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+is study further explores the multinomial probit-based integrated choice and latent variable (ICLV) models. +e LDLTmatrix-
based analytic approximation methods, including Mendell and Elston (ME) method, bivariate ME (BME) method, and two-
variate bivariate screening (TVBS) method, were adapted to calculate the multivariate cumulative normal distribution (MVNCD)
function in the ICLV model because of the better performances in accuracy and computational time. Integrated with the
composite marginal likelihood (CML) estimation approach, the ICLV model based on high-dimensional integration can be
estimated accurately within a reasonable time. In this study, some three-alternative and four-alternative ICLV models are
simulated to examine their abilities to recover model parameters. It is found that the parameter estimates and standard error
estimates are acceptable for both models and the computational time is expected to decrease using tensor data structures on the
TensorFlow platform. For the four-alternative ICLVmodels, the TVBSmethod has the highest level of accuracy.+e BMEmethod
is also a good alternative to TVBS if computational time is of great concern.+e application of the automatic differentiation (AD)
technique in the model can free researchers from coding analytical gradients of log-likelihood functions and thereby greatly
reduce the workload of researchers.

1. Introduction

In the discrete choice model (DCM), the choice depends not
only on the transport characteristics and the observable
characteristics of decision-makers but also on the un-
observable characteristics, namely latent variables. Among
them, psychological and attitudinal factors as parts of un-
observable latent variables have been proved to be significant
when being integrated into DCMs [1].

One alternative to incorporate latent variables into
discrete choice models is the integrated choice and latent
variable (ICLV) model [2, 3], which can be viewed as
a variation of the traditional structural equation model
(SEM) with the advantage to involve the underlying choice
process based on psychological concepts. +e ICLVmodel is
a popular research topic in the field of transport choice

studies since the early 2000s, and the application of this
model has been increasing in recent years [3–7]. +e earlier
ICLV models are generally developed on the basis of the
mixed logit model, of which the error terms follow an in-
dependent and identically Gumbel distribution. +ese logit
kernel-based ICLVmodels ignore the correlation among the
utility of alternatives and the correlation among the error
terms of latent variables. Meanwhile, the models have several
deficiencies in the aspects of the estimation method (i.e.,
maximum simulated likelihood (MSL) approach [8, 9]), the
convergence of model estimation with multiple latent var-
iables [7], and computational time of multidimensional
integration. Regarding the limitations of the above models,
Bhat and Dubey [10] firstly proposed an multinomial probit
(MNP) kernel-based ICLV formulation method, which can
accommodate a large number of latent variables, and
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performances in convergence and computational efficiency
have been improved. In particular, the maximum approx-
imate composite marginal likelihood (MACML) inference
approach is integrated to estimate the model parameters,
which further simplifies the estimation process. As the
number of latent variables is independent of the integral
dimensions of the log-likelihood function and only relates to
the number of alternatives of choice models, the compu-
tational time of this method is relatively short. Besides, the
ordered and continuous response indicators for the latent
variables can be involved in the model easily. Up to now, the
new MNP-based ICLV model has not been extensively
applied [11, 12] and remains a broad prospect for practice.

At present, it is critical to compute the multivariate
cumulative normal distribution (MVNCD) function of the
proposed ICLV model, which can be further improved. In
some earlier studies, the simulation techniques are used for
evaluating the MVNCD functions, of which the most
common method is using a Geweke–Hajivassiliou–Keane
(GHK) simulator [13]. However, since there is a large time
cost of the simulation method with the same level of ac-
curacy, this method may be replaced by the analytic ap-
proximation method. Mendell and Elston (ME) proposed
a univariate conditioning approach earlier [14], and then,
the researchers made a series of improvements. In the above
probit-based ICLV model, the MACML approach of Bhat
[15] is adopted, which combines the Switzer–Solow–Joe
(SSJ) approximation for the MVNCD function with the
CML inference approach for MNP models. Here, we intend
to apply a new LDLT matrix-based analytic approximation
method proposed by Bhat in 2018 [16] to evaluate the
MVNCD function, which is demonstrated to have better
performance than the SSJ. +emethod can effectively reduce
difficulties in convergence and covariance matrix compu-
tation that occur routinely in the maximum-likelihood es-
timation of choice models with analytically intractable
likelihood functions. Meanwhile, applying the LDLT de-
composition method to the algorithms also assists in en-
suring no substantial speed reduction in each iteration.

In the process of the maximum-likelihood estimation
(MLE) for models, programming analytical gradients are
generally needed to improve the speed and accuracy at
convergence. However, since the derivation and coding of
analytical gradients are usually complicated and time-con-
suming for complex models, the introduction of automatic
differentiation (AD) into the model estimation process
enables the acquisition of gradients without coding effort,
which significantly reduces the workload of researchers. +e
AD method takes advantage of the fact that every computer
program will execute a sequence of elementary arithmetic
operations and basic functions, no matter how complicated
it is. +e MLE procedure usually adopts a reverse mode of
AD, which is first published in 1976 by Linnainmaa [17].
Compared with numerical differentiation, it has obvious
advantages in terms of calculating higher-order derivatives
and partial derivatives with multiple inputs. In the past
decades, the theory of AD has been considerably developed.
Nevertheless, it has limited applications in the field of
econometrics and statistics up to now [18, 19], which

provides opportunities for further investigation in this
respect.

Furthermore, the graph computation technique based on
tensors represented as multidimensional arrays in the
TensorFlow platform can avoid loop operations based on the
two-dimensional matrix data structure used in conventional
computational platforms. TensorFlow should have an ad-
vantage in computational speed over conventional platforms
when the LDLT-based analytic approximation method is
applied within a sample. On the one hand, the graph
computation technique based on tensors can ensure that all
the calculation process in LDLT-based analytic approxi-
mation is completely realized at a speed of C language codes,
rather than that of scripting language codes to operate
matrices repeatedly in multiple loops. On the other hand, in
MLE procedures using matrix-based analytic approxima-
tions, a tensor with more dimensions is desirable because
each individual observation in the sample needs a matrix-
based operation for its log-likelihood computation and such
computation needs to be repeated as many times as the
sample size. +us, a computational platform with a tensor
data structure can avoid repeated matrix operations in
a large loop and further contribute to computational speed
improvement. In this study, some efforts will be made to
explore the feasibility of MNP-based ICLVmodel estimation
using LDLT-based analytic approximation and tensor data
structure on the TensorFlow platform.

+e rest of this study will be organized as follows. +e
second section elaborates on the MNP-based ICLV model
and LDLT-based analytic approximation method and then
introduces the AD mechanism. In the third section, the
simulation experiments are designed for validating the
three-alternative and four-alternative ICLV models. +e
next section presents the evaluation results of the MVNCD
function and the estimation results for the ICLV model with
different analytic approximation methods (ME, BME, and
TVBS). Conclusions and discussions are summarized in the
last section.

2. Methodology

2.1. MNP-Based ICLV Model. +e MNP-based integrated
choice and latent variable (ICLV) model proposed by Bhat
and Dubey in 2014 [10] contains the following three com-
ponents. Assume there are L latent variables z∗ (index
l � 1, 2, . . . , L), G ordinal indicator variables y (index
g � 1, 2, . . . G), I alternatives’ utilitiesU (index i � 1, 2, . . . I),
and Q individuals (index q � 1, 2, . . . Q) in this model. To
simplify the presentation, the matrix form is taken in the
formulas below and the index of the variables is not shown.

2.1.1. Latent Variable Structural Equation Model.

z∗ � αw + η, η ∼ N 0L, Γ􏼂 􏼃, (1)

where w is a ( 􏽥D × 1) vector of observed covariates affecting
z∗ (not including a constant) and α is a corresponding (L ×
􏽥D) matrix of coefficients (i.e., exogenous variable loadings
on z∗). η is a (L × 1) vector of errors assumed to be standard
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multivariate normally distributed: η ∼ N[0L, Γ], where Γ is
a correlation matrix. Each ηl of η is assumed to be the
standard normal distribution. For the structural equation
model, the same exogenous variables w can be used for
different latent variables z∗l .

2.1.2. Latent Variable Measurement Equation Model

y � δ + dz∗ + ξ,ψlow < y <ψup, ξ ∼ N 0G,Σ􏼂 􏼃, (2)

where y, δ, and ξ are (G × 1) vectors that represent observed
ordered indicator-dependent variables, intercept in measure-
ment equation, and error items in measurement equation,
respectively. d is a (G × L) matrix of coefficients representing
the effect of latent variables z∗ on observed indicators y. Also,
let Σ be the correlation matrix of ξ � (ξ1, ξ2, . . . , ξG), in which
the identification of diagonal is not considered. Here, the
normalization on the error terms ξ is needed for identification,
as in the usual ordered-response model. +e ordered indicator
y can be horizontally partitioned into corresponding ordinal
categories by setting thresholds. As per Bhat in 2014, ψlow is
a (G × 1) vector that stacks the lower thresholds ψg,ng− 1(g �

1, 2, . . . , G) and ψup is another vector that stacks the upper
thresholds ψg,ng

(g � 1, 2, . . . , G).

2.1.3. Choice Model (Multinomial Probit Model)

U � xβ + γ φz∗( 􏼁 + ε � xβ + λz∗ + ε,

where λ � γφ, ε ∼ N 0I,Λ􏼂 􏼃,
(3)

where U is (I × 1) vector of alternative utilities, x is (I × D)
matrix of exogenous variables in the choice model, and ε is
(I × 1) utility error vector that followed multivariate normal
distribution whose variance-covariance matrix is Λ. In the
equation, φ is a 􏽐

I
i�1 Ni × L matrix of variables interacting

with latent variables and γ is an I × 􏽐
I
i�1 Ni matrix of co-

efficients capturing the effects of latent variables and their
interactions with exogenous variables. In a case without
interactions, λ(I × L) matrix of coefficients can be specified
when λ � γφ and the matrix φ is reduced to an identity
matrix of size L. Since only the covariance matrix of error
differences is estimable, I(I − 1)/2 − 1 elements can be
identified in Λ after normalizing the covariance matrix.

