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As an essential parameter to represent vehicle following characteristics, distance headway (DHW) plays an essential role in
microtrafc fow simulation, trafc control, and trafc safety alarm. However, due to the randomness, nonlinearity, and cor-
relation of DHW data, constructing DHW prediction models is difcult. Moreover, few studies have considered the time
correlation between the historical DHW and the target DHW. To solve the above problems, a DHW prediction model is proposed
in this paper by integrating entropy-based grey relation analysis (EB-GRA) and temporal convolutional network (TCN), named as
EB-GRA-TCN model. In the model, the EB-GRA is adopted to calculate the correlation between the target DHW and historical
DHW sequences, and the DHW data with high correlation are dynamically selected as the optimal input of the DHW prediction
model. Ten, the TCN algorithm is used to train the DHW prediction model. Te TCN architecture integrates the advantages of
recurrent neural network (RNN) and convolutional neural network (CNN), which could fully use the previous DHW infor-
mation. In the experiment, the DHW data from Hefei Expressway are utilized for training the EB-GRA-TCN model. Te
prediction results showed that the average root mean square error (RMSE) andmean absolute error (MAE) of the proposedmodel
were 0.115 and 0.090, respectively, in the 5, 10, and 15 predicted steps. Compared with the autoregressive integrated moving
average (ARIMA), TCN, RNN, and long short-term memory (LSTM) models, the EB-GRA-TCN model achieved the best
prediction accuracy.Te results indicated that the EB-GRA-TCNmodel obtained good predictive performance and could provide
support for road trafc control and trafc safety warming.

1. Introduction

Te car-following (CF) model describes the interaction of a
vehicle’s longitudinal motion and plays an essential role in
microscopic trafc fow simulation, trafc fow parameter
prediction, and trafc safety. Te distance headway is an
important parameter in the CF model and refects the
longitudinal position relationship between the front and rear
vehicles. It has practical application signifcance to predict
the distance headway. For trafc operation, the distance
headway distribution of all vehicles on the road could refect
the overall operational state of trafc fow [1, 2], thus
providing data support for the strategy formulation of trafc
control and guidance [3, 4]. From the aspect of trafc safety,

timely and accurate distance headway prediction could
provide safety warnings for vehicles and avoid rear-end
collisions [5–7].

It is a common method to construct the mathematical
model of distance headway from the vehicle’s motion
characteristics, such as the pipe model [8], collision
avoidance (CA) model [9], SPACES model [10], and
INTARS model [11]. Te mathematical method of distance
headway prediction could provide the specifc calculation
formula for distance headway. And the prediction results are
promising, so it has been widely used. However, the
mathematical methods make many assumptions about
drivers’ behavior characteristics and may not be applicable
to all countries and diferent types of drivers.

Hindawi
Journal of Advanced Transportation
Volume 2022, Article ID 6456186, 12 pages
https://doi.org/10.1155/2022/6456186

mailto:weihuazhang@hfut.edu.cn
https://orcid.org/0000-0001-7899-2642
https://orcid.org/0000-0001-6479-7870
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6456186


With the development of artifcial intelligence tech-
nology, the data-driven distance headway prediction model
has been developed. Te data-driven distance headway
prediction models mine the critical factors afecting distance
headway through a large amount of data and use statistical
analysis and machine learning to train the distance headway
prediction model. Te data-driven methods do not need
many assumptions and are applicable to many experimental
scenarios. Te common data-driven distance headway
prediction model includes the autoregressive integrated
moving average (ARIMA) [12], the support vector machine
(SVM) [13], and the long short-term memory (LSTM) [14]
models.

Te distance headway prediction is essentially a time
series prediction problem. Te existing time series predic-
tion algorithms mainly include autoregressive moving av-
erage (ARMA) [15], ARIMA [16], the seasonal ARIMA [17],
the artifcial neural network (ANN) [18], the SVM [19, 20],
the K-nearest neighbor (KNN) [21], and the gradient
boosting machines (GBM) [22]. Ten, time series prediction
methods based on deep learning emerged, such as recurrent
neural network (RNN) [23], LSTM [24, 25], gate recurrent
unit (GRU) [26], WaveNet [27–30], and transformer
[31–34].

