.

The developed event detection tools can aid field
observation-based traffic event reporting, e.g. through obser-
vations by police or road patrol. These tools may also facili-
tate quick, automated event detection using streamed traffic
data.

Specified unit-delay estimates, and estimates from pro-
posed equations for computing average unit delays for spec-

ified roadways, can be used in construction activity planning
and prioritizing improvement actions while accounting for
facility- and corridor-level impacts arising from the event
downtime.

Applying findings from this study, along with imple-
mentation of the developed methods, can lead to improved
construction activity planning. With event detection and
insights into the event’s consequences through real-time
application of the proposed tools, an agency can more read-
ily respond to the event, providing appropriate services to
clear a traffic incident and diverting traffic to alternative
routes during construction activities or incidents. These
actions can aid in reducing event impact and providing
greater travel time reliability. They may also be used in esti-
mating the net financial or public welfare impacts of consid-
ered transportation investments when choosing between
alternatives.

In this work, the machine learning methods were trained
on a portion of the data and tested on the remaining data in
each of three case studies. Alternatively, the techniques
could be trained on the entire dataset for one case study
and then, tested on the other two case studies. Degraded per-
formance may arise with this alternative method if the
geometries and traffic characteristics of the case studies
greatly differ.
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