+e MNP-based ICLV model framework can be pre-
sented in Figure 1.

In the process of the model estimation, z∗ in equations
(2) and (3) can be substituted into the right side of equation
(1) to further simplify expressions. We assume that the error
vectors ξ, ε, and η are independent of each other. +e fol-
lowing system can be obtained:

y � δ + d(αw + η) + ξ

� δ + dα ω + dη + ξ,

U � xβ + λz∗ + ε

� xβ + λ(αw + η) + ε

� xβ + λαw + λη + ε.

(4)

Consider the (G + I) vector YUG+I � [yG
′,UI
′]′. +e

following is defined:

B �
δ + dαw
xβ + λαw

􏼢 􏼣,

Ω �
dΓd′ + Σ dΓλ′

λΓd′ λΓλ′ + Λ
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(5)

+en, YU ∼ MVNG+I(B,Ω).
To estimate themodel, we need to definematrixM of size

(G + I − 1) × (G + I) firstly to transform the choice model
into the utility difference form. When the alternative i is
chosen, the matrix (G × G) in Mi with the first G rows and
first G columns is an identity matrix, and the rest matrix
(I − 1) × I inMi is an identity matrix of (I − 1) size with an
extra column of − 1 added as the ith column. For example,

when the alternative i � 2 is chosen,Mi �

1 0 0 0 0
0 1 0 0 0
0 0 1 − 1 0
0 0 0 − 1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
if

G � 2 and I � 3. Next, let Yu ∼ MVNG+I− 1(
􏽥B, 􏽥Ω), where

􏽥B � MB, 􏽥Ω � MΩM′. After that, the matrix dimension is
reduced to (G + I − 1).

To integrate the multivariate OP model and MNP model
to estimate the parameters, the upper and lower threshold
vectors are defined: 􏽥ψlow � [ψlow′ , (− ∞I− 1)′] and
􏽥ψup � [ψup′ , (0I− 1)′], where both − ∞I− 1 and 0I− 1 are
(I − 1) × 1-column vectors that represent negative infinities
and zeros, respectively. +us, the likelihood function of the
ICLV model may be written as follows:

L(θ) � Pr 􏽥ψlow ≤ 􏽥u≤ 􏽥ψup􏽨 􏽩 � 􏽚
D􏽥u

fG+I− 1(􏽥u|􏽥B, 􏽥Ω)du, (6)

where Du � 􏽥u: 􏽥ψlow ≤ 􏽥u≤ 􏽥ψup􏽮 􏽯 is the integration domain
and fG+I− 1(.) is the multivariate normal density function of
dimension (G + I − 1). +e integral dimension of the above
likelihood function does not increase with the increase in the
latent variables z∗.

To further proceed, the composite marginal likelihood
(CML) approach can be used to simplify the model esti-
mation process when the full likelihood function may be
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infeasible to evaluate. �e CML estimator is the one that
maximizes the compounded probability of all pairwise
events, which obtains much easier-to-compute, lower-

dimensional marginal likelihood. In the above case, the
pairwise marginal likelihood function may be written for the
ICLV model as follows:

LCML(θ) � ∏
G− 1

g�1
∏
G

g′�g+1

Pr jg � ng, jg′ � ng′( ) × ∏
G

g�1
Pr jg � ng, i � m( ), (7)

where jg represents the index for the ordinal outcome
category for the gth ordinal variables. �en, consider Sg
(similar toM), which is a I × (G + I − 1) selection matrix to
select the gth ordered variables and all alternatives of the
choice model. Let ΦE(: ;Δ∗) be the multivariate standard

normal cumulative matrix function of dimension E and
correlation matrix Δ∗(Δ∗ � ω− 1Δ Δω− 1Δ , where ωΔ is the di-
agonal matrix of the standard deviation of the covariance
matrix Δ). �e LCML(θ) function is expanded in detail as
follows:

LCML(θ) � ∏
G− 1

g�1
∏
G

g′�g+1

Φ2 ϑg,up, ϑg′ ,up, vgg′( ) − Φ2 ϑg,up, ϑg′ ,low, vgg′( )

− Φ2 ϑg,low, ϑg′ ,up, vgg′( ) +Φ2 ϑg,low, ϑg′ ,low, vgg′( )
  

× ∏
G

g�1
ΦI ω− 1�Ωg

�ψg,up − �Bg{ }; �Ω∗g[ ] − ΦI ω− 1�Ωg
�ψg,low − �Bg{ }; �Ω∗g[ ],

(8)

where ϑg,up � (([ψ̃up]g − [B̃]g)/
�����
[Ω̃]gg
√

), ϑg,low � (([ψ̃low]g
− [B̃]g)/

�����
[Ω̃]gg
√

), vgg′ � ([Ω̃]gg′/
������������
[Ω̃]gg ∗ [Ω̃]gg′
√

), �ψg,low �

Sg([ψ
′

low, (0I− 1)′]′), �ψg,up � Sgψ̃up, �Bg � SgB̃, �Ωg � SgΩ̃S
′

g.
In equations (7) and (8), the CML function can be divided

into two components: the �rst component corresponds to each
pair of ordinal indicators (of which the integral dimension of
MVNCD is 2), while the second component corresponds to
each pair of the choice outcome and an ordinal indicator
outcome (of which the integral dimension is equal to I). Ac-
cordingly, the maximum integral dimension of the MVNCD
function in equation (8) does not exceed I. It is pivotal to solve
the multidimensional integral in the process of model esti-
mation. �e matrix-based analytic approximation method

proposed by Bhat [16] can be applied to evaluate the MVNCD
function, as detailed in a later section. At last, accounting for
the index q for individuals, the pairwisemarginal log-likelihood
function is de�ned as logLCML(θ) � ∑

Q
q�1 log LCML,q(θ).

�e pairwise estimator θCML obtained bymaximizing the
logarithm of the pairwise marginal likelihood function with
respect to the vector θ is consistent and asymptotically
normally distributed with asymptotic mean θ and co-
variance matrix given by the inverse of Godambe’s [20]
sandwich information matrix G(θ) [21]:

VCML(θ) �[G(θ)]
− 1

�[H(θ)]− 1[J(θ)][H(θ)]− 1,
(9)

Choice Model (MNP Model)

Choice Result Ordinal Outcome

Latent Variable Model

ψlow, ψup

Ordinal Indicators yChoice Utility U

Observable Variables x

Observable Variables w

Error ε

d

Error ξ

Error η

Latent Variable z∗

α

β

λ

Figure 1: MNP-based ICLV model framework.
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where H(θ) and J(θ) can be estimated straightforwardly at
the CML estimate (􏽢θCML):

􏽢H(􏽢θ) � − [􏽐
Q
q�1(z2logLCML,q(θ)/zθ zθ′)]􏽢θCML

and

􏽢J(􏽢θ) � 􏽘

Q

q�1

zlogLCML,q(θ)

zθ
􏼠 􏼡

zlogLCML,q(θ)

zθ′
􏼠 􏼡􏼢 􏼣

􏽢θCML

. (10)

2.2. Matrix-Based Analytic Approximation Method. +e
computation of the MVNCD function can be applied for the
multidimensional integral of the ICLV model above. In the
previous ICLV model of Bhat, the MACML approach in
2011 [15] is adopted. In this section, a new matrix-based
analytic approximation method proposed by Bhat in 2018
[16] can replace the MACML approach to evaluate the
MVNCD function for acquiring better estimation results
[22, 23].

+ere are five methods for approximating the MVNCD
function mentioned and summarized in the literature of
Bhat in 2018. As per Bhat, the TVBS method is recom-
mended as the evaluation approach for the MVNCD
function with the highest accuracy, and the BMEmethod has
a significant speed advantage over these evaluation ap-
proaches. Besides, as the foundation of the series of analytic
approximation methods, the ME method can also be in-
cluded in the evaluation system in this study. +us, these
three typical methods (ME, BME, and TVBS) will be selected
for elaboration below. Conceptually, the ME method is
based on univariate conditioning, while BME and TVBS are
based on a bivariate conditioning mechanism.

Let e � (e1, e2, . . . , eK) be a multivariate normally dis-
tributed random vector with zero means, variances of 1, and

a correlation matrix Σ �

1 ρ12 · · · ρ1K

ρ12 1 · · · ρ2K

⋮ ⋮ ⋱ ⋮
ρ1K ρ2K · · · 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(K> 2), where

K is the dimensionality of the MVNCD function. +e K-
dimensional MVNCD function can be expressed as follows:
ΦK(e1, e2, . . . , eK: Σ) � P(e<V) � P(e1 <V1, e2 <V2,

. . . , eK <VK). To facilitate the understanding, assume that t
represents e<V and tn represents e1 <V1, and then,
ΦK(e: Σ) � P(e<V) � P(t) � P(t1, t2, . . . , tK).

