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Robust optimal design of circulation systems (e.g., roads for vehicles or corridors for pedestrians) relies on an accurate steady-state
traffic flowmodel that considers the effect of randomly changing environmental factors (e.g., daily periodicity and weather). Most
analytical models assume that the customer interarrival time and service time of circulation facilities follow the exponential
distribution with fixed rate parameters, which is unrealistic in most cases. In this paper, we develop a stationary PH (i)/PH
((i, n)/(C/C)) state-dependent queuing model in a randomly changing environment (RE), which is represented by a Markov
chain. )e model simultaneously considers the general randomness of arrival and service, the randomly varying rate parameters,
and the state-dependent service (the travel time increases with the number of customers). )e existing matrix analytic scheme
(MAS) algorithm is extended to solve the proposed model because it avoids the explicit calculation of probability distributions.
)e space complexity of the algorithm is only linear in the number of RE states and is independent of the enormous (four-
dimensional) state space of the Markov process. Its time complexity is a linear function of the product of the queue capacity and
the number of RE states. Our model is validated versus simulation estimates.)e obtained conditional performance measures can
accurately capture the queue accumulation and dissipation and reveal the effect of randomly changing environments. Numerical
experiments provide some interesting findings. (1) )e proposed stationary model coincides with the transient M(t)/G(x)/C/C
fluid queuing model under special conditions. (2) Under high traffic intensities, increasing the randomness in the duration time of
the RE state leads to an obvious growth in the conditional queue length. (3) An increase in the facility length leads to an increase or
a decrease in the average output rate, depending on whether the congestion dissipates effectively in one cycle. (4) A larger width is
required to obtain the maximum average output rate for traffic demand with a greater nonuniformity.

1. Introduction

Congestions in traffic circulation systems (e.g., roads for
vehicles and corridors for pedestrians) have become a global
issue that has raised extensive concern. For road traffic,
congestion is getting worse across the world and congestion
costs are rapidly increasing in recent years [1]. As for pe-
destrian traffic, several large-scale stampede accidents oc-
curred in the crowd during the past decade and caused
severe casualties [2]. Efficiency and safety are the primary
goals when designing traffic circulation systems because of
the increased congestion. A robust design of traffic circu-
lation facilities (such as road, corridors, and passageway)
that meets the demand of customers (vehicles or

pedestrians) under various situations is the key to improving
efficiency and guaranteeing safety. Optimal design decisions
rely on an accurate steady-state traffic flow model com-
prehensively considering factors that affect the performance
of traffic circulation systems.)erefore, accurately modeling
traffic circulation systems becomes the primary task.

However, modeling traffic circulation systems in the real
world is a great challenge as they possess several complex
characteristics. First, both the traffic demand and the service
ability of traffic circulation facilities are random. Second, the
service ability of circulation facilities is state-dependent.
State dependence describes the phenomenon where an in-
creasing number of customers leads to slower velocity due to
limited land space. )ird, a congestion propagation effect
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exists in a circulation network. Congestions in one facility
will propagate in an upstream direction and affect the ad-
jacent facilities. In addition, circulation systems are affected
by randomly changing environmental factors such as daily
periodicity, large events, accidents, and extreme weather
conditions [3]. As a result, system parameters, such as the
traffic demand and the service ability, vary randomly be-
cause of these environmental factors.

Scholars have proposed a lot of models for traffic cir-
culation systems.)emacroscopic traffic flowmodel focuses
on the aggregate features of traffic flows. Microscopic
models, such as the car-following models and lane-changing
models for vehicles [4] and the microsimulation tools for
pedestrians [5, 6, 7] can present more detailed characteristics
but need more parameters and are less computationally
efficient. To solve the accuracy-efficiency trade-off, meso-
scopic models, such as the queuing model and the gas-ki-
netic model, are proposed. )e queuing model is the most
popular mesoscopic model applied in this area, and its
application in modeling pedestrian or vehicle circulation
systems has been demonstrated by Lovas [8], Parlar and
Sharafali [9], Arita and Schadschneider [10], Tréca et al. [11],
Hasani Goodarzi et al. [12], and so on. Queuing models can
further be categorized into two groups: transient models and
stationary models. Transient models, such as the M (t)/G
(x)/C/C model [13], aim to capture the dynamic perfor-
mance and are often used in real-time management and
control. In contrast with transient queuing models, sta-
tionary queuing models focus on obtaining the steady
performance and are more useful in planning and design.

Most of the stationary queuing models in this field have
considered randomness and state-dependence. For example,
Yuhaski et al. [14] applied the exponential distribution to
describe the random interarrival times and the service time
depends on the number of customers (also called system
state, denoted by n). Hu et al. [15] established a PH/PH(n)/
C/C state-dependent queuing model where the interarrival
time and service time with general randomness follow the
phase-type (PH) distribution. PH distribution theoretically
can approach to any positive random variable infinitely.
Readers can also refer to the study of Neuts [16] and
Buchholz et al. [17] for more details on PH distribution and
PH-based queues. Although PH distribution can address the
general randomness in arrival and service, the change in
arrival or service rate is ignored in these research studies.
Nowadays, more and more attention is paid to the varying
parameters in traffic circulation systems, such as the study of
[3], Gerum and Baykal-Gürsoy [18], and Yang et al. [19].)e
robust design of transportation facilities relies on more re-
alistic stationary models. )e goal of this paper is to propose
a stationary queuing model for traffic circulation systems by
considering the general randomness, state dependence, and
the effect of randomly changing environmental factors. We
apply the PH distribution to address the general randomness
in traffic demand and service ability. Meanwhile, the state-
dependent service time is used to depict customers’ velocity
that depends on the number of customers in the system. To
further consider the effect of the randomly changing envi-
ronmental factors, we introduce a random environment (RE)

represented by a Markov chain. )e queuing system is
modulated by the RE; hence, the interarrival time and the
service time change accordingly. In this study, the congestion
feedback effect is ignored. Moreover, we focus on circulation
facilities that are roughly rectangular and have a traffic flow
in one direction. Complex situations, such as circulation
networks with a feedback effect or bidirectional traffic flow,
will be discussed in our future work.

)e contribution of the paper is twofold. )e first
contribution lies in proposing a PH (i)/PH(i, n)/C/C state-
dependent queuing model in an RE. )e proposed model
comprehensively considers the general randomness, state
dependence, and the effect of randomly changing envi-
ronmental factors. Compared with existing microscopic
simulation models, the proposed queuing model is time-
efficient, easy to calibrate, and possesses a stable numerical
solution. Compared with the stationary PH/PH(n)/C/C
model in the findings Hu et al. [15] which applies fixed
arrival and service rates, the proposed model applies arrival
and service rates varying with RE states to address the effect
of randomly changing environmental factors. Unlike the
transient M(t)/G (x)/C/C model based on the exponential
distribution in the study of Hu et al. [13], our stationary
model captures the steady performance and is more suitable
for facility planning and design. Moreover, the proposed
model is more practical owing to the superior characteristics
of the PH distribution. Meanwhile, the duration time of each
RE state in the proposed model is random as the RE is
represented by a Markov chain, while the length of different
phases is deterministic in the M(t)/G (x)/C/C model which
cannot reflect the randomness of environment states (e.g.,
incident durations and peak hours). Compared with the
BMAP/PH/C and MAP/PH/C models in an RE in the
studies of Kim et al. [20] and Wu et al. [21], the proposed
model applies a state-dependent service time and a finite
space capacity to account for the congestion in traffic cir-
culation systems. )e difference between this paper and
some of the most related references is shown in Table 1.

)e second contribution of the paper is that we extend
the matrix analytic scheme (MAS) algorithm in the study of
Baumann and Sandmann [32]. Due to the introduction of
the state-dependence and the RE, the proposed model has a
four-dimensional state space which is considerably large.
Conventional methods based on the explicit computation of
the stationary distribution, such as LU-decomposition,
Gaussian elimination, and Gauss–Seidel method [33, 34, 35]
and the extended reversed compound agent theorem
method proposed by Balsamo and Marin [36] require
massive computer storage. Compared with these methods,
the efficiency of the MAS algorithm is improved remarkably
as the explicit computation of the stationary distribution is
not necessary. )erefore, we extend it to solve the proposed
model in an RE. )e space complexity of the extended MAS
algorithm is only linear in the number of RE states and is
independent of the enormous state space of the Markov
process. Its time complexity is a linear function of the
product of the queue capacity and the number of RE states.
We also validate the proposed model and algorithm versus
simulation estimates.
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)e conditional performance measures of the proposed
model provide insights into the varying performance of
traffic circulation systems. Critical information can be
revealed, such as the effect of randomly changing
environmental factors and the formation, duration, and
dissipation of congestions. When applying fixed arrival and
service parameters, such information is greatly smoothed
out. )e practical value of the proposed model is embodies
in offering a solid base for robust optimal design. As the
proposed queuing model comprehensively considers
several vital factors that influence the system performance,
the design method based on it is expected to be superior in
accommodating traffic demands under various situations.