Due to the randomness, nonlinearity, and correlation of
distance headway, constructing an accurate distance head-
way prediction model is difcult. To the authors’ knowledge,
the existing studies generally selected a fxed length of
historical distance headway asmodel input. Few studies have
considered the correlation between historical distance
headway data and target distance headway data. Tis may
lead to inefectively capturing historical distance headway
data that signifcantly correlates with the target distance
headway, thus afecting the overall prediction performance
of the model. Some regression analysis methods could be
used in distance headway prediction, such as the autocor-
relation coefcient (ACF) and the Ljung-Box (LB) test.Tese
methods assume that the time series are linearly correlated.
However, there is no absolute linear correlation between the
historical distance headway and the target distance headway
series. Terefore, the linear correlation analysis may not be
suitable for distance headway series correlation analysis. Te
entropy-based grey relation analysis (EB-GRA) [35, 36]
combines the grey correlation degree with the equilibrium
degree by introducing grey entropy. It overcomes the dis-
advantage that the common regression analysis methods are
unsuitable for nonlinear correlation models. Te EB-GRA
has been applied in many felds and achieved good pre-
diction results [37–39].

In addition, for the prediction algorithm, the existing
studies usually used common time series prediction algo-
rithms, such as RNN and LSTM. Nevertheless, RNN and
LSTM may have the problem of excessive memory load
when training complex networks. Te temporal convolu-
tional network (TCN) algorithm simplifes the network
structure and reduces memory requirements by combining
causal convolutions and dilated convolutions.

To accurately predict the distance headway, a distance
headway prediction model is developed in this paper by

coupling the EB-GRA and TCN. In this model, EB-GRA is
frst used to analyze the temporal correlation between the
historical distance headway and the target distance headway.
Ten, the historical distance headway data with a high
correlation degree with the target distance headway is se-
lected as the input of the distance headway predictionmodel.
And the TCN algorithm and real vehicle trajectory data are
used to train the distance headway prediction model. Te
distance headway prediction model could be used to predict
the distance headway of vehicles on the road and provide
decision support for road control, trafc fow guidance, and
trafc safety alarms.

Te rest of this paper is arranged as follows. Section 2 is a
summary of the related research. Section 3 presents the
methods, which include the distance headway prediction
framework, optimal lag step selection based on the EB-GRA,
and distance headway prediction based on the TCN. Section
4 is the experiment, which includes experimental data and
preprocessing experimental evaluation index selection, and
experimental results and analysis. Section 5 is the conclusion
and discussion.

2. Related Works

As an important parameter in microscopic trafc fow,
distance headway plays an essential role in microscopic
trafc fow simulation, trafc control and trafc guidance,
and trafc safety warnings. Te existing research on distance
headway prediction can be roughly divided into two types:
mathematical model and data-driven model.

Te mathematical model for distance headway predic-
tion is constructed based on driving habits and vehicle
motion characteristics. Pies [8] frst proposed the mathe-
matical distance headway prediction model, which con-
sidered the speed and length of following vehicles. And the
formalization and physical meaning of the Pies model are
simple. Gipps [9] established the CA model according to
the minimum safe distance between vehicles. Te CA
model considered the infuence of the speed of the fol-
lowing vehicle and the lead vehicle on the distance
headway. In addition, based on the CA model, the SPACES
model [10] and the INTARS model [11] were developed.
Te mathematical methods could give the specifc function
formula between the distance headway and infuence
factors. However, the mathematical methods make many
assumptions about drivers’ behavior characteristics, and
some of these assumptions may not be applicable to other
countries’ drivers. In addition, with the increase in model
complexity, it will be difcult to calibrate the model
parameters.

With the development of artifcial intelligence tech-
nology, the data-driven distance headway prediction model
has emerged. Data-driven algorithms do not need specifc
formulas and learn the headway prediction model from a
large amount of data. For example, Avr et al. [12] selected 30
frames of distance headway data before the target distance
headway as the model input and utilized ARIMA to predict
the distance headway at frame 31. Teja and Vanajakshi [13]
took the distance headway data from 1 minute to 5 minutes
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as input and adopted the SVM to predict the distance
headway at the 6th and 10th minutes.