+e joint probability of the MVNCD function of the
three methods (ME, BME, and TVBS) may be expressed as
follows. All the joint probability may be written as the
product of a marginal probability and conditional proba-
bilities, and the normal distribution can be used to ap-
proximate the skew normal distribution for conditional
probabilities. In the equations below, the superscript n of t(n)

is the number of truncations; nmax is the maximum number
of truncations, and a lower nmax means a higher accuracy of
the analytic approximation method. Let N be an in-
termediate parameter used to measure K: K is equal to N for
the ME method, and K is discussed as being odd (K �

2N − 1) or even (K � 2N) for the BME (or TVBS) method.
+e expected values μk and variances σ2k of single-sided
truncations in the following equations can be obtained by
the properties of truncated multivariate normal distribution,
which is not detailed here (refer to Section 2.1 of Bhat in
2018).

2.2.1. 9e ME Method (N≥ 2).

P(t) � P t1, t2, . . . , tN( 􏼁,

� P t1( 􏼁 × 􏽙
N− 1

n�1
P tn+1| t1t2, . . . , tn( 􏼁,

≈ P t1( 􏼁 × 􏽙
N− 1

n�1
P t

(n)
n+1􏼐 􏼑,

≈ Φ V1( 􏼁 × 􏽙

N− 1

n�1
Φ

Vn+1 − μn+1
σn+1

􏼠 􏼡.

(11)

+e method relies on a single-sided truncation of
a multivariate normal distribution in which some variables
are truncated, while others are not. After a single variable is
truncated, the residual variables follow a skew normal
distribution in the ME method. P(t

(n)
n+1) is defined as the

univariate conditional probabilities of tn+1 after n times
truncations, which follows a univariate normal distribution
(being used for approximating the skew normal distribu-
tion). +us, the above P(t) can be transformed into the
product of recursive univariate normal cumulative distri-
bution function (CDF) (represented by Φ(.)). In equation
(11), K � N and nmax � N − 1.

For instance, when K � 6, the probability of multivariate
normal distribution can be written as follows: P(t1, t2,

t3, t4, t5, t6) ≈ P(t1) × P (t
(1)
2 ) × P(t

(2)
3 ) × P(t

(3)
4 ) × P(t

(4)
5 ) ×

P(t
(5)
6 ) � P(e1 <V1) × P(e

∗
2 <V2|e1 < V1) × P(e

∗
3 <V3|e

∗
2

<V2)× P(e
∗
4 <V4|e

∗
3 <V3)× P(e

∗
5 <V5|e

∗
4 <V4) × P(e

∗
6 <

V6| e
∗
5 <V5), where e∗k follows the skew normal distribution

after (k − 1) times truncations. +ereinto, t2 was truncated
once and P(t

(1)
2 ) � P(e∗2 <V2|e1 <V1) ≈ Φ((V2 − μ2)/σ2).

z1 � e1|e1 <V1 is defined, and it can be deduced that the
expected values μ2 � ρ12E(z1) and variances
σ22 � ρ212Var(z1) + 1 − ρ212, where E(z1) � μ1 + σ1λ1 � λ1,
Var(z1) � σ21(1 + λ1V1 − λ21) � 1 + λ1V1 − λ21, and
λ1 � − (ϕ(V1))/Φ(V1). Similar to the calculation principle
of Φ((V2 − μ2)/σ2), Φ((Vn+1 − μn+1)/σn+1) in equation (11)
can be calculated by iteratively updating the expected value
and covariance matrix. In the equation above, the maximum
number of truncations nmax is 5.

2.2.2. 9e Bivariate ME (BME) Method (N≥ 2). When K �

2N is even,
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P(t) � P t1, t2, . . . , t2N( 􏼁,

� P t1, t2( 􏼁 × 􏽙
N− 1

n�1
P t2n+1, t2n+2| t1, t2, . . . , t2n( 􏼁,

≈ P t1, t2( 􏼁 × 􏽙
N− 1

n�1
P t

(2n)
2n+1, t

(2n)
2n+2􏼐 􏼑,

≈ Φ2 V1, V2, ρ12( 􏼁 × 􏽙
N− 1

n�1
Φ2

V2n+1 − μ2n+1
σ2n+1

,
V2n+2 − μ2n+2

σ2n+2
, ρ∗2n+1,2n+2􏼠 􏼡.

(12)

When K � 2N − 1 is odd,

P(t) � P t1, t2, . . . , t2N− 1( 􏼁,

� P t1, t2( 􏼁 × 􏽙
N− 2

n�1
P t2n+1, t2n+2| t1, t2, . . . , t2n( 􏼁 × P t2N− 1| t1, t2, . . . , t2N− 2( 􏼁,

≈ P t1, t2( 􏼁 × 􏽙
N− 2

n�1
P t

(2n)
2n+1, t

(2n)
2n+2􏼐 􏼑⎛⎝ ⎞⎠ × P t

(2N− 2)
2N− 1􏼐 􏼑,

≈ Φ2 V1, V2, ρ12( 􏼁 × 􏽙
N− 2

n�1
Φ2

V2n+1 − μ2n+1

σ2n+1
,
V2n+2 − μ2n+2

σ2n+2
, ρ∗2n+1,2n+2􏼠 􏼡 ×Φ

V2N− 1 − μ2N− 1

σ2N− 1
􏼠 􏼡.

(13)

+e BME method is in accordance with a bivariate
truncation scheme, assuming that the marginal distribution
of the third and fourth untruncated variables, given the first
two are truncated, remains bivariate normal, and so on. In
the equation above, similar to theMEmethod, P(t

(2n)
2n+1, t

(2n)
2n+2)

uses the bivariate normal distribution to approximate the
bivariate skew normal distribution. +e conditional prob-
ability P(t) of this method for MVNCD function is
a product of bivariate normal CDF Φ2(.) when the di-
mension is even and a product of Φ2(.) and Φ(.) when the
dimension is odd. Here, ρ∗2n+1,2n+2 is the updated correlation
coefficient between error terms after bivariate truncation,
and the calculation principle of the expected values μk and
variances σ2k is similar to theMEmethod. As the extension of
the ME method, the BMEmethod truncates two dimensions

each time and nmax times in total (also does the TVBS
method), where nmax � N − 1 in equations (12) and (13).

Similarly, when K � 6, the P(t) using the BME method
can be expressed as follows: P(t1, t2, t3, t4, t5, t6)

≈ P(t1, t2) × P(t
(2)
3 , t

(2)
4 ) × P(t

(4)
5 , t

(4)
6 ). +ereinto, t3 and

t4are truncated once (n � 1), and t5 and t6 are truncated
twice (n � 2). +e maximum number of truncations nmax
is 2, which is smaller than the nmax of the ME method.
+is indicates that the accuracy of the bivariate trun-
cation scheme is better than the univariate truncation
scheme.

2.2.3. 9e Two-Variate Bivariate Screening (TVBS) Method.
When K � 2N(N≥ 2) is even,&ecmath;
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P(t) � P t1, t2, . . . , t2N( 􏼁,

� P t1, t2, t3, t4( 􏼁 × 􏽙
N− 2

n�1

P t2n+1, t2n+2, t2n+3, t2n+4| t1, t2, . . . , t2n( 􏼁

P t2n+1, t2n+2|t1, t2, . . . , t2n( 􏼁
,

≈ P t1, t2, t3, t4( 􏼁 × 􏽙
N− 2

n�1

P t
(2n)
2n+1, t

(2n)
2n+2, t

(2n)
2n+3, t

(2n)
2n+4􏼐 􏼑

P t
(2n)
2n+1, t

(2n)
2n+2􏼐 􏼑

,

� P t1, t2, t3( 􏼁 × 􏽙
N− 2

n�1

P t
(2n)
2n+1, t

(2n)
2n+2, t

(2n)
2n+3􏼐 􏼑

P t
(2n)
2n+1􏼐 􏼑

⎛⎝ ⎞⎠ ×
P t

(2N− 2)
2N− 1 , t

(2N− 2)
2N􏼐 􏼑

P t
(2N− 2)
2N− 1􏼐 􏼑

,

≈ Φ3 V1, V2, V3: 0,Σ[1: 3, 1: 3]( 􏼁 × 􏽙
N− 2

n�1

Φ3 V2n+1, V2n+2, V2n+3: 􏽥μ, 􏽥Ω􏼐 􏼑

Φ V2n+1 − μ2n+1( 􏼁/σ2n+1( 􏼁

×
Φ2 V2N− 1 − μ2N− 1( 􏼁/σ2N− 1( 􏼁, V2N − μ2N( 􏼁/σ2N( 􏼁, ρ∗2N− 1,2N􏼐 􏼑

Φ V2N− 1 − μ2N− 1( 􏼁/σ2N− 1( 􏼁
.

(14)

When K � 2N − 1(N≥ 3) is odd,

P(t) � P t1, t2, . . . , t2N− 1( 􏼁,

� P t1, t2, t3, t4( 􏼁 × 􏽙

N− 3

n�1

P t2n+1, t2n+2, t2n+3, t2n+4| t1, t2, . . . , t2n( 􏼁

P t2n+1, t2n+2, t1, t2, . . . , t2n( 􏼁
⎛⎝ ⎞⎠ ×

P t2N− 3, t2N− 2, t2N− 1|t1, t2, . . . , t2N− 4( 􏼁

P t2N− 3, t2N− 2|t1, t2, . . . , t2N− 4( 􏼁
,

≈ P t1, t2, t3, t4( 􏼁 × 􏽙
N− 2

n�1

P t
(2n)
2n+1, t

(2n)
2n+2, t

(2n)
2n+3, t

(2n)
2n+4􏼐 􏼑

P t
(2n)
2n+1, t

(2n)
2n+2􏼐 􏼑

⎛⎝ ⎞⎠ ×
P t

(2N− 4)
2N− 3 , t

(2N− 4)
2N− 2 , t

(2N− 4)
2N− 1􏼐 􏼑

P t
(2N− 4)
2N− 3 , t

(2N− 4)
2N− 2􏼐 􏼑

,

� P t1, t2, t3( 􏼁 × 􏽙
N− 3

n�1

P t
(2n)
2n+1, t

(2n)
2n+2, t

(2n)
2n+3􏼐 􏼑

P t
(2n)
2n+1􏼐 􏼑

,

≈ Φ3 V1, V2, V3: 0,Σ[1: 3, 1: 3]( 􏼁 × 􏽙
N− 2

n�1

Φ3 V2n+1, V2n+2, V2n+3: 􏽥μ, 􏽥Ω􏼐 􏼑

Φ V2n+1 − μ2n+1( 􏼁/σ2n+1( 􏼁
.