)e rest of this paper is organized as follows. In Section
2, we review the related works. )en, preparations for the
model are presented in Section 3.)emathematical model is
formulated in Section 4. Section 5 contains numerical ex-
periments and Section 6 concludes the paper.

2. Literature Review

Queuing models with changing arrival or service rate
are applied in various domains, for example, the time-
dependent Markov queuing models in the study by Nelson
and Taaffe [37]; the time-dependent fluid queues in the
study by Liu and Whitt [22]; and queues modulated
by an RE in the study by Baykal-Gürsoy et al. [3] and Kim
et al. [20].

Queuing models in an RE provide a good choice for
capturing the steady performance of queuing systems whose
parameters change with environmental factors. An RE that
represents the varying environmental factors has several
states. For example, periods of heavy, medium, and light
traffic can be regarded as an RE with three states (the
number of RE states N is 3). Every RE state lasts a random
period of time before transferring to another state. At a given
RE state i, the system operates as a classic queue. When the
RE transfers to another state, the queue will immediately
change its parameters, such as arrival rate or service rate.

Queuing models in an RE have received considerable
attention in the literature. Eisen and Tainiter [38] first
considered a queuing process with two mean arrival and
service rates. Queuing models in an RE where the inter-
arrival time and service time are subject to exponential
distribution M, such as M/M/1, M/M/C, and M/M/∞
queuing models were later explored by Yechiali and Naor
[27]; Neuts [39]; O’cinneide and Purdue [40]; Krenzler and
Daduna [30]; and Yu and Liu [29]. More recent works can be
found in the study by Pang et al. [41] and Naumov and
Samouylov [42]. Using the M/M/C queue in an RE in
modeling traffic systems was conducted by Baykal-Gürsoy
et al. [3]. Generalization work was carried out by Neuts [28],
who discussed the M/G/1 model under an RE. Sztrik [43]
studied the M/G/n blocking system in an RE. To account for
the random arrival process with generality and diversity,
queues with PH distribution, MAP (Markovian arrival
process), and BMAP (batch Markovian arrival process) were
further explored (e.g., Krieger et al. [44]; Kim et al. [20]; Wu
et al. [21]; and Kim et al. [31].

As mentioned in Section 1, state dependence exists in
most traffic circulation systems. Due to the limited land
space, the velocity of vehicles or pedestrians is greatly af-
fected by the number of vehicles or pedestrians in the cir-
culation facility. State-dependent queuing models based on
exponential distribution and their applications can be found
in the study by Conway and Maxwell [45]; Yuhaski et al.
[14]; Cheah and Smith [46]; Smith [47]; Mitchell and Smith
[48]; Weiss et al. [49]; Jain and Smith [24]; and Smith and
Cruz [25]. However, the exponential arrival interval is based
on the hypothesis that the arrival process is a Poisson
process. )is means the variation coefficient of arrival in-
terval equals 1, which is inconsistent with the reality in most
cases according to Jiang et al. [50] and Chen et al. [51]. Given
the strong hypothesis on the exponentially distributed
interarrival time in the M/G (n)/C/C state-dependent
queuing model, Jiang et al. [52] developed a discrete event
simulation model based on a G/G(n)/C/C state-dependent
queuing system. Hu et al. [15] established a PH/PH(n)/C/C

Table 1: Some most related studies and their difference with the current paper.

Authors Performance Randomness State dependence Varying parameters RE
Liu and Whitt [22] Transient M ✓
Ammar [23] Transient M ✓
Hu et al. [13] Transient M ✓ ✓
Yuhaski et al. [14] Stationary M ✓
Jain and Smith [24] Stationary M ✓
Smith and Cruz [25] Stationary M ✓
Hu et al. [15] Stationary PH ✓
Zhu et al. [26] Stationary PH ✓
Yechiali and Naor [27] Stationary M ✓ ✓
Neuts [28] Stationary M ✓ ✓
Baykal-Grsoy et al. [3] Stationary M ✓ ✓
Yu and Liu [29] Stationary M ✓ ✓
Krenzler and Daduna [30] Stationary M ✓ ✓
Kim et al. [20] Stationary BMAP/PH ✓ ✓
Wu et al. [21] Stationary MAP/PH ✓ ✓
Kim et al. [31] Stationary MMAP/PH ✓ ✓
)e current paper Stationary PH ✓ ✓ ✓
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state-dependent queuing model for a pedestrian corridor
and Zhu et al. [26] proposed the PH/PH(n)/C/C state-de-
pendent queuing network model, which can handle inter-
arrival times and service times with various squares of the
coefficient of variation (abbreviated as SCV).

We aim to propose a stationary PH(i)/PH(i, n)/C/C
state-dependent queuing model in an RE which compre-
hensively considers the general randomness in arrival and
service, the state-dependent service time and the effect of
randomly changing environmental factors. It is very difficult
to solve the proposed PH(i)/PH(i, n)/C/C state-dependent
queuing model in an RE. However, some efficient solutions
provide a solid foundation. For example, the matrix analytic
method is used in the study by Neuts [53] to solve the single
M/G/1 queue in an RE. )e extended reversed compound
agent theorem based on the product-form theory is pro-
posed in the study by Balsamo and Marin [36] for a con-
tinuous time Markov chain in an RE. Meanwhile, quasi-
birth-and-death (QBD) processes have been developed to
deal with a broader range of PH-based queuing models. )e
study by Baumann and Sandmann [32] applied the MAS
algorithm to compute the stationary expectations of a level-
dependent QBD process. )e advantage of the MAS algo-
rithm is that it does not explicitly compute the stationary
distribution π. )erefore, we extend the MAS algorithm to
solve the proposed model in this paper.

3. Preparations

In this section, we first present the problem. )en, some
main assumptions concerning the queuing system and the
calibration of parameters are discussed.

3.1. Problem Statement. )e traffic circulation facilities
analyzed in this paper are presented in Figure 1. l and w are
two dimension parameters. When the analyzed facility is for
pedestrians (such as a corridor or hallway), l means length
and w is the width (in meters). For road traffic, l is the length
of the road segment in miles and w is the number of lanes in
one direction.)e capacity of the facility can be expressed as
follows:

C � ⌊ρlw⌋, (1)

where ⌊i⌋ is the largest integer that is less than or equal to i; ρ
is a constant determined by the density of the appropriate
context. ρ is typically 5 peds/m2 for pedestrian traffic [14]
and ranges from 185 -265 veh/mile-lane for road traffic,
according to different values of jam density [24]. Note that
the customary unit in each field is used for convenience.

)e customers arrive at the facility with interarrival
times A and the service time is denoted as B. When A and B
are described by a PH distribution, then the circulation
system can be described as a PH/PH(n)/C/C state-depen-
dent queuing system with C parallel-serial servers (details
can be found in the study by Hu et al. [15]).

As mentioned before, the traffic queuing system is always
affected by randomly changing environmental factors. )e
RE has several states and transfers randomly or circularly

among these RE states.When the RE transfers from one state
to another, the parameters of the queuing system, such as
arrival rates and service rates, will change. For example, the
arrival rate will vary with the daily period of traffic flow, and
the service rate will be affected by bad weather conditions or
accidents. When the RE is introduced, the interarrival time
distribution at RE state i is expressed as Ai and the service
time distribution at RE state i is Bi. A traffic circulation
system affected by the environmental factors can then be
described as a PH(i)/PH(i, n)/C/C state-dependent queuing
system in an RE. Our main objective is to establish the
analytical queuing model for the PH(i)/PH(i, n)/C/C state-
dependent queuing system in an RE and design an algorithm
to solve it.

For convenience, the main notation is listed in Table 2.
Note that there are two terms of state in this paper, system
state n and RE state i. )e former is the number of customers
in a queuing system, while the latter is defined as the status of
the RE. ”State-dependent/dependence” always refers to the
system state.