Distance headway prediction is a time series prediction
problem. Te ARMA model [15] is the classic time series
prediction method based on statistical analysis. Te ARMA
model is a predictionmethod for stationary time series. If the
original time series do not satisfy stationarity, the corre-
sponding data processing method should be used to
transform the data into stationary sequences. Ten, the
autocorrelation and partial autocorrelation functions are
calculated, and the Akaike information criterion (AIC) or
Bayesian information criterion (BIC) criteria are used to
estimate the identifcation parameters and order. Finally, the
prediction model with the highest ftness is selected. With
the gradual application of the ARMA model in the time
series prediction feld, some new prediction methods have
appeared, such as the ARIMA model [16] and the SARIMA
model [17].

With the popularization of big data application tech-
nology, the data-driven method for time series prediction
appeared. Te data-driven prediction method uses a large
amount of real vehicle trajectory data to construct the re-
lationship function between historical and future time series.
Te common machine learning methods include ANN [18],
SVM [19, 20], KNN [21], and GBM [22]. With the devel-
opment of deep learning algorithms, short-term trafc fow
prediction algorithms based on deep learning have emerged.
RNN [23] is the typical deep learning algorithm for short-
term time series prediction. Additionally, some variants of
RNN are also applied to short-term time series prediction,
such as LSTM [24, 25] and GRU [26], and have achieved
good prediction results.

However, RNN, LSTM, and other time series prediction
algorithms cannot efciently capture the long-term de-
pendence of time series. In terms of the problems of RNN
and LSTM, the Deepmind team of Google proposed the
WaveNet framework [27] in 2016. Te core of WaveNet is
casual convolutions and dilated convolutions, which can
correctly solve the long-term dependence of time series and
will not cause a rapid increase in model complexity.
However, the operation speed of WaveNet is slow due to its
sample-level autoregressive feature. For this problem,
Tacotron [28, 29] adopted an end-to-end architecture to
improve the operation speed. Later, the TCN algorithm [30]
simplifed the WaveNet architecture and removed skip
connections across layers, conditioning, and context
stacking. TCN has the following advantages: First, TCN has
parallelism. Unlike RNN, which needs to process sequence
data orderly, TCN can process the input sequence as a whole.
Second, the network architecture of TCN is diferent from
recursive architectures. TCN has a backpropagation path
diferent from the time direction of sequences so as to avoid
the gradient explosion/disappearance problem. Tird, TCN
has low training memory requirements. LSTM needs large
memory to store the partial results of cell gates when in-
putting long sequences. However, flters in TCN can be
shared across layers, and the backpropagation path depends
on the network depth. Finally, the dilated convolutional
layer makes the TCN have a fexible receptive feld. Due to

the high parallelism, low memory requirement, and fexible
receptive feld, the TCN algorithm is widely used in speech
generation and stock price prediction felds and has achieved
great prediction performance. In 2017, the transformer
structure [31] proposed a new time series prediction idea.
Te multihead attention makes the transformer model long-
term and short-term temporal features at the same time. In
addition, there are some variations of transformer, such as
the LogSparse transformer [32], temporal fusion trans-
former (TFT) [33], and Informer [34]. Te WaveNet and
Transformer both belong to supervised learning, which may
require a large amount of data when training complex
networks.

In conclusion, the existing distance headway prediction
methods usually use the historical distance headway as
model input and do not consider the time correlation of the
distance headway sequence. For the prediction algorithms,
the common prediction methods of RNN and LSTM have
the problem of large memory load when training complex
networks. Tis study developed a distance headway pre-
diction model to solve the above problems by integrating the
EB-GRA [35, 36] and TCN [30]. In the model, the EB-GRA
is adopted to calculate the correlation between the historical
distance headway sequence and the target distance headway,
and the high correlation data are extracted as the model
input. Ten, the TCN is used to train the distance headway
prediction model, which has the advantages of both RNN
and CNN. Te combined prediction model can efectively
improve the prediction performance.