(15)

Similarly, the TVBS method combines the bivariate
truncation scheme, in which the bivariate distribution is
assumed to be rectangle-screened normal (RSN) distribution
[24].+e corresponding conditional CDF at each step can be
expressed as a ratio of a four-variate normal CDF Φ4(.) and
a two-variate normal CDF Φ2(.). Since the calculation of
four-variate normal CDF is time-consuming, the TVBS
method adopts an approximation method by taking the
trivariate CDF of the first three variates (P123). Given the
first three variables, the CDF of the skew normal distribution
of the fourth variable is denoted as P4|123. Accordingly,
a four-variate normal CDF is obtained: P1234 � P123 ∗
P4|123 � P123 ∗P34|123/P3|12. Further, the MVNCD function
is composed of the product of Φ3(.) (denotes trivariate

normal CDF) andΦ3(.)/Φ(.) when K is an odd number, and
the product of Φ3(.), Φ3(.)/Φ(.), and Φ2(.)/Φ(.) when K is
odd. In equations (14) and (15), 􏽥μ and 􏽥Ω represent the
expected value and covariance matrix updated after bivariate
truncation, respectively. Additionally, nmax � N − 1 (K is
even) and nmax � N − 2 (K is odd) for the TVBS method.

When K � 6, the P(t) using the TVBS method can be
expressed as follows: P(t1, t2, t3, t4, t5, t6) ≈ P(t1, t2, t3)×

P(t
(2)
3 , t

(2)
4 , t

(2)
5 )/P(t

(2)
3 ) × P(t

(4)
5 , t

(4)
6 )/P(t

(4)
5 ), where N � 3

and nmax � 2. Here, t3, t4, and t5 conducted one truncation
(n � 1) in P(t

(2)
3 , t

(2)
4 , t

(2)
5 )/P(t

(2)
3 ), while t5 and t6 conducted

two truncations (n � 2) in P(t
(4)
5 , t

(4)
6 )/P(t

(4)
5 ).

Furthermore, the matrix-based analytic approximation
method applies an LDLT decomposition method for the
correlation matrix followed by rank 1 (ME) or rank 2 (BME
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and method) updates of the factorization. +e imple-
mentation is much easier to code and more computationally
efficient.

As we know from the above discussion, the multidi-
mensional integral for the analytical approximation method
of MNVCD can be completely converted into integrals with
no more than three dimensions. At present, the CDF of
bivariate normal (BVN) distribution and trivariate normal
(TVN) distribution is generally realized by numerical
methods based on the Legendre–Gauss quadrature integral
approximation. +is numerical integration method adopted
in most existing packages is relatively old with low levels of
accuracy and speed. In this study, referring to the study of
Genz in 2004 [25], a new numerical integration method is
used to replace the original method. For BVN probabilities,
we adopted the algorithm proposed by Drezner and
Wesolowsky [26] with a higher-order O(x4) Taylor ex-
pansion; for TVN probabilities, the second Plackett formula
method studied by Gassmann [27] is applied (not be detailed
here). Accordingly, after the above algorithms are applied
along with matrix operations, the performance of both
functions is improved in terms of accuracy and speed.

2.3. Automatic Differentiation (AD). Automatic differenti-
ation (AD) is a chain rule-based technique for evaluating the
derivatives with respect to the input variables of functions
defined by a computer program [28]. +ere are two different
AD strategies: the forward mode and the reverse mode. +e
advantage of the reverse mode over the forwardmode will be
highlighted when the number of parameters is large, which is
more suitable for the MLE procedure.

For a simple example, consider a binary probit model:
U � a + bx + ε, y � I(U> 0), and ε ∼ N[0, 1]. +e loga-
rithmic likelihood function of the model can be written as
LL(θ) � LL(a, b) � ln Φ[(2y − 1)(a + bx)]􏼈 􏼉. In the reverse
mode of AD, the derivative is computed with respect to each
sub-expression recursively in the chain rule:

zLL

zθ
�

zLL

zv1

zv1

zθ

�
zy
zv2

zv2

zv1
􏼠 􏼡

zv1

zθ

�
zy
zv3

zv3

zv2
􏼠 􏼡

zv2

zv1
􏼠 􏼡

zv1

zθ

� . . . .

(16)

+e derivative of LL with respect to vi is defined as
vi � zLL/zvi, and the reverse accumulation with computa-
tion graph is illustrated in Figure 2. In this figure, the partial

derivatives are estimated as follows: zLL/za � a � (2y

− 1)∗φ[(2y − 1)∗ (a + bx)]/Φ[(2y − 1)∗ (a + bx)] and
zLL/zb � b � x∗ (2y − 1)∗φ[(2y − 1)∗ (a + bx)]/Φ[(2y −

1) ∗ (a + bx)]. +ereinto, φ(.) has a closed form, and Φ(.)

can be approximated by the numerical integration method.
TensorFlow (https://www.tensorflow.org/), an open-

source framework for large-scale distributed numerical
computation, is widely applied in the areas of machine
learning and deep neural network during early explorations.
+e main feature of the TensorFlow framework is based on
a data flow graph and uses tensor as the core component to
denote data. +e framework builds a gradient graph cor-
responding to the original computation graph by backward
propagation and chain rule of derivative values, which is
more mature and flexible than other programming modes in
the application of automatic gradient. Due to the advantages
of TensorFlow, we applied it for developing econometric
models in this study.

AD has obvious advantages when it is applied to the
MLE of parameters in econometric models. Using this
technique, modelers do not need to derive and code the
complex analytic gradient expression of the log-likelihood
function, which greatly reduces the workload. When the
CML approach is used to estimate model parameters, the
Hessian matrix and Jacobian matrix of estimated parameters
need to be calculated. +e errors and complexity of the
numerical differentiation method increase when second-
order derivatives are computed, and the speed is low in
calculating partial derivatives of a function with respect to
many inputs. +erefore, the use of automatic differentiation
instead of numerical differentiation can aid in attaining
more accurate estimation results with less computational
time.

3. Simulation Experiments

To evaluate the ability of the proposed ICLV model to re-
cover parameters from finite samples, it is necessary to
conduct Monte Carlo simulation experiments. In the study
of Bhat [10], four ordered indicator variables and three
alternatives are concerned. In this section, referring to Bhat’s
experiment and further increasing the number of alterna-
tives, we applied the LDLT matrix-based analytic approxi-
mation method for a higher integral dimension in
simulation experiments.

Here, we design simulation experiments and discuss the
identifiability of themodel system based on two assumptions
(excluding those mentioned in the last section): (1) the
number of indicators L will not be less than the number of
latent variables G (i.e., each latent variable at least has one
indicator, which only loads on that variable but does not
load on any other latent variable); (2) there is no common
variable between each row of x matrix and the w vector. To
explain the model more clearly and concisely, the following
ICLV model is designed as an example. Consider that the
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ICLV model is composed of four latent variables z∗l , four
ordered indicator variables yg, and three alternatives’ util-
ities Ui, where the structural equation model of the latent
variables in equation (1) can be represented as follows:

z∗1

z∗2

z∗3

z∗4




�

α1 0.0

0.0 α3

α2 0.0 0.0

0.0 α4 0.0
α5 0.0

0.0 α6

0.0 0.0 0.0

0.0 0.0 α7





w1

w2

w3

w4

w5





+

η1
η2
η3
η4




. (17)

Assume that each ordered variable has only one
threshold ψg (i.e., (ψg � ψg,2)), and the four-variate ordered
probit model for the latent variable measurement model of
equation (2) is as follows:

y1

y2
y3

y4
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z∗3

z∗4
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+

ξ1
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(18)

�en, the choice model with three alternatives of
equation (3) can be speci�ed as follows:

U1

U2

U3
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+
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, (19)

where tti and tci are the exogenous explanatory variables in
the choice model.
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Figure 2: Example of reverse-mode AD in the computation graph.
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In the above model, the correlation matrix Σ of the
multivariate ordered probit model is fixed as an identity
matrix, and the correlation matrix Γ of latent variables and
the covariance matrix Λ of the choice model can be defined
as follows:

Σ �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γ �

1 r12 r13 r14

r12 1 r23 r24

r13 r23 1 r34

r14 r24 r34 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λ �

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(20)

+ere are (L∗ (L − 1)/2) parameters in Γ and (I∗ (I −

1)/2 − 1) parameters in Λ that need to be estimated. +e
covariance matrixΩ of the whole model after considering z∗
can be expressed as follows:

Ω �
dΓd′ + Σ dΓλ′

λΓd′ λΓλ′ + Λ
⎡⎣ ⎤⎦

�

d
2
1 + 1 d1d2r12 d1d3r13 0 d1λ1 + d1λ3r13 d1λ2r12 + d1λ4r14

λ21 + λ23 + 2λ1λ3r13 + σ22 d2d4r24 d3d4r14 0 d2λ1r12 + d2λ3r23 d2λ2 + d2λ4r24
λ1λ2r12 + λ1λ4r14 + λ2λ3r23 + λ3λ4r34 + σ23 d

2
3 + 1 d3d4r24 0 d3λ1r13 + d3λ3 d3λ2r23 + d3λ4r34

λ22 + λ24 + 2λ2λ4r24 + σ33 d2d3r23 d3d4r34 0 d4λ1r14 + d4λ3r34 d4λ2r24 + d4λ4
d
2
2 + 1 · d

2
4 + 1 σ11 σ12 σ13

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

Applying the CML approach of in equations (7) and (8),
the number of identifiable parameters in the Ω is 16
(6 + 8+2) in the above sample. +ereinto, G∗ (G − 1)/2
parameters of the matrix dΓ d′ + Σ can be identified (the
covariance matrix needs to normalize the diagonal elements
to 1 in advance), G∗ (I − 1) parameters of dΓλ′ can be
identified where (I − 1) parameters can be identified in each
row at most, and (I∗ (I − 1)/2 − 1) parameters can be
identified in the matrix λΓλ′ + Λ as mentioned in the section
of methodology.