3.2.MainAssumptions. )e circulation facility we analyze is
a straight horizontal facility. )e pedestrians and vehicles
are assumed to be evenly distributed in the facility. Al-
though the model can address bidirectional or multidi-
rectional passenger flows, we focus on a unidirectional
traffic flow.

)e circulation system is described as a ”first in first out”
queue, which means overtaking is not allowed. )is as-
sumption is appropriate, except for the situation where the
traffic density is very small. Another assumption associated
with the PH(i)/PH(i, n)/C/C queuing model is that an ar-
riving customer will be rejected and lost when the system
state is equal to the capacity C. )is assumption is only
accurate when the customer has the choice to leave the
facility.

Additionally, the interarrival time A and the total service
time B are assumed to follow the simplified PH distribution.
)e general PH distribution has a large number of pa-
rameters. Determining all these parameters (the number can
be very large) is difficult in practice. However, the mean
value (u) and the SCV (denoted as c) of a random variable
can be obtained in most cases.

SCV, or the square of the coefficient of variation, is
calculated by the following equation:

c �
σ
u

􏼒 􏼓
2
, (2)

where u and σ are the mean and standard deviation of the
random variable. When c � 0, the variables for the inter-
arrival time and service time are constant; when c � 1, the
interarrival times and service time can be described by an
exponential distribution. )e larger c is, the greater ran-
domness exists.

As the mean value u and SCV c for a random variable are
available in most cases, [35] and Weerstra [54] used a
simplified PH, which is determined by u and c. Although not
the emphasis of this paper, we will introduce the simplified
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PH briefly for the sake of understanding. Readers can also
refer to the related papers and books.

A random variable that follows the simplified PH has an
m-order representation as (α,T), where α is a 1 × m vector
and T is an m × m matrix. α and T can be calculated
according to the mean value u and SCV c of the random
variable by the following method:

(1) When c≤ 1, m � ⌈1/c⌉, α � (1, 0, . . . , 0), matrix T
can be expressed as follows:

T �

− t1 t1

− t2 t2

⋱ ⋱

− tm− 1 tm− 1

− tm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where ti � (m/u), 1≤ i≤m − 2; tm � (2m[1 +
��
m

√

(mc − 1)/2 ]/[u(m + 2 − m2c)]) ; tm− 1 � (mtm/ (2tm

A

A

l (length)

l (length)

w (width)

w (number of lanes)

a server desk

Figure 1: Circulation facility for pedestrians or vehicles.

Table 2: Main notation.

Variable Description
Input parameters
l )e length of the facility, in meters or miles
w )e width (in meters) of the facility in case of pedestrian traffic, or the number of lanes in the case of road traffic
N )e total number of RE states
λi )e arrival rate at RE state i

cai SCV (square of the coefficient of variation) of the interarrival times at RE state i

]1i Velocity for pedestrians or vehicles when n � 1 at RE state i

csi SCV of service time at RE state i

Q )e infinitesimal generator of the Markov chain for the RE
x )e invariant probability vector of Q
Queuing variables
Ai )e random variable for the interarrival times distribution
Bi )e random variable for the service time distribution
C )e number of servers, or the capacity of the queuing system
n )e number of customers in the queuing system, system state
Q∗ )e infinitesimal generator of the Markov chain for the queuing system
π )e invariant probability vector of Q∗
]ni )e velocity when the system state is n and the RE state is i

μni )e service rate when the system state is n and the RE state is i

tni )e mean service time when the system state is n and the RE state is i

Output parameters
pn(i) )e conditional probability that the system state is equal to n on the condition that the RE state is i

EN(i) )e conditional means of the queue length for RE state i

VN(i) )e conditional variances of the queue length for RE state i

PC(i) )e conditional blocking probability for RE state i

θ(i) )e conditional output rate for RE state i
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u − m)). For c≤ (1/30), m is set to 30 to simplify the
queuing analysis.

(2) When c> 1, m � 2, α � ( p, 1 − p), p �

([1 +
������������
(c − 1)/(c + 1)

􏽰
]/2), and the matrix T can be

expressed as follows:

T �
− 2p/u

− 2(1 − p)/u
􏼢 􏼣. (4)

For interarrival time A and service time B that follow the
simplified PH distribution, we need their mean value (ua and
us) and SCV (ca and cs) to determine their PH represen-
tation. Given an RE state i(1≤ i≤N), we assume λi is the
arrival rate of pedestrians or vehicles and μni is the state-
dependent service rate when the system state is n, 1≤ n≤C.
Since the arrival rate is the inverse of the mean interarrival
time and the service rate is the inverse of the mean service
time, we have λi � (1/ua) and μni � (1/us).

Assume cai
and csi

represent the SCV of interarrival times
and the SCV of service times, respectively. )en, the
interarrival time and the service time can be expressed as PH
〈λi, cai

〉 and PH 〈μni, csi
〉. )eir PH representations PH

(αi,Ti) and PH (βi, Sni) can thus be calculated according to
(3) or (4). )e calibration of λi, cai

, μni and csi
will be pre-

sented in the next subsection.
Here, the SCV of service time is assumed to be inde-

pendent of system state n. Nevertheless, Hu et al. [15] in-
dicated that the SCV of service time is also state-dependent,
as the fluctuation range of the velocity also varies with n.)is
relation can be considered by applying the state-dependent
SCV of service time in Hu et al. [15].

Next, we present assumptions concerning the RE. )ere
are two kinds of RE in the literature, asynchronous RE and
synchronous RE. A synchronous RE assumes that the change
in RE state is synchronized with the customers’ departure or
(and) arrival in the queuing system. More popular is the
asynchronous RE, which transitions independently of the
behavior in the queuing system, as considered in the study
of, e.g., Krieger et al. [44] and Yang et al. [55].We assume the
RE is asynchronous in this paper, as the change in RE state,
such as a change in weather conditions, is uncorrelated with
the behavior of the traffic queue.

A change in the RE can change the interarrival time,
service time, capacity of the queuing system, and even the
service discipline. However, we consider only the first two
cases in this research. )e capacity and the service discipline
of the queuing system always remain unchanged. In addi-
tion, the interarrival times distribution and service time
distribution of a customer are assumed to depend on only
the RE state at the time the arrival or service process begins
[28]. In other words, once an arrival or service for a cus-
tomer has been initiated, the parameters will remain the
same until completion.

3.3. Parameter Calibrations. We present the calibration
method briefly in this subsection. A similar but more de-
tailed calibration process for parameters not affected by an
RE can be found in the study by Hu et al. [15].

For the arrival process, the arrival rate λi and SCV of
interarrival times cai

at RE state i are easy to obtain based on
field data. In some cases where the hourly traffic volume and
the peak hour factor at RE state i are given, we can also
calculate λi and cai

according to Equations (9)-(12) in Hu
et al. [15]. )en, based on (3) or (4), we can acquire αi and Ti

for the PH interarrival times.
For the service process, the service rate can be obtained

as follows:

μni �
1
tni

�
]ni

l
,

(5)

where tni and ]ni are, respectively, the mean service time and
the mean velocity of a customer.

By introducing the representative points that vary with
the random environment to the mean velocity models
proposed by Yuhaski et al. [14], we obtain the mean velocity
models that consider the state dependence as well as the
effect of the random environment. )e linear model is as
follows:

]ni � ]1i

C + 1 − n

C
􏼒 􏼓. (6)

)e exponential model is as follows:

]ni � ]1i exp −
(n − 1)

ϱ
􏼠 􏼡

c

􏼢 􏼣, (7)

where

c �
ln ln ]ai/]1i( 􏼁/ln ]bi/]1i( 􏼁􏼂 􏼃

ln((a − 1)/(b − 1))
,

ϱ �
a − 1

ln ]1i/]ai( 􏼁􏼂 􏼃
(1/c)

�
b − 1

ln ]1i/]bi( 􏼁􏼂 􏼃
(1/c)

.