3. Methods

Te methods section includes the following three topics: the
distance headway prediction framework, the optimal lag step
selection based on the EB-GRA, and the distance headway
prediction based on the TCN.

3.1. DistanceHeadway Prediction Framework. To extract the
historical distance headway data that have a signifcant
correlation with the predicted distance headway and utilize
the advantages of deep learning in time series prediction, a
short-term distance headway prediction framework of EB-
GRA-TCN is established. Te specifc prediction framework
is shown in Figure 1 [30]. Te EB-GRA-TCN framework
includes the following three parts: the distance headway data
preprocessing, the optimal lag step selection based on the
EB-GRA, and the distance headway prediction based on the
TCN. First, distance headway data are extracted from the
vehicle trajectory data. Ten, to remove the infuence of data
noise on the overall data quality, the original distance
headway data are smoothed. Second, the processed distance
headway time series are divided into alternative sequences
and target sequences. Te alternative distance headway
sequence is the historical time series with a high correlation
to the target sequence, and the target sequence is the distance
headway to be predicted. Ten, the EB-GRA is used to
calculate the grey relevancy grade (GRG) and determine the
optimal lag step. Finally, based on the optimal lag step, the
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optimal distance headway input sequence is dynamically
selected from the alternative sequence. And the TCN al-
gorithm is used to predict the target distance headway se-
quence. TCN introduces the dilated causal convolution and
could solve the problems of gradient explosion caused by the
increase of network layers in time series modeling.

3.2.OptimalLagStepSelectionBasedonEB-GRA. Time series
have lag correlations. To extract the most relevant historical
distance headway sequence to the target distance headway,
the EB-GRA [35, 36] is used to compute the grey relation
grade between the historical distance headway and the target
distance headway. Ten, the distance headway time series

with a high grey relation grade level is selected as the input of
the distance headway prediction model. Te EB-GRA can
extract the high correlation factors with the target value and
is widely used in economics [37], beneft evaluation [38],
planning [39], and other felds.

Let dt
k represent the distance headway of vehicle k at time

t. Suppose that the dt
k is afected by the τ time period distance

headway, that is dt−τ
k , dt−τ+1

k , . . . , dt−1
k . We use

Dt−i
k � Dt−i

k (j)|j ∈ J  to represent the distance headway
time series dt−i

k , dt−i+1
k , . . . , dt−1

k . Te term i represents the
hysteresis step, i � (1, 2, . . . , τ). J is the prediction step
length, J � (1, 2, . . . , M). Ten, the grey relational coef-
cient between dt

k(j) and Dt−i
k (j) is:

c d
t
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, (1)

where c(dt
k(j), Dt−i

k (j)) represents the correlation between
dt

k(j) and Dt−i
k (j). ζ is the distinguishing coefcient,

ζ ∈ [0, 1]. Te distinguishing coefcient can make the target
sequence and the alternative sequence have a better
distinction.

However, the sum of the target sequence and the al-
ternative sequence Dt−i

k (j) is arbitrary. To satisfy the prin-
ciple of grey entropy, it is necessary to transform their grey
correlation coefcient into the grey correlation density
ρ(i, j). Te calculation method of ρ(i, j) is as follows:

ρ(i, j) �
c d

t
k(j), D

t−i
k (j) 


M
j�1 c d

t
k(j), D

t−i
k (j) 

, (2)

where i � (1, 2, . . . , τ), j � (1, 2, . . . , M).

Ten, the correlation degree of the grey correlation
coefcient is calculated according to the grey correlation
density, that is, the grey correlation entropy E(t, i), as shown
in the following equation:

E(t, i) �
− 

M
j�1 ρ(i, j)ln(ρ(i, j))

ln(M)
, (3)

where E(t, i) ∈ [0, 1]. Te grey entropy between the target
sequence and the alternative sequence is represented as
− 

M
j�1 ρ(i, j)ln(ρ(i, j)). ln(M) is the maximum grey

entropy.
Finally, the GRG can be obtained by multiplying the

entropy of the grey correlation coefcient by the average
grey correlation coefcient of the alternative sequence. Te
GRG represents the correlation degree between the target
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distance headway and the historic distance headway se-
quence, and the calculation method is as follows:

G(t − i) �
E(t − i)

M


M

j�1
c d

t
k(j), D

t−i
k (j) , (4)

where G(t − i) represents the correlation degree between the
target distance headway sequence and the alternative dis-
tance headway sequence. Te higher the value of G(t − i) is,
the higher the correlation between the two sequences.