As shown in Figure 3, we conduct the simulation ex-
periments of two models: one contains three alternatives of
the choice model and the other contains four alternatives,
with the same settings in the latent variable structural
equation model and measurement equation model in which
r12, r14, r23, and r34 are fixed at the value of zero. For model 1
of three alternatives, the simulation experiment is un-
dertaken 50 times for a sample size of 10,000 with different
realizations of YU vector to generate 50 different datasets.
+e estimator is then applied to each dataset to estimate data
specific values for the 31 parameters, and the numerical
integration method for calculating the CDF of TVN dis-
tribution is used for the MVNCD function; for model 2 of

four alternatives, we perform the above data generation
progress once with a large sample size of 100,000 and then
carry out the Monte Carlo simulation experiments on the
same dataset using ME, BME, and TVBS methods, re-
spectively. +e analytic approximation method of four-
variate normal CDF P(t1, t2, t3, t4) can be written as follows:
P(t1) × P(t

(1)
2 ) × P(t

(2)
3 ) × P(t

(3)
4 ) for the ME method,

P(t1, t2) × P(t
(2)
3 , t

(2)
4 ) for the BME method, and

P(t1, t2, t3) × P(t
(2)
3 , t

(2)
4 )/P(t

(2)
3 ) for the TVBS method. +e

37 parameters can be estimated in the ICLV model.

4. Model Estimation Results

4.1. 9e MVNCD Function Evaluation Results. To evaluate
the accuracy of computing the MVNCD function for dif-
ferent dimensions, we generate 1000 groups of random
numbers, which consist of four sets of 250 MVNCD eval-
uations each, corresponding to (a) low correlations, high
MVNCD values, (b) low correlations, low MVNCD values,
(c) high correlations, high MVNCD values, and (d) high
correlations, low MVNCD values. On the one hand, to
generate the datasets of low and high MVNCD values, the
upper integration limits can be drawn from [0, +

��
K

√
] for the
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cases of high MVNCD values, while it can be drawn from
[−

��
K

√
/2,+

��
K

√
] for the cases of low MVNCD values. On the

other hand, to generate the datasets of low correlations and
high correlations, the positive-de�nite covariance matrices C
can be calculated by C � RR′ + δ × diag(ru), where R rep-
resents a matrix ofK ×K random univariate standard normal
variates and diag(ru) is a diagonal matrix with the K × 1
vector ru of standard uniform random variates on the di-
agonal. δ is a scalar to determine the relative magnitude of the
diagonal elements relative to the non-diagonal elements. We
can use the two di�erent values of δ to distinguish the matrix
with low correlations (δ � 10) and high correlations (δ � 0).

�eMVNCDevaluation results from the di�erentmethods
are presented in Tables 1 and 2. Here, we use the Gaussian
quadrature integral based on 400 nodes as the exact value when
K≤ 3 and use the value calculated by the CDFMVNe function
of the Gauss (up to an accuracy of 1e − 6) as the exact value
when K> 3. Meanwhile, the mean absolute error (MAE) and
the mean absolute percentage error (MAPE) are chosen to
evaluate the accuracy level of the MVNCD evaluation results.
�e “%MAE> 0.005” represents the percentage in which the
MAE was over 0.005, and “%MAPE>2” represents the per-
centage in which the MAPE was over 2.

From Table 1, the following �ndings can be obtained.
Compared with the calculated results by the cdfBvn and
cdfTvn functions in the GAUSS (https://www.aptech.com/
wp-content/uploads/2016/05/GAUSS_16_PDF_UG.pdf),
the accuracy levels (shown as the MAE) of BVN and TVN
probability (based on the improvement in Section 2.3)
calculated with the assistance of TensorFlow have been
improved from e− 10 to e− 15 and from e− 10 to e− 11, re-
spectively, with a slight loss in time. When the integration
dimension K is 2 or 3, as shown in Table 1, the accuracy level
of the MAE for the ME and BMEmethods is e− 3, which is far
lower than that of bivariate and trivariate normal distri-
bution function calculated by numerical integration. Similar

conclusion can be obtained by choosing the MAPE as an
index. �erefore, numerical integration should be adopted
to calculate BVN or TVN values.

When K≥ 4, we employed the LDLT matrix-based an-
alytic approximation method for the evaluation on Gauss
and TensorFlow platforms. From Table 2, when the number
of dimensions “K” increases, the performance of the three
methods can be indicated by “MAE,” “MAPE,” “%
MAE> 0.005,” and “%MAPE> 2.” �e TVBS method is
taken as an example, and there is a variation as the di-
mension “K” goes from 4 to 15, with “MAE” reducing from
0.00117 to 0.00037, “%MAE> 0.005” reducing from 5.8% to
0.1%, and “%MAPE> 2” increasing from 8.4% to 32.0%. As
shown in Figure 4(a), “%MAE> 0.005” gradually decreases
and “%MAPE> 2” gradually increases with the increase in
dimension of all three methods. To explain the intrinsic
reason, we checked the data and found that the overall
average value of 1000 MVNCD values calculated by the
method of generating random number would decrease with
the increase in dimension. Due to the lower MVNCD values
in the higher dimension, the relative error (MAPE) may
become larger with the higher dimension. Meanwhile, as
expected, with the increase in K, the time required by the
analytic approximation gradually increased for all the
methods. In addition, when we compare the three analytical
approximation methods with each other at the same di-
mension, it can be found that the time consumed by the
BME method is the shortest. In general, the time consumed
by BME is less than half of that by the ME method and that
by the TVBS method falls in the middle. Compared with the
ME method, the error of the BME and TVBS methods is
relatively low, as both of them are based on the bivariate
truncation scheme. Overall, the TVBS is the best in terms of
accuracy in evaluating individual MVNCD functions. �ese
�ndings are consistent with Bhat’s study (2018) and mu-
tually corroborate.

U4 = –0.8 – 1.0 ∗ tt4 – 0.8 ∗ tc4 + 0.2 ∗ z2∗ + 0.5 ∗ z3∗ + ε4

+ ε1– 1.0 ∗ tt1 – 0.8 ∗ tc1U1 =

+ ε1– 1.0 ∗ tt1 – 0.8 ∗ tc1U1 =
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Figure 3: Parameter settings of the ICLV model (for three and four alternatives).
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Furthermore, there are some findings by comparing the
calculation error and calculation time of the different an-
alytic approximation methods (i.e., ME, BME, and TVBS) in
Gauss and TensorFlow. In terms of calculation accuracy, it
can be seen in Table 2 that “MAE,” “MAPE,” “%
MAE> 0.005,” and “%MAPE> 2” of the three analytic ap-
proximation methods are basically the same. +erefore,
although the new method improves accuracy levels of BVN
and TVN probability in TensorFlow, its contribution to
accuracy improvement is limited for high-dimensional
analytic approximation; in terms of calculation time, it can
be seen in Table 2 and Figure 4(b) that under the same
dimension and algorithm, the calculation speed of

TensorFlow platform is much higher than that of Gauss
platform, and the average running time of Gauss is about 5-6
times that of TensorFlow. As shown in Table 1, there is no
significant difference in the calculation time of BVN and
TVN values on the two platforms. +us, the declines in
calculation time are mainly due to the obvious time ad-
vantage of TensorFlow with tensor data structure and graph
computation technique.

4.2. Simulation Results for ICLVModel. Following Section 3,
the two ICLV models are designed to evaluate the ability for
recovering the model parameters. For the three-alternative

Table 2: MVNCD evaluation results for the different analytic approximation methods.

Dim Measure
ME BME TVBS

Gauss TF Gauss TF Gauss TF

K� 4

MAE 0.00226 0.00226 0.00152 0.00152 0.00117 0.00117
MAPE 0.59 0.59 0.40 0.40 0.26 0.26

%MAE> 0.005 15.2 15.2 9.8 9.8 5.8 5.8
%MAPE> 2 18.0 18.0 12.8 12.8 8.4 8.4
Time (s) 0.052 0.010 0.033 0.004 0.039 0.007

K� 5

MAE 0.00171 0.00171 0.00142 0.00142 0.00108 0.00108
MAPE 0.54 0.54 0.44 0.44 0.33 0.33

%MAE> 0.005 9.2 9.2 7.0 7.0 4.8 4.8
%MAPE> 2 18.8 18.8 15.4 15.4 13.0 13.0
Time (s) 0.077 0.016 0.060 0.007 0.065 0.011

K� 7

MAE 0.00120 0.00120 0.00104 0.00104 0.00093 0.00093
MAPE 0.45 0.45 0.38 0.38 0.33 0.33

%MAE> 0.005 5.9 5.9 4.7 4.7 3.6 3.6
%MAPE> 2 21.5 21.5 20.2 20.2 18.3 18.3
Time (s) 0.141 0.031 0.097 0.014 0.105 0.021

K� 10

MAE 0.00064 0.00064 0.00057 0.00057 0.00054 0.00054
MAPE 0.32 0.32 0.29 0.29 0.29 0.29

%MAE> 0.005 1.6 1.6 1.2 1.2 1.1 1.1
%MAPE> 2 25.0 25.0 23.1 23.1 22.6 22.6
Time (s) 0.258 0.061 0.156 0.023 0.182 0.033

K� 15

MAE 0.00041 0.00041 0.00040 0.00040 0.00037 0.00037
MAPE 0.29 0.29 0.28 0.28 0.25 0.25

%MAE> 0.005 0.2 0.2 0.2 0.2 0.1 0.1
%MAPE> 2 34.1 34.1 32.6 32.6 32.0 32.0
Time (s) 0.558 0.146 0.317 0.058 0.352 0.076

Table 1: BVN and TVN evaluation results for the different methods.