(8)

)e necessary representative points are (1, ]1i), (a, ]ai),
and (b, ]bi). According to the research on pedestrian velocity
by Tregenza [56]; ]1i � 1.5m/s for n � 1, ]ai � 0.64m/s for n �

a � 2lw and ]bi � 0.25m/s for n � b � 4lw. For road traffic,
Smith and Cruz [25] proposed the following coordinates:
]1i � 62.5 mph for n � 1, ]ai � 48.0 mph for n � a � 20lw and
]bi � 20.0 mph for n � b � 140lw. Note: (1) )e original
models proposed by Yuhaski et al. [14] are based on the
velocity-density curves presented in Tregenza [56], where
the effect of an RE is not considered (the subscript i is absent
in the original models). (2))e above data for representative
points are for a unidirectional traffic flow; data for bidi-
rectional and multidirectional passengers flow can be found
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in the study by Mitchell and Smith [48] and Hu et al. [15].
Details on the relationship between speed, travel time, flow
rate vary and density when the above state-dependent ve-
locity models are applied can found in Hu et al. [13].

Equations (6) and (7) indicate that we can obtain the mean
velocity models based on the values for ]1i, ]ai, and ]bi at each
RE state i. )ese data can be obtained by field or simulation
experiments. )us, we can obtain the service rate μni.

As for the SCV for service time, Hu et al. [15] proposed a
similar exponential model based on the standard deviation of
velocity. However, the process is complicated, and a consid-
erable amount of data is needed for the calibration. For sim-
plicity, csi

is assumed to be independent of system state n and to
depend only on RE state i in this paper.)en, by applying (3) or
(4), we can calculate βi and Sni for the PH service time.

4. Mathematical Model

After the preparation work, we propose the PH (i)/PH
(i, n)/C/C state-dependent queuing model in an RE in this
section. )en, the main conditional performance measures
of concern are derived. Furthermore, the MAS algorithm is
extended to solve the proposed model and obtain the per-
formance measures.

4.1. Model Development. Let it, t≥ 0 be an irreducible
continuous time Markov chain that represents the RE. It has
a finite state space 1, 2, . . . , N{ }, N≥ 2. )e infinitesimal
generator for it is Q. x � (x1, x2, . . . , xN) is the invariant
probability vector of Q and satisfies xQ � 0, xe � 1, where e
denotes a column vector of appropriate size consisting of all
ones. As the RE is represented by an irreducible continuous
time Markov chain, the duration of each RE state can follow
a random distribution, such as an exponential, Erlang or PH
distribution.

)e interarrival time distribution PH 〈λi, cai
〉 or PH

(αi,Ti) can be represented by a random variable describing the
time until absorption of a Markov process ηt, t≥ 0. ηt has one
absorbing state and mi transient states under RE state i. )e
infinitesimal generator T∗i for ηt can be expressed as follows:

T∗i �
Ti T0

i

0 0
⎡⎣ ⎤⎦, (9)

where Ti is obtained by equations (3) or (4) and Tie≤ 0,
(Ti)jj< 0 and (Ti)jk≥ 0 for j≠ k, e � (1, 1, . . . , 1)mi×1

′ , T0
i is a

nonnegative vector and satisfies Tie + T0
i � 0.

Similarly, the service time distribution PH 〈μni, csi
〉, or

PH (βi, Sni) can be described by a continuous time Markov
process ψt, t≥ 0. ψt has one absorbing state and li transient
states under RE state i. Its infinitesimal generator is as
follows:

S∗ni �
Sni S0ni

0 0
⎡⎣ ⎤⎦, (10)

where Sni (obtained by equations (3) or (4)) satisfies Snie≤ 0,
(Sni)jj< 0 and (Sni)jk≥ 0 for j≠ k, e � (1, 1, . . . , 1)li×1

′ , S0ni is a
nonnegative vector and Snie + S0ni � 0.

Property 2 in the study by Hu et al. [15] indicates that if
B ∼ PH 〈μni, csi

〉 or PH (βi, Sni), then B/n ∼ PH 〈nμni, csi
〉

or PH (βi, nSni). )erefore, the state-dependent PH
〈λi, cai

〉/PH 〈μni, csi
〉/C/C queuing system with C parallel-

serial servers can be approximately transformed into a PH
〈λi, cai

〉/PH 〈nμni, csi
〉/1/C state-dependent queuing system

with a single server, see Figure 2.
Notably, although the model is proposed for a circula-

tion facility without obvious service desks, it is also appli-
cable for queues with obvious parallel service desks, such as
ticket vending machines and ticket windows. )is is because
parallel queue models can also be similarly converted into
state-dependent queue models as discussed in Hu [57].

)e process of the PH 〈λi, cai
〉/PH 〈nμni, csi

〉/1/C
state-dependent queuing system can be described by a
four-dimensional continuous time Markov chain
ξt � nt, it, ηt,ψt􏼈 􏼉, t≥ 0, where

(i) nt is the system state, or number of customers, in the
queuing system, nt � 0, 1, . . . , C;

(ii) it is the RE state of the RE, it � 1, 2, . . . , N;
(iii) ηt is the phase of the PH arrival process,

ηt � 1, 2, . . . , mi;
(iv) ψt is the phase of the PH service process,

ψt � 1, 2, . . . , li.

)e state space for the Markov chain ξt is as follows:

U � (n, i, η)|n � 0, 1≤ i≤N, 1≤ η≤mi􏼈 􏼉

∪ (n, i, η,ψ)|1≤ n≤C, 1≤ i≤N, 1≤ η≤mi, 1≤ψ ≤ li􏼈 􏼉,

(11)

where n stands for the system state at time t, i is the RE state,
j is the arrival phase and k is the service phase. )is state
space can also be divided into different levels: 0, 1, 2, . . .,
C. Enumerating the state of ξt in lexicographic order, we
obtain the following:

0 � 0,1􏼐 􏼑, 0,2􏼐 􏼑, . . . , 0, i􏼐 􏼑, . . . , 0,N􏼐 􏼑􏽮 􏽯, 1≤ i≤N,

n � n,1􏼐 􏼑, n,2􏼐 􏼑, . . . , n, i􏼐 􏼑, . . . , n,N􏼐 􏼑􏽮 􏽯, 1≤ i≤N, 1≤n≤C,

(12)

where

0, i􏼐 􏼑 � (0, i, 1), (0, i, 2), . . . , 0, i, mi( 􏼁􏼈 􏼉, 1≤ i≤N,

n, i􏼐 􏼑 � (n, i, 1, 1), . . . , n, i, 1, li( 􏼁, . . . ,􏼈

· n, i, mi, 1( 􏼁, . . . , n, i, mi, li( 􏼁􏼉, 1≤ n≤C.

(13)

Level 0 consists of h0 � 􏽐
N
i�1 mi states, and level

n (1≤ n≤C) consists of hn � 􏽐
N
i�1 mi · li states. Note that

there is no service phase for level 0 as the service process has
not yet started. Level n represents the states when there are n

customers in the system. A step from level n to level n + 1
represents an arrival, and a step from level n to level
n − 1 (n≥ 1) represents a departure.
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)e queuing system can be described by a finite level-
dependent QBD process, which leads to the following
generator matrix Q∗ of the Markov chain:

Q∗ �

D0 F0
E1 D1 F1

E2 D2 F2
⋱ ⋱ ⋱

EC− 1 DC− 1 FC− 1

EC DC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where D0 � Q􏽦⊗ Imj
+ diag Ti, i � 1, 2, . . . , N􏼈 􏼉, F0 � diag

T0
i αi ⊗ βi, i � 1, 2, . . . , N􏼈 􏼉, E1 � diag Imi

⊗ S01i, i � 1, 2,􏽮 . . . ,

N}, Dn � Q􏽦⊗ Imjlnj× mklnk + diag Ti ⊗ Ili
􏽮 +Imi

⊗ nSni, i �

1, 2, . . . , N}, n � 1, 2, . . . C − 1, Fn � diag T0
i αi ⊗ Ili×li

, i �􏽮

1, 2, . . . , N}, n � 1, 2, . . . C − 1, En � diag Imi
⊗ nS0niβi,􏽮 i �

1, 2, . . . , N}, n � 2, 3, . . . C, DC � Q􏽦⊗ ImjlCj×mklCk
+ diag

(Ti+􏼈 T0
i αi)⊗ IlCi

+ Imi
⊗CSCi, i � 1, 2, . . . , N}, Imj

� diag
(1, 1, . . . , 1)mj×mj

, Imjlj×mklk
� diag (1, 1, . . . , 1)mjlj×mklk

.
Note: ⊗ is the Kronecker product and 􏽥⊗ is defined as a

special Kronecker product. For example, Q􏽦⊗ Imjlnj×mklnk

means that each elementQjk inQ is multiplied by an identity
matrix Imjlnj×mklnk

, whose dimension depends on j and k, the
coordinate of Qjk.