3.3. Distance Headway Prediction Based on TCN. Te TCN
algorithm [30] is a novel time-series prediction algorithm
that integrates the architectural patterns of RNN and CNN.
Te TCN algorithm can take an input sequence of any length
and map it to an output sequence of the same length.
Additionally, TCN adopts causal convolutions, which fully
use the time series from the past to the future, so there is no
information leakage. Te TCN algorithm has achieved good
prediction performance in time series prediction and is
widely used in weather prediction [40], speech recognition
[41], and other felds.

Te architecture of the TCN consists of the following
three parts: causal convolutions, dilated convolutions, and
residual connections.

3.3.1. Causal Convolutions. CNN has achieved outstanding
prediction performance in the image processing feld.
However, classical CNN considers that the convolution
computation results are related not only to the past state but
also to the future state. For time-series data prediction,
future information mainly depends on past data. Terefore,
an information leakage problem will occur if the same ar-
chitecture as CNN is adopted in time series data prediction.

To make CNN the structure to process time-series data,
TCN adopts the causal convolutions architecture method, as
shown in Figure 2 [30]. Causal convolutions have the fol-
lowing two characteristics: (1) Tere is no information
leakage; that is, future convolution results are only related to
historical observation data; (2) the deeper the accumulation
of the causal convolution layer is, the longer the historical
data that can be traced back.

3.3.2. Dilated Convolutions. However, with the increase in
historical traceability length, it is necessary to deepen the
network depth and increase model parameters and com-
plexity. Te TCN introduces dilated convolutions into the
network architecture. As shown in Figure 3 [30], by adding a
certain cavity length in the convolution calculation and
skipping part of the input, a long memory for the history
data can be achieved.

For a one-dimensional distance headway time series and
flters f: 0, . . . , h − 1{ }, the dilated calculation is defned as
follows:

F(s) � 
k−1

i�0
f(i)·ds−p·j, (5)

where p is the dilated factor, p � 1, 2, 4, . . . , 2n. Te term k is
the flter size, and s − p · j represents the direction of the
past.

Te dilated convolutions introduce a sampling interval
with a fxed length between two adjacent flters, and the
calculation formula of the receptive feld is:

field � (h − 1)∗p. (6)

3.3.3. Residual Connections. Te receptive feld of TCN
depends on the network depth n, the flter size h, and the
dilated factor p. Te problems of gradient disappearance and
explosion will occur with increasing the network depths. For
this problem, TCN adopts residual connections to solve the
problem of network degradation.

Te residual structure makes the output O the super-
position of the input D and the nonlinear transformation
F(d). Te output of the residual structure is calculated by the
following equation:

O � Activation(D + F(d)), (7)

where Activation() is the activation function.

4. Experiment

Tis section includes the experimental data and pre-
processing, experimental evaluation index selection, and
experimental results and analysis.

4.1. Experiment Data and Preprocessing. In the experiment,
the vehicles’ trajectory data from the Hefei Expressway are
selected to test the prediction performance of the EB-
GRA-TCN model. As shown in Figure 4, vehicle position
and speed data in the radar monitoring area are collected
by roadside radar equipment installed on the Hefei Ex-
pressway. Te data collection time included the following
two periods: from 5 : 30 PM to 6 : 00 PM on July 28, 2021,
and from 3 : 40 PM to 4 : 15 PM on July 30, 2021. Te total
collection time is 65 minutes, and the data collection
interval is 50ms.