Dim Measure
Numerical integration methods Analytic approximation methods

(TensorFlow)
Gauss TF ME BME TVBS

K� 2 (BVN)

MAE 4.8
∗
e − 10 1.9∗e − 15 0.0037 — —

%MAE> 0.005 0.0 0.0 18.8 — —
MAPE 8.6∗e − 8 1.3∗e − 12 1.28 — —

%MAPE> 2 0.0 0.0 15.2 — —
Time (s) 0.001 0.002 0.003 — —

K� 3 (TVN)

MAE 8.8∗e − 10 6.1∗e − 11 0.0027 0.0018 —
%MAE> 0.005 0.0 0.0 18.1 12.4 —

MAPE 1.9∗e − 7 2.9∗e − 8 1.34 1.00 —
%MAPE> 2 0.0 0.0 16.7 11.0 —
Time (s) 0.005 0.005 0.006 0.003 —

Note. “—“ indicates that the corresponding analytic approximation methods cannot calculate the values of BVN or TVN.
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ICLV model with the maximum integral dimension being 3,
the performance of the improved trivariate normal integral
approach in estimating the parameters and the standard
errors of the ICLV model is evaluated in Table 3. �e
evaluation system can be adopted as follows:

(1) For the parameter estimates, the mean estimate for
each model parameter across the 50 datasets can be
obtained. �en, the absolute bias of the estimator is
computed as Abs.Bias � |(estimate value− true value)|
and the absolute percentage bias as APB �
|(estimate value − true value)/ true value| × 100.

(2) For the standard error estimates, the standard de-
viation of each estimated parameter across the 50
datasets can be computed, and this is labeled as the
�nite sample standard deviation or FSSD (essentially,
this is the empirical standard error); also, we can
compute the mean standard deviation for each
model parameter across the 50 datasets and denote
this as the asymptotic standard error or ASE (the
standard error here is computed using the Godambe
(sandwich) matrix at convergence for a theoretical
approximation to the FSSD). Next, to evaluate the
accuracy of the ASE formula for the �nite sample size
used, the relative e¨ciency of the estimator is
computed as relative efficiency � ASE/FSSD. As per
Bhat [10], the closeness between ASE and FSEE may
be examined as captured by the 0.75–1.25 range for
the relative e¨ciency value.

�e following aspects can be observed in Table 3 (the
experiment is repeated 50 times with a sample size of
10,000). Firstly, the overall mean value across parameters of
APB is 3.7940%, with the individual parameter APB ranging
from 0.1% to 19%, which are close to those in Bhat. Besides,
the simulation errors are also similar and therefore

considered reasonable and acceptable; secondly, the mean
APB values for the d vector (9.0%), λ vector (4.3%), and r in
Γ matrix (9.0%) are relatively higher than the overall mean
APB.�is indicates that the coe¨cients on the latent variable
vector z∗ in themeasurement equation and the choice model
are somewhat more di¨cult to recover than other param-
eters. It is expected, since these elements enter into the
covariance matrix Ω in a nonlinear fashion as shown in
equation (6), and Ω itself enters into the composite likeli-
hood function (equation (8)) in a complex manner. Lastly, as
for simulation error estimates, the overall mean value of
relative e¨ciency (RE) across the parameters is 1.1190 (and
the RE of almost all parameters is between 0.75 and 1.25),
which suggests that the FSSE and ASE values are close to
each other and the asymptotic formula is performing well in
estimating the �nite sample standard errors.

�e simulation results (with a sample size of 100,000) of
the four-alternative ICLV model estimated by the three
analytical approximation methods, namely the ME, BME,
and TVBS, are presented in Tables 4 –6, respectively. In these
tables, Abs.Bias � |estimate value − true value| and
APB � |(estimate value − true value)/truevalue| × 100. As
shown in the experimental results, it is ensured that all the
identi�able parameters can be signi�cantly estimated and
seemingly consistent with their true values. We can see that
the values of absolute percentage bias (APB) fall in the
ranges of 0–15% in the three tables, of which the APB of four
parameters exceeds 10% (i.e., α3, α4, d2, and σ34). It is
a similar �nding showing that the parameter estimators
related to z∗ are less consistent. Additionally, in these three
tables (also shown in Figure 5), it can be observed that
among the three methods (i.e., ME, BME, and TVBS), the
overall mean value of absolute bias is 0.0266, 0.0262, and
0.0259, and the average value of APB is 4.269%, 4.240%, and
4.204%, respectively. It is noticed that the values of these two
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indicators slightly decrease. On the other hand, the standard
errors of all methods are about 0.037. It shows that the
standard errors of the four-alternative ICLV model seem
reasonable and acceptable. Overall, we have validated the
ability for recovering parameters of these three LDLT-based
analytic approximation methods for the ICLV model, and
we can conclude that TVBS is superior to BME and BME is
superior to ME. +ese findings are consistent with the
evaluation results with respect to individual MVNCD
functions. Although model parameters can be estimated
significantly with a sample of large size, there are issues of
empirical identification, namely whether the data can

support the model specification. If the empirical data cannot
allow for significantly estimating all the theoretically iden-
tifiable parameters, some parameters may be fixed and only
parameters of particular interest need to be estimated.

Furthermore, more attempts were made to discuss the
operational efficiency of models using the automatic dif-
ferential technique. +e convergence time of the three-al-
ternative ICLVmodel in Table 3 has a median value of about
8 minutes for the case of 10,000 observations, which is much
shorter than that of the literature of Bhat in 2014 (about one
hour for the case of 1000 observations). It can also be
inferred that the computational time of the improved four-

Table 3: Simulation results for the three-alternative ICLV model.

Parm. True value
Parameter estimates Standard error estimates

Mean est. Abs. bias APB (%) ASE FSSD R. eff
α1 0.5 0.5300 0.0300 5.9924 0.0961 0.0807 1.1908
α2 0.6 0.6411 0.0411 6.8506 0.1177 0.1003 1.1730
α3 0.5 0.5022 0.0022 0.4432 0.2037 0.1493 1.3648
α4 0.6 0.6017 0.0017 0.2775 0.2451 0.1845 1.3288
α5 0.3 0.3125 0.0125 4.1630 0.0408 0.0466 0.8740
α6 0.3 0.3027 0.0027 0.9119 0.1336 0.1118 1.1950
α7 − 0.4 − 0.4061 0.0061 1.5186 0.1773 0.1455 1.2182
s1 1 — — — — — —
r12 0 — — — — — —
r13 0.6 0.6855 0.0855 14.2485 0.2567 0.2516 1.0206
r14 0 — — — — — —
s2 1 — — — — — —
r23 0 — — — — — —
r24 0.6 0.6230 0.0230 3.8411 0.4800 0.3951 1.2149
s3 1 — — — — — —
r34 0 — — — — — —
s4 1 — — — — — —
δ1 − 1 − 1.0013 0.0013 0.1312 0.0366 0.0334 1.0974
δ2 − 1 − 1.0244 0.0244 2.4418 0.0680 0.0638 1.0664
δ3 − 1 − 1.0031 0.0031 0.3117 0.0441 0.0453 0.9720
δ4 − 1 − 1.0665 0.0665 6.6513 0.1629 0.1609 1.0124
d1 0.3 0.2880 0.0120 3.9911 0.0508 0.0441 1.1524
d2 0.4 0.4459 0.0459 11.4847 0.1550 0.1355 1.1441
d3 0.5 0.4924 0.0076 1.5296 0.0754 0.0832 0.9064
d4 0.6 0.7157 0.1157 19.2758 0.3046 0.2619 1.1633
ψ1 1.5 1.4971 0.0030 0.1967 0.0275 0.0265 1.0375
ψ2 1.5 1.5354 0.0354 2.3578 0.0873 0.0823 1.0601
ψ3 1.5 1.4949 0.0051 0.3431 0.0504 0.0549 0.9191
ψ4 1.5 1.6141 0.1141 7.6054 0.2346 0.2114 1.1101
β2 0.5 0.4863 0.0137 2.7409 0.0954 0.0888 1.0741
β3 − 1 − 0.9972 0.0028 0.2784 0.1360 0.1530 0.8893
βtt − 1 − 0.9980 0.0020 0.1971 0.0419 0.0434 0.9667
βtc − 0.8 − 0.7978 0.0022 0.2772 0.0338 0.0343 0.9852
λ1 0.5 0.4807 0.0193 3.8694 0.0885 0.0811 1.0907
λ2 0.2 0.2129 0.0129 6.4477 0.0661 0.0517 1.2771
λ3 0.5 0.4929 0.0071 1.4146 0.0718 0.0723 0.9929
λ4 0.2 0.2112 0.0112 5.6136 0.0622 0.0543 1.1441
σ11 1 — — — — — —
σ12 0 — — — — — —
σ13 0 — — — — — —
σ22 1 — — — — — —
σ23 0.6 0.6065 0.0065 1.0794 0.1374 0.1196 1.1483
σ33 1.36 1.3753 0.0153 1.1286 0.2742 0.2571 1.0668
Overall mean value 0.0236 3.7940 0.1308 0.1169 1.1190
Note: “--” indicates that the corresponding parameter is fixed at the true value.
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alternative ICLV model based on TensorFlow is reduced.
+is can be attributed to two factors: one is that the LDLT-
based analytic approximation method (instead of the
MACML approach) can shorten the calculation time of the
ICLV model, as mentioned in Bhat. +e improvement on
bivariate normal CDF and trivariate normal CDF also fa-
cilitates this process; the other is based on the time advantage

of TensorFlow in calculating tensor and multidimensional
arrays. In addition, in the absence of coding the analytic
gradient artificially, the convergence speed of the model can
be improved using automatic differentiation to obtain the
gradient of the likelihood function. For the four-alternative
ICLV model with a sample size of 100,000, the convergence
times of three analytical approximation methods are

Table 4: Simulation results for the four-alternative ICLV model with the ME method.