Q∗ is a block matrix. )e nonzero (tri-)diagonal blocks
of Q∗, such as D0, are also block matrices with N × N small
blocks, and these small blocks represent the transition rate
matrix among different RE states of the RE.

For the finite states, the stationary distribution of the
Markov chain ξt, t≥ 0 always exists [55]. )e stationary
probability vector π of theMarkov chainwith generatorQ∗ can
be obtained by solving the following global balance equation:

πQ∗ � 0 and πe � 1, (15)

where π � (π0, π1, . . . , πn, . . . , πC). π0 represents the
steady-state probability vector for level 0 .
π0 � (π01, π02, . . . , π0i, . . . , π0N), where π0i represents the
steady-state probability vector for system state 0 and en-
vironment state i, and it can be further expanded into
π0i � (π0i1

, π0i2
, . . . , π0imi

). πn � (πn1, πn2, . . . , πni, . . . , πnN)

represents the steady-state probability vector for level n.
πni � (πni1

, πni2
, . . . , πnimi×li

) is the steady-state probability

vector for system state n and environment state i. )e length
of π is h0 + 􏽐

C
n�1 hn.

In addition, the stationary probability satisfies πn+1 �

πnRn(0≤ n≤C − 1), where Rn is a level-dependent rate
matrix with hn × hn nonnegative elements. Meanwhile, π0
(D0 + R0E1) � 0,Rn � − (Fn/(Dn+1 + Rn+1En+2)),RC � 0hC×hC

(a hC by hC matrix with all zeros).

4.2. Performance Measures. By solving the global balance
equation (15), we can obtain the stationary probability vector
π. )e performance measures of interest can then be cal-
culated. Generally, stationary average performance mea-
sures, such as average queue length EN, average blocking
probability PC and average output rate θ (the average here
refers to the mean value of the results for different RE states),
convey all the information of interest about the queuing
system. However, for queuing models in RE, these average
results provide little information for analyzing circulation
systems with varying parameters.)e essential characteristic
that system performance changes with the RE state is
concealed by the average value. In practice, we are more
interested in the conditional results that reflect the changing
performance measures at different RE states. )erefore, this
section focuses on deducing the conditional performance
measures and designing a solution algorithm.

To explore the conditional performance measures, the
conditional probability is necessary. Let pn(i) represent the
conditional probability that the system state is equal to n on
the condition that the RE state is i,

pn(i) � P nt � n|it � i􏼈 􏼉

�
πnie
xi

.
(16)

Based on this conditional probability, we can deduce the
main conditional performance measures, such as the con-
ditional means EN(i) and variances VN(i) of the queue
lengths, the conditional blocking probability PC(i), and the
conditional output rate θ(i) at RE state i. Note that these
conditional performance measures represent the average
performance for a given RE state.

EN i( ) � 􏽘
C

n�1
npn(i), (17)

VN(i) � 􏽘

C

n�1
n
2
pn(i) − (EN(i))

2
, (18)

PC(i) � pC(i), (19)

θ(i) � 􏽘
C

n�1
npn(i)μni. (20)

To calculate these performance measures, one method is
to first solve the global balance (15). As a limited linear
equation set, (15) can be directly solved by LU-decomposi-
tion, Gaussian elimination, Gauss–Seidel method, matrix
continued fractions, or matrix analytic method. Based on the

A

A

capacity C (C servers and
the total service time is B)

queue capacity C-1

a virtual server
with service

time B/n

Figure 2: Transformation of queuing system.
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stationary distribution π, we can obtain the above perfor-
mancemeasures. However, huge computer storage is required
due to the explicit calculation of π. To avoid excessive storage
demand, we extend the MAS algorithm applied by Baumann
and Sandmann [32] to compute the stationary results.

)e algorithm works in two steps: First, according to
πn+1 � πnRn(0≤ n≤C − 1), the expectation for the station-
ary performance measures can be expressed as follows:

Eπ(f) � 􏽘
C

n�0
πnfn

� π0 􏽘

C

n�0
􏽙

n− 1

k�0
Rk

⎛⎝ ⎞⎠fn,

(21)

where fn is a vector function of the system state n and RE state
i. Second, the expectation factor 􏽐

C
n�0(􏽑

n− 1
k�0Rk)fn without the

storage of Rn(0≤ n≤C − 1) is computed using the Horner
rule (refer to Baumann and Sandmann [32] for details).

To satisfy the required form of the expectation factor,
pn(i) in equation (16) is transformed into the following
form:

pn(i) �
πnεni

xi

, (22)

where εni is denoted as a special column vector that satisfies
πnεni � πnie. )e length of εni is equal to that of πn. )e
elements in εni, which corresponds to πni, are ones, and the
total number of ones is mi × li, while the others are all zeros.
For example, εn1 � (0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0). Now,
we can express the vector function fn for different perfor-
mance measures as follows:

(1) For EN(i) in equation (12), fn � (nεni/xi), 0≤ n≤C,
(2) For VN(i) + (EN(i))2 in equation (13),

fn � (n2εni/xi), 0≤ n≤C,
(3) For PC(i) in equation (14), fn�

0ε0i, 0≤n≤C− 1,

(εCi/xi),n�C,
􏼨 ,

(4) For θ(i) in equation (15), fn�
(nεniμni/xi),1≤n≤C,

ε0i, n�0.
􏼨

)e extendedMAS algorithm is presented in Figure 3. As
the proposed model is described as a four-dimensional
continuous time Markov chain, the transform of the state of
the RE is incorporated in the extended MAS algorithm. )e
time complexity of the extended MAS algorithm is a linear
function of C · N (the product of queue capacity C and the
number of RE states N), i.e., O (C · N). As the length of the
level-dependent matrix Rn is hn � 􏽐

N
i�1 mi · li, where mi and

li are not larger than 30 (as stated in Section 3.2), the space
complexity of the algorithm is a linear function of the
number of RE states N, i.e., O (N).

5. Numerical Experiments

In this section, we first verify the accuracy of the proposed
model and then illustrate its applications in modeling road
and pedestrian traffic circulation systems. Meanwhile, the
sensitivity of the parameters that might influence the per-
formance measures of the circulation systems is analyzed.

In all the experiments, for convenience, we assume the RE
has an exponential duration at each RE state unless otherwise
specified. )e exponential duration of each RE state i has a
mean value equal to − 1/Qii (the opposite of the inverse ofQii ),
whereQij represents the diagonal entry ofQ. For example, the
morning peak period lasting 90minutes can be represented by
an RE state whose duration follows an exponential distri-
bution with a mean value of 90minutes (Qii � − 1/90).

For convenience, we use λ� (λ1, λ2, . . . , λi, . . . , λN) to
represent the arrival rate vector, the entries of which are the
arrival rates at different RE states. ν1 � (]1, ]2,
. . . , ]i, . . . , ]N) is the velocity vector of a single customer
under the RE. Similarly, ca and cs denote the vector for the
SCV of the interarrival times and service time, respectively.
In the control group of the following experiments, we use the
average arrival rate or average velocity. Here, the average
refers to the weighted average, where the invariant proba-
bility vector of the RE x is the weighting.

5.1. Model Verification. In this subsection, we verify the
accuracy of the proposed queuing model by comparing it
with three other models, the M/M/1/∞ queuing model in an
RE in Neuts [39]; theM (t)/G (x)/C/C fluid queuing model
developed by Hu et al. [13] and the discrete-event simulation
model. In addition, the comparing between the proposed
model and the PH/PH(n)/C/C queuing model in Hu et al.
[15] is presented in Section Sec:exper2.

First, we compare the proposed PH(i)/PH(i, n)/C/C
state-dependent queuing model in a RE with the M/M/1/∞
queuing model in an RE in the study by Neuts [39]. To carry
out the comparison on the same benchmark, the entries of ca

and cs of the proposed PH(i)/PH(i, n)/C/C model are set to 1.
In addition, the firstC is set equal to 1, the secondC is set to be
a sufficiently large number and the effect of state-dependence
on service time is eliminated. )e arrival rate and service rate
are the same as those used in the study by Neuts [39]. )e
conditional means and variances of the queue length are
obtained by the two methods, as shown in Table 3.