Before the experiment, the original vehicle trajectory
data should be smoothed. In this paper, a symmetric ex-
ponential moving average flter is selected to remove the
infuence of data noise. Finally, 913 vehicles’ distance
headway data are collected. In addition, the fltered data are
structured in accordance with the time interval of 0.1 s,
which is consistent with the data acquisition interval of the
common short-time distance headway prediction.

In addition, in order to verify the generalization ability of
the model, the I-80 expressway dataset from the open
NGSIM database was selected for verifcation. Te I-80
expressway includes seven lanes and three periods: from 4 :
00 p.m. to 4 :15 p.m., from 5 : 00 p.m. to 5 :15 p.m., and from
5 :15 p.m. to 5 : 30 p.m.Te data collection frequency is 0.1 s.
Te symmetric exponential moving average flter is also
adopted in the I-80 expressway dataset to remove the in-
fuence of data noise. In this paper, 80% of the vehicles’
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trajectory data on the Hefei Expressway are randomly se-
lected to train the distance headway prediction model, and
the distance headway data of 183 vehicles on the I-80 ex-
pressway are randomly selected to test the model
performance.

4.2. Experimental Evaluation Index Selection. To guarantee
that the training data and test data are disjointed, 10-fold
rolling cross-validation is utilized to evaluate the model
performance. Te distance headway data are divided into
training sets and test sets according to the time sequence.

Millimeter-
wave radar

Figure 4: Schematic diagram of the experimental section.
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Te RMSE and MAE are selected to evaluate the prediction
performance. Te calculation methods of the RMSE and
MAE are as follows:

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




,

MAE �
1
n



n

i�1
yi − yi


,

(8)

where yi is the observed distance headway value, yi is the
distance headway prediction value, and n represents the total
number of samples.

4.3. Experimental Results and Analysis. Te experimental
result concludes the results of the EB-GRA-TCN model and
comparative experiments.

4.3.1. EB-GRA-TCN Model Results. Before using the TCN
model to predict distance headway, it is necessary to utilize
EB-GRA to determine the optimal lag step. We suppose the
distance headway d t

k of vehicle k at time t is related to the
historical distance headway of the former 50 steps (5 s); that
is, the initial lag step is τini � 50. Ten, the EB-GRA is
adopted to calculate the correlation degree between the
historical distance headway time series and the target dis-
tance headway. In this paper, the GRG values between the
target distance headway and alternative sequences of all
vehicles were calculated, as shown in Figure 5.

Te results showed that although there are some dif-
ferences in the GRG values under diferent lag steps, the
GRG value decreases with the increase of lag steps. Te
farther the historical distance headway from the target
distance headway, the smaller the time correlation. Te
above results are consistent with common knowledge.
Generally speaking, the smaller the time distance between
the historical and target distance headway, the higher the
correlation.

Tree prediction steps of M � 5, M � 10, and M � 15
are selected, and the iterative loss process for the training set
and validation set under three groups of predicted steps is
demonstrated in Figure 6.With the increase of iterations, the
training loss and valuation loss under the three groups of
predicted step sizes showed a downward trend and fnally
approached stability.

Te distance headway prediction results under the three
groups of prediction steps are shown in Table 1. For the
Hefei Expressway test set, when the predicted step size is 5,
the RMSE and MAE values of the EB-GRA-TCN are 0.040
and 0.033, respectively. When the predicted step size is 10,
the RMSE and MAE values of the EB-GRA-TCN are 0.117
and 0.093, respectively. Moreover, when the prediction step
size is 15, the RMSE and MAE values of EB-GRA-TCN are
0.188 and 0.143, respectively. For the I-80 expressway test
set, the RMSE of the EB-GRA-TCN are 0.088, 0.287, and

0.584, respectively, under the three predicted steps. And the
MAE of the EB-GRA-TCN are 0.130, 0.508, and 1.357,
respectively, under the three predicted steps. It can be found
that when the prediction steps are 5 and 10, the prediction
errors of the Hefei Expressway and I-80 expressway test sets
have little diference. When the prediction step is 15, the
prediction errors of the I-80 expressway test set are higher
than those of the Hefei Expressway test set. Tis may be
because the prediction ability of the EB-GRA-TCN model
decreases with the prediction step increases.