Parm. True value Estimate Abs. bias APB (%) Std. err. t-test P value
α1 0.5 0.4821 0.0179 3.5806 0.0175 27.4871 ≤ 0.001
α2 0.6 0.5734 0.0266 4.4345 0.0210 27.2569 ≤ 0.001
α3 0.5 0.5623 0.0623 12.4582 0.0545 10.3235 ≤ 0.001
α4 0.6 0.6659 0.0659 10.9858 0.0645 10.3299 ≤ 0.001
α5 0.3 0.3039 0.0039 1.2833 0.0103 29.4528 ≤ 0.001
α6 0.3 0.3059 0.0059 1.9693 0.0306 10.0031 ≤ 0.001
α7 − 0.4 − 0.4099 0.0099 2.4817 0.0408 − 10.0422 ≤ 0.001
s1 1 — — — — — —
r12 0 — — — — — —
r13 0.6 0.5982 0.0018 0.3082 0.0460 13.0071 ≤ 0.001
r14 0 — — — — — —
s2 1 — — — — — —
r23 0 — — — — — —
r24 0.6 0.6475 0.0475 7.9242 0.1007 6.4324 ≤ 0.001
s3 1 — — — — — —
r34 0 — — — — — —
s4 1 — — — — — —
δ1 − 1 − 1.0068 0.0068 0.6818 0.0115 − 87.6878 ≤ 0.001
δ2 − 1 − 0.9671 0.0329 3.2933 0.0161 − 59.9248 ≤ 0.001
δ3 − 1 − 1.0081 0.0081 0.8070 0.0131 − 76.7456 ≤ 0.001
δ4 − 1 − 0.9875 0.0125 1.2531 0.0373 − 26.4410 ≤ 0.001
d1 0.3 0.3147 0.0147 4.9160 0.0125 25.2686 ≤ 0.001
d2 0.4 0.3508 0.0492 12.3020 0.0381 9.2070 ≤ 0.001
d3 0.5 0.4996 0.0004 0.0828 0.0210 23.7820 ≤ 0.001
d4 0.6 0.5910 0.0090 1.5023 0.0793 7.4520 ≤ 0.001
ψ1 1.5 1.5120 0.0120 0.8004 0.0081 186.2783 ≤ 0.001
ψ2 1.5 1.4792 0.0208 1.3835 0.0188 78.6552 ≤ 0.001
ψ3 1.5 1.4999 0.0001 0.0034 0.0145 103.2049 ≤ 0.001
ψ4 1.5 1.5158 0.0158 1.0553 0.0538 28.1516 ≤ 0.001
β2 0.5 0.4547 0.0453 9.0560 0.0304 14.9540 ≤ 0.001
β3 − 1 − 1.0416 0.0416 4.1616 0.0476 − 21.8600 ≤ 0.001
β4 − 0.8 − 0.8728 0.0728 9.1037 0.0445 − 19.5951 ≤ 0.001
βtt − 1 − 1.0115 0.0115 1.1490 0.0158 − 63.8326 ≤ 0.001
βtc − 0.8 − 0.8107 0.0107 1.3424 0.0128 − 63.5246 ≤ 0.001
λ1 0.5 0.5380 0.0380 7.6064 0.0234 22.9537 ≤ 0.001
λ2 0.2 0.1858 0.0142 7.0770 0.0186 10.0106 ≤ 0.001
λ3 0.2 0.1877 0.0123 6.1475 0.0187 10.0234 ≤ 0.001
λ4 0.5 0.4891 0.0109 2.1756 0.0232 21.0530 ≤ 0.001
λ5 0.5 0.5103 0.0103 2.0632 0.0212 24.0984 ≤ 0.001
λ6 0.2 0.1997 0.0003 0.1565 0.0204 9.7718 ≤ 0.001
σ11 1 — — — — — —
σ12 0 — — — — — —
σ13 0 — — — — — —
σ14 0 — — — — — —
σ22 1 — — — — — —
σ23 0.6 0.5956 0.0044 0.7365 0.0526 11.3276 ≤ 0.001
σ24 0.6 0.6407 0.0407 6.7772 0.0460 13.9313 ≤ 0.001
σ33 1.36 1.4008 0.0408 2.9999 0.1074 13.0425 ≤ 0.001
σ34 0.6 0.6939 0.0939 15.6422 0.0779 8.9014 ≤ 0.001
σ44 1.36 1.4723 0.1123 8.2542 0.1007 14.6142 ≤ 0.001
Overall mean value 0.0266 4.2691 0.0371
Note: “—” indicates that the corresponding parameter is fixed at the true value.
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3 h7min (for ME), 1 h14min (for BME), and 2 h6min (for
TVBS), respectively. Among them, the BME algorithm has
obvious advantages in terms of time consumption. Hence, if
the accuracy level can be lowered under some situations
(e.g., in a variable screening process), the BME algorithm can
also be chosen to save computational time. In this section, it

is not necessary to evaluate the ICLV model of Bhat for
comparison, because Bhat has explicitly shown that the
LDLT matrix-based analytic approximation method runs
much faster than other methods (such as the SSJ method) in
evaluating MVNCD functions and estimating MNP model.
It is worth noting that all simulation experiments are

Table 5: Simulation results for the four-alternative ICLV model with the BME method.

Parm. True value Estimate Abs. bias APB (%) Std. err. t-test P value
α1 0.5 0.4821 0.0179 3.5760 0.0175 27.4890 ≤ 0.001
α2 0.6 0.5734 0.0266 4.4307 0.0210 27.2577 ≤ 0.001
α3 0.5 0.5622 0.0622 12.4302 0.0540 10.4099 ≤ 0.001
α4 0.6 0.6658 0.0658 10.9583 0.0639 10.4166 ≤ 0.001
α5 0.3 0.3044 0.0044 1.4537 0.0103 29.4308 ≤ 0.001
α6 0.3 0.3060 0.0060 2.0160 0.0306 9.9954 ≤ 0.001
α7 − 0.4 − 0.4101 0.0101 2.5280 0.0409 − 10.0344 ≤ 0.001
s1 1 — — — — — —
r12 0 — — — — — —
r13 0.6 0.5990 0.0010 0.1662 0.0461 12.9991 ≤ 0.001
r14 0 — — — — — —
s2 1 — — — — — —
r23 0 — — — — — —
r24 0.6 0.6477 0.0477 7.9500 0.1004 6.4540 ≤ 0.001
s3 1 — — — — — —
r34 0 — — — — — —
s4 1 — — — — — —
δ1 − 1 − 1.0068 0.0068 0.6816 0.0115 − 87.6890 ≤ 0.001
δ2 − 1 − 0.9671 0.0329 3.2903 0.0161 − 60.1612 ≤ 0.001
δ3 − 1 − 1.0076 0.0076 0.7647 0.0131 − 76.8664 ≤ 0.001
δ4 − 1 − 0.9873 0.0127 1.2682 0.0373 − 26.4510 ≤ 0.001
d1 0.3 0.3147 0.0147 4.9110 0.0125 25.2700 ≤ 0.001
d2 0.4 0.3509 0.0491 12.2775 0.0378 9.2838 ≤ 0.001
d3 0.5 0.4985 0.0015 0.2924 0.0210 23.7831 ≤ 0.001
d4 0.6 0.5906 0.0094 1.5625 0.0793 7.4485 ≤ 0.001
ψ1 1.5 1.5120 0.0120 0.8000 0.0081 186.2896 ≤ 0.001
ψ2 1.5 1.4793 0.0207 1.3804 0.0187 79.1925 ≤ 0.001
ψ3 1.5 1.4993 0.0007 0.0456 0.0145 103.4676 ≤ 0.001
ψ4 1.5 1.5156 0.0156 1.0393 0.0538 28.1629 ≤ 0.001
β2 0.5 0.4546 0.0454 9.0790 0.0304 14.9559 ≤ 0.001
β3 − 1 − 1.0417 0.0417 4.1748 0.0476 − 21.8780 ≤ 0.001
β4 − 0.8 − 0.8719 0.0719 8.9935 0.0445 − 19.5883 ≤ 0.001
βtt − 1 − 1.0112 0.0112 1.1215 0.0158 − 63.9360 ≤ 0.001
βtc − 0.8 − 0.8106 0.0105 1.3187 0.0127 − 63.6256 ≤ 0.001
λ1 0.5 0.5379 0.0379 7.5720 0.0234 22.9583 ≤ 0.001
λ2 0.2 0.1859 0.0141 7.0455 0.0184 10.0864 ≤ 0.001
λ3 0.2 0.1877 0.0123 6.1600 0.0186 10.1024 ≤ 0.001
λ4 0.5 0.4882 0.0118 2.3654 0.0232 21.0692 ≤ 0.001
λ5 0.5 0.5094 0.0094 1.8768 0.0211 24.1120 ≤ 0.001
λ6 0.2 0.1995 0.0005 0.2665 0.0204 9.7651 ≤ 0.001
σ11 1 — — — — — —
σ12 0 — — — — — —
σ13 0 — — — — — —
σ14 0 — — — — — —
σ22 1 — — — — — —
σ23 0.6 0.5952 0.0048 0.7927 0.0525 11.3353 ≤ 0.001
σ24 0.6 0.6377 0.0377 6.2887 0.0457 13.9456 ≤ 0.001
σ33 1.36 1.4002 0.0402 2.9534 0.1073 13.0519 ≤ 0.001
σ34 0.6 0.6930 0.0930 15.4950 0.0776 8.9351 ≤ 0.001
σ44 1.36 1.4628 0.1028 7.5551 0.1001 14.6143 ≤ 0.001
Overall mean value 0.0262 4.2400 0.0370
Note: “—” indicates that the corresponding parameter is fixed at the true value.
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Table 6: Simulation results for the four-alternative ICLV model with the TVBS method.