Table 3 shows that the results of the two methods are
almost the same, which indicates that the proposed model
can accurately reproduce the performance of queuing sys-
tems with changing arrival and service rates. In addition, the
results imply that the M/M/1/∞ queuing model in an RE
can be approximated by the PH(i)/PH(i, n)/C/C state-de-
pendent queuing model in an RE. )is supposition is co-
incident with the work of Hu et al. [15]; which proved that
the M/G/1/∞ queuing model can be approximated by the
PH/PH(n)/C/C state-dependent queuing model.

In the following experiment, we compare the proposed
model with the transient M (t)/G (x)/C/C fluid queuing
model developed by Hu et al. [13]. )e two models are used
to analyze a road circulation system with a varying traffic
demand. A road section of 850 meters is studied. )e arrival
rate of the M(t)/G (x)/C/C fluid queuing model changes
with time determinately, while the RE state of the proposed
model changes randomly. )erefore, we also explore the
impact of the random length of each RE state by changing
the value of the SCV of the duration time of the RE states
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(SCVRE) in this experiment. Four values for the SCVRE, 0.5,
1, 2 and 4, are tested. When the SCVRE equals 1, the du-
ration time of the RE state follows an exponential distri-
bution. When the SCVRE is 0, the duration time of each RE
state is a constant value, similar to the situation in the M(t)/
G (x)/C/C fluid queuing model. )e entries of ca and cs of
the proposed PH(i)/PH(i, n)/C/C model are set to 1. Two
situations with low and high traffic demand are analyzed.
)e conditional queue length obtained by the proposed

model is compared with the dynamic queue length calcu-
lated by the transient M(t)/G (x)/C/C fluid queuing model,
as shown in Figure 4.

For the low traffic demand in Figure 4(a), changing the
SCVRE has little effect on the queue length and the result of
the two models are almost the same. In Figure 4(b), the
conditional queue length increases apparently with the
SCVRE during the morning peak and the result of the
proposed model are all larger than that of the M (t)/G

Figure 3: )e extended matrix analytic scheme algorithm.
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(x)/C/C fluid queuing model. )is indicates that increasing
the randomness in the duration time of the RE state has an
obvious influence on the performance measures of a cir-
culation system under high traffic intensities.

)is experiment indicates that the proposed stationary
model coincides with the transient M (t)/G (x)/C/C fluid
queuing model under the following conditions: (1) the SCV of
the interarrival times of the proposed model is equal to 1; (2)
the SCVRE of the proposed model is equal to 0; and (3) the
conditional queue length of the proposedmodel is close to 0 at
the first and the last RE state. )is implies that the proposed
stationary PHi/PH(i, n)/C/C state-dependent queuing model
in a RE may be useful in conducting transient analysis after
certain transformations, which will be explored in our future
work. Although the two methods obtain similar results under
the same condition, the proposed model is superior to the
M(t)/G (x)/C/C fluid queuingmodel in two aspects. First, the
result of the proposedmodel is an accurate solution while that

of the M(t)/G (x)/C/C fluid queuing model is an approxi-
mation. Second, theM(t)/G (x)/C/C fluid queuingmodel can
only deal with the situation where the SCV of the interarrival
times equals 1 and the varying arrival rate changes with time
deterministically. However, the proposed model can capture
the performance in different situations where the SCV of the
interarrival times are much larger than 1 and the arrival rate
changes randomly. Both the SCV of the interarrival times and
the SCVRE have a remarkable influence on the performance
measures under high traffic demand ()e influence of the
SCV of the interarrival times will be examined in the fol-
lowing experiment). It also should be mentioned that the
calculation time of the proposed model is 8% less than that of
the M(t)/G (x)/C/C fluid queuing model.

Next, we will validate the accuracy of the proposed
model by comparing it with the discrete-event simulation
model. A pedestrian corridor with a length of 5 meters and a
width of 3 meters is analyzed. Assume the arrival and service

Table 3: Comparison with M/M/1/∞.

RE state i 1 2 3 4 5 6 7 8

EN (i) Our model 50.65 50.98 41.55 36.05 31.29 27.17 23.60 20.51
M/M/1/∞ 50.65 50.98 41.55 36.05 31.29 27.17 23.60 20.50

VN (i) Our model 2575.55 2581.12 2482.10 2346.10 2178.66 1996.99 1812.20 1631.56
M/M/1/∞ 2575.55 2581.12 2482.10 2346.10 2178.66 1996.99 1812.20 1631.56
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Figure 4: Comparison with the M(t)/G(x)/C/C fluid queuing model.
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process of the corridor is affected by an RE with four states
(N � 4) that repeat cyclically. )erefore, the invariant
probability vector of the RE is x � 1/4(1, 1, 1, 1), whichmeans
the probability that the RE is at state i, 1≤ i≤ 4, is 1/4. Each
RE state has an exponential duration with an average value
of 40 s (− (1/Qii) � 40, 1≤ i≤ 4). )erefore, the infinitesimal
generator can be expressed as follows:

Q �
1
40

− 1 1 0 0

0 − 1 1 0

0 0 − 1 1

1 0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

)e parameters for arrival and service under the RE are
as follows: λ �(5, 3, 3, 2), ca �(1.5, 1.5, 1.5, 1.5), and ]1 �(1.5,
1.5, 1.4, 1.4), cs �(1.5, 1.5, 1.5, 1.5). )e exponential model
for pedestrian velocity in (7) is applied.

)e discrete-event simulation model for such a corridor
with changing arrival and service rates is set up in Simulink
in MATLAB. A total of 5000 pedestrians are simulated, and
the first 1000 pedestrians are excluded from the data col-
lection. )e simulation is repeated 10 times to calculate the
average results. )e conditional performance measures,
EN(i), VN(i), PC(i), and θ(i), are obtained from the
simulation model and the proposed model. )e results, as
well as the average relative error, are listed in Table 4 (the
simulation result is taken as the benchmark).

)e data in Table 4 indicate that the relative error is quite
small, with an average value of 3.71%. )is result further
verifies the accuracy of the proposed model. Although the
analytical model and the simulation model produce similar
results, there is a big difference between the time efficiency of
the two methods. On an Intel(R) Core(TM) i7-2600 CPU @
3.40GHz, the running time for the analytical model is 0.13 s
while that for simulation is 313.57 s.

5.2. Vehicle Queues in an RE. In this subsection, we apply the
proposed model to analyze vehicle queues with different
arrival rates and SCVs of interarrival times. Consider a road
segment of 1mile consisting of one lane (l � 1,w � 1) and has
a unidirectional traffic flow. )e constant ρ is 200 veh/mile-
lane. )erefore, the capacity of the road segment is C � 200.
)e 24 hours of a day are treated as a circular RE with 8 states.
)e infinitesimal generator of the RE is as follows:

Q �
1
3

− 1 1 0 0 0 0 0 0

0 − 1 1 0 0 0 0 0

0 0 − 1 1 0 0 0 0

0 0 0 − 1 1 0 0 0

0 0 0 0 − 1 1 0 0

0 0 0 0 0 − 1 1 0

0 0 0 0 0 0 − 1 1

1 0 0 0 0 0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, (24)

and x � 1/8(1, 1, 1, 1, 1, 1, 1, 1).)us, the duration of each RE
state follows an exponential distribution with an expected
duration time of 3 hours. )e first RE state represents the
time of 4:00–7:00 am, the second, 7:00–10:00 am, and so on.

)ree arrival rate vectors are applied, λ1 �(1500, 1500,
1500, 1500, 1500, 1500, 1500, 1500), λ2 �(1200, 2200, 2100,
1700, 1400, 1300, 1100, 1000), and λ3 �(900, 2400, 2300,
2200, 1500, 1000, 900, 800). )e three arrival rate vectors
have the same total traffic volume in a day while the non-
uniformity increases sequentially. According to our survey
at Commonwealth Avenue in Singapore and the research of
Zhang [58], the SCV of the interarrival times for vehicles
varies from 0.5 to 15. )erefore, we set three vectors for the
SCV of the interarrival times, ca1 �(0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5), ca2 �(5, 5, 5, 5, 5, 5, 5, 5), and ca3 �(10, 10, 10, 10, 10,
10, 10, 10). We consecutively number the experiments with
parameter pairs (λ1, ca1), (λ1, ca2), (λ1, ca3), (λ2, ca1), . . ., (λ3,
ca3), that is, Group 1, 2, . . ., 9. Note that the first three
groups, which apply the average arrival rate, are essentially
equivalent to the PH/PH (n)/C/C queuingmodel in Hu et al.
[15].