4.3.2. Comparative Experimental Results. To prove the ef-
fectiveness of the EB-GRA-TCN model, we designed two
groups of contrast experiments. For the frst comparative
experiment, the ACF and statistics of the LB test are selected
to calculate the optimal lag step. Te ACF and LB tests are
the two common methods of autocorrelation analysis. And
we compared the prediction performances of EB-GRA-
TCN, ACF-TCN, LB-TCN, and TCN models. Te results of
the four models are shown in Figures 7(a) and 7(b).

From Figure 7, it could be found that, with the increase
in predicted step size, the prediction errors of the four
models all increased. But the EB-GRA-TCN model has the
lowest prediction error. Additionally, comparing the TCN
model with EB-GRA-TCN, ACF-TCN, and LB-TCN
models, the TCN model obtained the worst results. Te
results indicated that autocorrelation analysis could efec-
tively extract the most relevant historical distance headway
as input and improve the model prediction performance.

In the second comparative experiment, four common
distance headway prediction models are compared in this
paper. Tey are the ARIMA, SVM, RNN, and LSTMmodels.
Te comparative experimental results for the three groups of
predicted steps are shown in Table 2. In order to verify the
efect of EB-GRA in distance headway prediction, we tested
the prediction performance of EB-GRA-SVM, EB-GRA-
RNN, and EB-GRA-LSTM models, respectively. Te ex-
perimental results of adding EB-GRA are shown in Table 3.

Based on the comparative experimental results shown in
Tables 2 and 3, we can fnd that the EB-GRA-TCN model
achieves the best prediction performance under the three
groups of the predicted steps. Taking the prediction step size
of 5 as an example, the RMSE of the TCN, ARIMA, SVM,
RNN, and LSTM models are distributed between 0.14 and
1.64, and the MSE is distributed between 0.12 and 1.50. Te
RMSE and MAE of the EB-GRA-TCN model are 0.040 and
0.033, respectively, in the prediction step size of 5. Com-
pared with the other four models, the prediction error of the
EB-GRA-TCN model is the smallest.

In addition, comparing Tables 2 with 3, we can fnd that
the prediction errors of the four models decreased after
using EB-GRA to optimize the input of the distance headway
prediction model. Compared with TCN and EB-GRA-TCN
models, the prediction errors of RMSE and MAE decreased
by an average of 59.39% and 60.57%, respectively. For SVM
and EB-GRA-SVM models, the prediction errors of MAE
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and RMSE decreased by 43.58% and 44.46%, on average. For
RNN and EB-GRA-RNN, the prediction errors of RMSE and
MAE decreased by 27.58% and 29.56% on average. For
LSTM and EB-GRA-LSTM, the prediction errors of RMSE
and MAE decreased by 40.45% and 45.39% on average. Te
experimental results showed that EB-GRA could efectively
improve the model prediction performance by optimizing
the input of the prediction model.

As shown in Figure 8, a comparison is made between the
observed and predicted distance headway of a vehicle in this
paper. With the increase in the predicted step size, although

the prediction error of the EB-GRA-TCNmodel increased, it
showed a high prediction accuracy overall.

Furthermore, to verify that EB-GRA-TCN has lower
training memory requirements, we tested the training
memory load of EB-GRA-TCN, RNN, and LSTMmodels on
the computer with an 8-core CPU and 16G running
memory of 100 times. Te average training memory re-
quirements of EB-GRA-TCN, RNN, and LSTM models are
337.9MB, 376.8MB, and 407.6MB, respectively. Te ex-
perimental results indicated that the training memory load
of EB-GRA-TCN is the lowest. And the memory

Table 1: Prediction results of the EB-GRA-TCN model under the three groups of the predicted step sizes.

Prediction step
5 10 15

RMSE MAE RMSE MAE RMSE MAE
Hefei Expressway test set 0.040 0.033 0.117 0.093 0.188 0.143
I-80 expressway test set 0.088 0.130 0.287 0.508 0.584 1.357
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Figure 7: Experimental results comparison histogram of the EB-GRA-TCN, ACF-TCN, LB-TCN, and TCN models. (a) RMSE (b) MAE.