Parm. True value Estimate Abs. bias APB (%) Std. err. t-test P value
α1 0.5 0.4820 0.0180 3.6006 0.0175 27.4956 ≤ 0.001
α2 0.6 0.5733 0.0267 4.4550 0.0210 27.2643 ≤ 0.001
α3 0.5 0.5621 0.0621 12.4248 0.0541 10.3956 ≤ 0.001
α4 0.6 0.6657 0.0657 10.9532 0.0640 10.4023 ≤ 0.001
α5 0.3 0.3042 0.0042 1.3913 0.0104 29.3686 ≤ 0.001
α6 0.3 0.3058 0.0058 1.9333 0.0305 10.0157 ≤ 0.001
α7 − 0.4 − 0.4098 0.0098 2.4453 0.0408 − 10.0548 ≤ 0.001
s1 1 — — — — — —
r12 0 — — — — — —
r13 0.6 0.5986 0.0014 0.2263 0.0460 13.0038 ≤ 0.001
r14 0 — — — — — —
s2 1 — — — — — —
r23 0 — — — — — —
r24 0.6 0.6472 0.0472 7.8628 0.1002 6.4570 ≤ 0.001
s3 1 — — — — — —
r34 0 — — — — — —
s4 1 — — — — — —
δ1 − 1 − 1.0068 0.0068 0.6844 0.0115 − 87.6833 ≤ 0.001
δ2 − 1 − 0.9671 0.0329 3.2898 0.0161 − 60.1169 ≤ 0.001
δ3 − 1 − 1.0078 0.0078 0.7807 0.0131 − 76.7399 ≤ 0.001
δ4 − 1 − 0.9876 0.0124 1.2408 0.0373 − 26.4477 ≤ 0.001
d1 0.3 0.3148 0.0148 4.9407 0.0125 25.2747 ≤ 0.001
d2 0.4 0.3509 0.0491 12.2728 0.0379 9.2709 ≤ 0.001
d3 0.5 0.4989 0.0011 0.2154 0.0210 23.7248 ≤ 0.001
d4 0.6 0.5913 0.0087 1.4555 0.0793 7.4595 ≤ 0.001
ψ1 1.5 1.5120 0.0120 0.8026 0.0081 186.2650 ≤ 0.001
ψ2 1.5 1.4793 0.0207 1.3799 0.0187 79.0895 ≤ 0.001
ψ3 1.5 1.4996 0.0004 0.0299 0.0145 103.1776 ≤ 0.001
ψ4 1.5 1.5160 0.0160 1.0677 0.0538 28.1597 ≤ 0.001
β2 0.5 0.4544 0.0456 9.1144 0.0304 14.9438 ≤ 0.001
β3 − 1 − 1.0425 0.0425 4.2479 0.0476 − 21.8930 ≤ 0.001
β4 − 0.8 − 0.8728 0.0728 9.1025 0.0445 − 19.6065 ≤ 0.001
βtt − 1 − 1.0116 0.0116 1.1607 0.0158 − 63.9212 ≤ 0.001
βtc − 0.8 − 0.8109 0.0109 1.3567 0.0127 − 63.6051 ≤ 0.001
λ1 0.5 0.5382 0.0382 7.6404 0.0234 22.9612 ≤ 0.001
λ2 0.2 0.1860 0.0140 6.9835 0.0185 10.0749 ≤ 0.001
λ3 0.2 0.1878 0.0122 6.1180 0.0186 10.0900 ≤ 0.001
λ4 0.5 0.4887 0.0113 2.2598 0.0232 21.0338 ≤ 0.001
λ5 0.5 0.5099 0.0099 1.9814 0.0212 24.0589 ≤ 0.001
λ6 0.2 0.1997 0.0003 0.1510 0.0204 9.7806 ≤ 0.001
σ11 1 — — — — — —
σ12 0 — — — — — —
σ13 0 — — — — — —
σ14 0 — — — — — —
σ22 1 — — — — — —
σ23 0.6 0.5923 0.0077 1.2832 0.0524 11.3058 ≤ 0.001
σ24 0.6 0.6382 0.0382 6.3702 0.0458 13.9236 ≤ 0.001
σ33 1.36 1.3895 0.0295 2.1659 0.1074 12.9430 ≤ 0.001
σ34 0.6 0.6875 0.0875 14.5838 0.0775 8.8672 ≤ 0.001
σ44 1.36 1.4629 0.1029 7.5643 0.1001 14.6142 ≤ 0.001
Overall mean value 0.0259 4.2037 0.0370
Note. “—” indicates that the corresponding parameter is fixed at the true value.
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conducted on a desktop computer with an Intel Core™ i5-
4460@3.20GHz Processor and 16GB of RAM.

5. Conclusions and Discussion

On the basis of the research advances of Bhat in 2018 and the
automatic di�erentiation (AD) technique on the TensorFlow
platform, this study integrates the LDLT matrix-based an-
alytic approximation method into the probit kernel-based
ICLV formulation, which can further improve the perfor-
mance of the ICLV model in terms of accuracy level and
computational speed. �e main achievements of this study
can be summarized as follows.

Firstly, the individual MVNCD function was evaluated
with di�erent dimensions. By improving the numerical
integration algorithm of CDF of BVN and TVN, the ac-
curacy level of BVN and TVN functions was enhanced in
this study (compared with algorithms in GAUSS). Based on
the TensorFlow platform, we also tested the errors and
operation time of three types of matrix-based analytic
approximation methods in various dimensions. It is found
that the operation time of BME is the shortest and the
accuracy level of TVBS is the highest in the same di-
mension. By comparing the calculation of MVNCD
functions on Gauss and TensorFlow platforms, it shows
that the calculation speed of TensorFlow is much higher
than that of Gauss.

Subsequently, we designed the simulation experiments
of the three-alternative ICLV model and four-alternative
ICLV model. �e estimates and standard errors of both
models are within a reasonable range, of which the pa-
rameters related to latent variables may be more di¨cult to
recover. For the three-alternative ICLV model, the nu-
merical integration method of calculating TVN value was
employed and the simulation experiments were repeated 50
times with a sample size of 10,000. �e simulation results
show that the overall mean value of APB is 3.79% and the
relative e¨ciency is 1.1190, exhibiting a desirable capability
of parameter recovery. After that, this study applies three
analytic approximation methods (i.e., ME, BME, and TVBS)

in the MVNCD function calculation of the ICLV model and
conducts simulation experiments with a sample size of
100,000 regarding the four-alternative ICLV model, and
signi�cant results of consistent estimation value can be
obtained. �e average values of absolute bias and APB
decreased in the order of ME, BME, and TVBS, indicating
the increased accuracy. To sum up, when we estimate the
ICLV model with high-dimensional integration, the TVBS
method can be chosen with the highest accuracy level. Also,
the BME method is an alternative to save computational
time.

Meanwhile, with the assistance of the AD technique, the
researchers are freed from coding analytical gradients.
Compared with the probit-based ICLV model proposed by
Bhat, the computational time of the proposed model is
reduced remarkably, which is mainly attributed to two
reasons: one is adopting the LDLT matrix-based analytic
approximation methods to evaluate MVNCD function; the
other is based on the advantages of TensorFlow in calcu-
lating tensor (represented as multidimensional array). �e
operation of a three-alternative ICLV model with a sample
size of 10,000 only takes 8min with the time advantage of
LDLT-based analytic approximation methods, which can
facilitate the applications of the proposed method in
practice.

In the future work, we will further explore the practical
application of the improved ICLV model with multiple
alternatives and incorporate more psychological attitude
variables into the model so as to explore the potential
in®uencing mechanism of travel behaviors by using real
data. If possible, further comparisons in terms of parameter
estimation results between the ICLV model and previous
models will be discussed.

Data Availability

�e data used to support the �ndings of this study are
simulation data and can be obtained from the corresponding
author upon request.

ME

0.0266

0.0254

0.0256

0.0258

0.0260

0.0262

0.0264

0.0266

0.0268

Ab
s. 

Bi
as

BME

0.0262

TVBS

0.0259

(a)

ME

4.2691

4.16

4.18

4.20

4.22

4.24

4.26

4.28

A
PB

 (%
)

BME

4.2400

TVBS

4.2037

(b)
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