All 9 groups of experiments have the same service rate
vector and SCV of service time. In each experiment, the
service rate and the SCV of service time are assumed to be
independent of the RE state. )e SCV of service time is 1.
)e service rate μni is obtained based on the exponential
velocity model in (7), where the velocities for the three
representative points are ]1i � 55 mph, ]ai � 48 mph, and
]bi � 20 mph (similar to the values in Jain and Smith [24]).
)e conditional queue length EN(i) and the conditional
coefficient of variation of the queue length CV (i) are
presented in Figure 5. )e average time cost for one ex-
periment is 0.8 s.

Figure 5 indicates that the nonuniformity in traffic de-
mand causes remarkable fluctuation in the conditional
performancemeasures.)e greater the nonuniformity is, the
greater the fluctuation in conditional performance will be.
By contrast, the conditional mean and SCV of queue length
for the first three groups are the same at all RE states.
However, Figures 5(a) and 5(b) show different tendencies. In
Figure 5(a), the conditional queue length of Groups 4 to 9 at
RE states 2, 3, and 4 (the peak period) is much larger than
that of Groups 1 to 3. )e maximum conditional queue
length reaches 180 during the peak period for Group 7 while
that for Groups 1 to 3 is always 38. )is indicates that the
conditional queue length during the peak period can be
tremendously underestimated by applying an average arrival
rate since the fluctuating traffic intensity levels off.
According to the three vectors of arrival rate and the data in
Figure 5, we can see that a one percent increase in condi-
tional arrival rate gives rise to a more than one percent
increase in the conditional queue length during the peak
period. )e conditional CV of queue length in Figure 5(b)
generally shows an opposite tendency. )e conditional CV
of queue length tends to be smaller at RE states with larger
conditional queue length. When congestion occurs (the
number of vehicles waiting in the queue is too large), the
freedom of motion is almost completely limited and less
fluctuation exists in queue length. When the congestion
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begins to dissipate (the accumulated queue length begins to
decline) after the peak period, the conditional CV of queue
length increases.

Figure 5 also shows the effect of the SCV of interarrival
times. In Figure 5(a), the effect of the SCV of interarrival
times varies. When the traffic intensity is low, the effect of
the SCV of interarrival times is quite small. As the traffic
intensity increases, the influence of the SCV of interarrival
times tends to increase. Figure 5(a) shows that an increasing
SCV of interarrival times leads to a decrease in EN(i) at RE
states 2, 3, and 4 in Groups 7 to 9, which appears to be
unreasonable. )e reason is as follows. A larger SCV of
interarrival times means vehicles arrive more randomly.

When the conditional queue length is close to the capacity of
the road, most vehicles are rejected due to the capacity
limitation. Consequently, the number of vehicles that get
into the system decreases, resulting in a slight decrease in the
queue length. Notably, this unexpected phenomenon occurs
only when the expected queuing length is close to the ca-
pacity. Otherwise, the system has sufficient available ca-
pacity to accommodate the additional vehicles. An
additional experiment shows that the PH/PH (n)/C/C state-
dependent queuing model in the study by Hu et al. [15]
presents a similar phenomenon. )ese results suggest a
precondition shared by both models that the studied
queuing system is a loss queue with limited capacity. )e

Table 4: Comparison with the simulation model in an RE.

RE state 1 2 3 4 Error (%)

EN(i) (ped) Simulation 54.16 47.33 42.14 22.45 —
Our model 54.38 45.75 39.96 21.57 3.21

VN(i) (ped2) Simulation 490.87 581.16 597.78 422.67 —
Our model 517.16 630.48 636.84 442.00 6.24

PC(i) (%) Simulation 23.42 9.51 7.56 0.96 —
Our model 24.48 9.67 7.30 1.05 4.62

θ(i) (Ped/s) Simulation 2.87 2.94 2.86 2.44 —
Our model 2.87 2.90 2.91 2.44 0.78
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Figure 5: Conditional mean and CV of queue length for vehicle queues. (a) Conditional queue length. (b) Conditional CV of queue length.
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newly arriving vehicles will leave the system when they find
that the system is full. In Figure 5(b), generally, a larger SCV
of interarrival times results in a larger conditional CV of
queue length.

A close look at Figure 5(a) provides additional inter-
esting information. Although RE states 3 and 4 have smaller
arrival rates than that of RE state 2, their conditional mean
and CV of queue length are sometimes larger than that of RE
state 2. For example, EN(3) is larger thanEN(2) in Group 7.
)is result implies that the performance of an RE state is not
determined solely by its arrival rate.

To verify this conclusion, we design a specific scenario
that focuses on 3-mile road segment with one lane. We focus
on the 4 hours around the peak period. Assume that the
4 hours are treated as an RE with 8 states (each RE state lasts
0.5 hours). Two cases are analyzed, where the arrival rate
vectors are (2150, 2400, 2400, 2100, 2000, 1800, 1800, 1800)
and (2150, 2600, 2600, 2100, 2000, 1800, 1800, 1800). )e
two arrival rate vectors differ only in the arrival rate for the
peak period (RE states 2 and 3). )e SCV of the interarrival
times is 5 in both cases. )e other settings remain the same
as in the previous experiment. )e conditional queue length
is obtained by the proposedmethod.We also use the existing
PH/PH(n)/C/C queuing model in the study by Hu et al. [15]
for comparison. In the control group, the queue length for
each RE state is calculated by the PH/PH(n)/C/C queuing
model with the arrival rate for each RE state in isolation. For
example, 2150 is used to calculate the queue length for RE
state 1 and 2400 is used for RE state 2 in case 1. )is result is
referred to as the piecewise result. )e results of the two
methods are presented in Figure 6.

Figure 6 shows that the conditional queue length EN(i)

is very different from the piecewise queue length. At the peak
period of RE states 2 and 3, the piecewise queue length is
much larger than the conditional queue length. After the
peak period, the piecewise queue length is smaller because
the piecewise queue length is the result of isolated RE states
and is not affected by other RE states. )erefore, the queue
length at RE states 2 and 3 is close to the capacity. )e queue
length is not influenced by RE state 1, where the traffic
intensity is low. RE states 2 and 3 do not have a prolonged
impact, and the queue length drops sharply after the peak
period.

By contrast, the conditional queue length obtained by the
proposed model reflects the traffic intensity of the current
and previous RE states. )e conditional queue length for RE
states 2 and 3 is influenced by the unsaturated RE state 1.
)erefore, it is much smaller than the piecewise result.
Meanwhile, the traffic intensity at RE states 2 and 3 has a
significant after-effect on the queue length of the subsequent
RE states. Because of the aftereffect, the conditional queue
length for RE states 4 to 8 is much larger than that of the
piecewise result.

)e difference between the two lines during RE states 4
to 8 quantifies the aftereffect of the peak period. )e queue
accumulated during the peak period (RE states 2 and 3) is
dissipated in the subsequent RE states. )e difference be-
tween Figures 6(a) and 6(b) reveals that different traffic
intensities during the peak period have different aftereffects.

In case 1, the difference between the two lines (the condi-
tional queue length and the piecewise queue length) is small
and is close to zero at RE state 8, which means the effect of
the peak period, i.e., congestion, has almost completely
dissipated. In case 2, the difference between the two lines is
much larger due to the larger traffic intensity during the peak
period.)e difference between the two lines is still very large
at RE state 8, which means the effect of the peak period is not
fully dissipated and will continue to affect the performance
of the subsequent RE states. In circulation systems with
periodic RE, this type of information is particularly im-
portant. To avoid deterioration of the system performance,
we should ensure that the accumulated queue or the after-
effect of one peak period is completely dissipated before the
next peak period arrives.