Table 2: Comparative experiment results.

Prediction step
5 10 15

RMSE MAE RMSE MAE RMSE MAE
TCN 0.222 0.193 0.168 0.136 0.550 0.436
ARIMA 0.141 0.126 0.247 0.217 0.344 0.300
SVM 0.470 0.448 0.682 0.640 0.764 0.729
RNN 1.637 1.495 1.041 0.978 2.777 2.646
LSTM 0.342 0.334 0.533 0.484 0.687 0.603

Table 3: Comparative experiment results of adding EB-GRA.

Prediction step
5 10 15

RMSE MAE RMSE MAE RMSE MAE
EB-GRA-TCN 0.040 0.033 0.117 0.093 0.188 0.143
EB-GRA-SVM 0.244 0.234 0.370 0.344 0.482 0.442
EB-GRA-RNN 0.932 0.813 1.262 1.247 1.406 1.185
EB-GRA-LSTM 0.208 0.196 0.313 0.279 0.432 0.369
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requirement of EB-GRA-TCN is reduced by 10.32% and
17.10% compared with RNN and LSTM models.

5. Conclusions and Discussion

As an essential parameter in car-following (CF) models, the
distance headway (DHW) can refect the relative position
between two vehicles at the micro-level. At the macro level,
the DHW distribution of vehicles on the road can refect the
current trafc fow. Accurate DHW prediction can provide
data support for trafc signal control, vehicle guidance, and
trafc safety warnings. DHW prediction is essentially one-
dimensional time series data. However, current DHW
prediction methods do not consider the time correlation
between the historical DHW data and the target DHW.Tis
may afect the fnal prediction accuracy. To select the optimal
DHW input and utilize the powerful advantage of deep
learning in the prediction feld, a DHW prediction model
that combines entropy-based grey relation analysis (EB-
GRA) and temporal convolutional network (TCN) is pro-
posed in this paper, named EB-GRA-TCN. In the model, the
EB-GRA is used to calculate the correlation between the
historical DHW sequence and the target DHW. Te his-
torical DHW sequences with a high correlation with the
target DHW are selected as the optimal model input. Ten,
the DHW prediction model is trained by using the real
DHWdata and the TCN algorithm.Te experimental results
showed that the EB-GRA-TCN model achieved good pre-
diction performance in the three prediction steps, and the
average RMSE and MAE were 0.115 and 0.090, respectively.
Compared with the ARIMA, SVM, RNN, LSTM, and TCN
models, the EB-GRA-TCN model obtained great prediction
results.

In addition, the model prediction error declines when
the ACF, LB test, and EB-GRAmethods are used to optimize
the input of the TCN algorithm. Te results indicated that
the correlation analysis could efectively capture the

autocorrelation between the distance headway sequences
and select the optimal model input for the prediction model.
Furthermore, with the increase in prediction step length, the
prediction errors of the EB-GRA-TCN, ARIMA, SVM,
RNN, and LSTM models all increased. However, compared
with the other four models, the prediction accuracy of the
EB-GRA-TCN model did not signifcantly decrease. It in-
dicates that the EB-GRA-TCN model still has good stability
in long-term prediction.

In conclusion, this study could provide powerful data
support for trafc guidance and control and trafc safety
warnings. First, based on the real-time vehicle trajectory data
and the forecasted value of distance headway, the location
distribution of vehicles on the road in the future time can be
deduced. Tus, the methods in this study can help trafc
managers obtain road trafc operation conditions in the
future and formulate reasonable trafc guidance and control
measures dynamically. In addition, predicting the distance
headway can provide safety warnings for autonomous ve-
hicles and improve the safety of autonomous driving.

However, this paper mainly utilizes the EB-GRA to
optimize the input of the TCN algorithm. With the con-
tinuous development of deep learning algorithms, future
work will study the coupling mechanism of attention
mechanism and novel time series prediction algorithm and
apply it to distance headway prediction, which may achieve
better prediction performance.
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