5.3. Varying Corridor Parameters for Pedestrian Queues in an
RE. In this subsection, we examine the effect of varying
width and length of a circulation facility. Here, we analyze
passenger queues where the traffic demand is nonuniform,
such as that in metro stations, stadiums, and comprehensive
transportation hubs. According to a rough survey of
Chengdu metro stations, the average headway of trains is
240 s. For outbound or transfer facilities in metro stations,
most passenger arrive in the beginning 40 s of one headway
and after that the arrival rate will be very small. We apply an
RE with three states to model the headway of metro trains.
)e duration of the three RE states is, respectively, 40 s, 40 s,
and 160 s.)e invariant probability vector of this RE is x � 1/
6(1, 1, 4), and the infinitesimal generator of the RE is as
follows:

Q �
1
160

− 4 4 0

0 − 4 4

1 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (25)

First, we analyze the effect of corridor width. A corridor
of 15meters in length is analyzed. )e width varies from 0.5
to 7.5meters. We apply three arrival rate vectors with in-
creasing nonuniformity, namely, Case 1 (2.8, 2.4, 1.1), Case 2
(3.4, 3, 0.8), and Case 3 (4.5, 3.5, 0.4). RE state 1 is the peak
period and RE state 3 is the off-peak period. )e three cases
have the same average arrival rates as 1.6 ped/s. )e PH/
PH(n)/C/C queuing model in the study by Hu et al. [15]
applying the average arrival rare is used as a control. )e
average output rate for varying widths is obtained and
presented in Figure 7. Here, the result of our model is the
average output rate for three RE states.

Figure 7 shows that the average output rate always in-
creases with the width until it equals the average arrival rate.
For the arrival rate vector with greater nonuniformity, a
larger width is required to obtain the maximum average
output rate. )e curves also indicate that the output rate of
the PH/PH(n)/C/C queuing model is more sensitive to
width compared with our model. When the width increases,
the output rate of the PH/PH(n)/C/C queuing model grows
faster. For Cases 1 to 3 where the arrival nonuniformity gets
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greater, the average output rate grows slower when the width
increases. )is is because the conditional output rate at RE
state 3 becomes smaller sequentially for Cases 1 to 3.

Next, we study the effect of corridor length. A corridor
with a constant width of 1.5meters is analyzed. )e length
varies from 3meters to 90meters. We apply two groups of
experiments, one with low traffic demand and one with high
traffic demand. In Group (a), the average arrival rate is 1.6
ped/s. )ree arrival rate vectors are Case 1 (2.8, 2.4, 1.1),
Case 2 (3.4, 3, 0.8), and Case 3 (4.5, 3.5, 0.4). In Group (b),
the average arrival rate is 1.75 ped/s. )e three arrival rate
vectors with increasing nonuniformity are Case 1 (2.1, 2,
1.6), Case 2 (3.1, 2.6, 1.2), and Case 3 (3.6, 3.3, 0.9). In both

groups, RE state 1 is the peak period. )e PH/PH(n)/C/C
queuing model in Hu et al. [15] applying the average arrival
rare is used as a control.)e average output rate is calculated
and presented in Figure 8.

Figures 8(a) and 8(b) show different tendencies as the
length grows. )is is because the growth in length has two
opposite effects on the output rate. On the one hand, there is
more land space andmore pedestrians are allowed to get into
the corridor when the length gets larger. )is is the positive
effect that improves the output rate. On the other hand,
more pedestrians getting into the corridor leads to a longer
accumulated queue and worsens the congestion. )is is the
negative force that brings down the output rate. In
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Figure 8(a) where the traffic demand is low, most of the
accumulated queue dissipates at RE state 3 and the positive
effect is larger. )erefore, the average output rate for both
methods increases with the corridor length. In Figure 8(b),
for the PH/PH(n)/C/C queuing model and Case 1 of our
model, the traffic demand is at a high level for the three RE
states and the accumulated queue cannot dissipate effec-
tively. )erefore, the negative effect is larger and the output
rate decreases when the length grows. For Case 2 and Case 3
of our model where the arrival nonuniformity is large, the
positive effect is dominant at the first stage. As the arrival
rate is relatively small at RE state 3 in these two cases, the
congestion greatly dissipates. However, when the corridor
length exceeds a certain value, the negative effect plays a
leading role as the accumulated queue becomes too long and
cannot dissipate timely during the off-peak period.

Meanwhile, the average output rate gets smaller from
Case 1 to Case 3 as the nonuniformity in traffic demand
increases (Figure 8(a)). )is is because increasing non-
uniformity in traffic demand leads to more pedestrians
failing to get in the corridor during the peak period due to
congestion. In Figure 8(b), when the length is smaller than
10, the situation is the same as that in Figure 8(a). However,
when the length is large enough, the average output rate
becomes larger from Case 1 to Case 3 due to the above
reason.

)e experiment on varying lengths suggests that
nonuniformity in traffic demand affects the optimal length
of circulation facilities. In the situation where the con-
gestion accumulated at the peak period can dissipate greatly
during the off-peak period, the average output rate in-
creases with the length. However, if the congestion accu-
mulated at the peak period cannot dissipate effectively
within one cycle, the average output rate declines as the
length grows.

6. Conclusion

)is paper proposes a stationary PH (i)/PH(i, n)/C/C state-
dependent queuing model operating in an RE to model
traffic circulation systems under the influence of randomly
changing environmental factors, such as the daily traffic
period, accidents, weather conditions and so on. )e RE is
represented by aMarkov chain and the duration time of each
RE state is random. At the same time, the proposed model
considers the general randomness in the arrival and service
process by using the PH distribution. It also explicitly
models congestion by applying a state-dependent service
time. )e MAS algorithm is extended to solve the proposed
model and obtain both the average and the conditional
performance measures. )e time complexity of the extended
MAS algorithm is a linear function of the product of the
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queue capacity and the number of RE states. )e space
complexity of the extended algorithm is only a linear
function of the number of RE states and is independent of
the enormous (four-dimensional) state space of the Markov
process for the queuing system. )e accuracy of the pro-
posed model is verified through comparisons with the M/M/
1/∞ queuing model in an RE in the study by Neuts [39]; the
transient M(t)/G (x)/C/C fluid queuing model in the study
by Hu et al. [13] and the discrete-event simulation model.

)e obtained conditional performance measures can
accurately capture the queue accumulation and dissipation
and reveal the effect of randomly changing environments.
Such information is particularly important when analyzing
circulation systems with nonuniform traffic demand. Nu-
merical experiments on vehicle and pedestrian queues are
conducted. Some interesting results are revealed.

(1) )e proposed stationary PH(i)/PH(i, n)/C/C state-
dependent queuing model coincides with the tran-
sient M(t)/G (x)/C/C fluid queuing model under the
following conditions: the SCV of the interarrival
times of the proposed model equals 1, the SCVRE of
the proposed model is close to 0, and the conditional
queue length of the proposed model is close to 0 at
the first and the last RE state. )is result implies that
the proposed stationary model may be useful in
conducting transient analysis after certain trans-
formations, which will be explored in our future
work.

(2) Under high traffic intensities, increasing the ran-
domness in the duration time of the RE state leads to
an obvious growth in the conditional queue length.
)is effect is quite small under low traffic intensities.

(3) Nonuniformity in traffic demand plays an important
role in determining the optimal length of circulation
facilities. When the congestion accumulated at the
peak period can dissipate greatly during the off-peak
period, the average output rate increases with the
length. However, if the congestion accumulated at
the peak period cannot dissipate effectively within
one cycle, the average output rate declines as the
length grows.

(4) )e average output rate always increases with the
width until it equals the average arrival rate. For
traffic demand with greater nonuniformity, a larger
width is required to obtain the maximum average
output rate.

(5) )e SCV of interarrival times has a remarkable effect
on the conditional mean queue length under high
traffic intensities. Moreover, a larger SCV of inter-
arrival times results in a larger conditional CV of
queue length. )e conditional CV of queue length
tends to be smaller at RE states with a larger con-
ditional mean queue length. When the congestion
begins to dissipate after the peak period, the con-
ditional CV of queue length increases.

)e proposed model serves as a solid base for robust
optimal design for traffic circulation systems owing to its

comprehensively considerations. In addition to the circu-
lation facilities discussed in this paper, the proposed model
can also be applied to analyze facilities with parallel servers,
such as ticket vending machines and toll stations, due to the
state-dependent service time. Applications in other fields,
such as logistics and manufacturing, can also be explored,
taking advantage of the generality of the PH distribution and
the Markov RE.

Nevertheless, some issues remain to be solved in the
future. We assume that only the arrival rate and service rate
change with the RE. In cases such as accidents or facility
disruptions, the capacity of the circulation system or even
the service discipline varies. Queuing models that can ac-
count for these complex situations will be universal but also
more complex. )e circulation facilities are described as
finite capacity queuing systems without feedback. However,
in most actual situations, the newly arrived customers have
to visit the system repeatedly when the system is full and they
have no other option. )is feedback effect will considerably
influence the performance of the congested facility, as well as
that of upstream facilities. )e queuing network model with
the feedback effect will be discussed in our following
research.
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