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Accurate recognition of pedestrian crossing intentions is essential for the safe operation of autonomous vehicles on urban roads.
However, the current pedestrian crossing intention recognitionmodel has the problems of relatively low recognition accuracy and
short recognition advance time. Based on the above problems, this paper carried out a study on the recognition model of
pedestrian crossing intention. Firstly, the pedestrian and vehicle crossing data were collected through laser radar and a high-
defnition monitor, and 1980 groups of valid samples were selected. Secondly, the pedestrian crossing intention characterization
parameter set was determined through statistical analysis. Finally, this paper proposes a pedestrian crossing intention recognition
model based on stacking ensemble learning. Te ensemble learning framework integrates random forest (RF), support vector
machine (SVM), long short-term memory network (LSTM), an attention mechanism, and bidirectional LSTM (AT-Bi-LSTM).
Compared with traditional machine learning methods, the proposed method shows greater advantages in recognition accuracy.
Te model recognition accuracy reaches 95.36% when the model is recognized at 0.5 s before crossing the zebra crossing, and the
model recognition accuracy is 89.27% when the model is recognized at 1s before crossing the zebra crossing. Te research in this
paper is of great signifcance for building a more intelligent pedestrian-vehicle collaboration and promoting the industrial
application of the autonomous vehicle.

1. Introduction

A zebra crossing is an area for pedestrians to cross the
road, and it is also a potential confict area between ve-
hicles and pedestrians [1, 2]. According to the accident
statistics report issued by the road trafc management
department, the number of pedestrian deaths rose from
14,923 in 2015 to 17,473 in 2019. Te proportion of pe-
destrian deaths in the total number of trafc accident
deaths increased from 25.72% to 27.84%. Te number of
injured pedestrians rose from 34,379 to 45,495. Further
calculations found that from 2015 to 2019, in each pe-
destrian-related accident, 1.2 pedestrians were injured or
died on average [3–7]. Te above data shows that in recent
years, the situation of vehicle-pedestrian accidents in
China has been deteriorating year by year, and both the
absolute number and the proportion of fatalities have
been rising. At the same time, the above data prove that in

the road trafc system, pedestrians belong to a vulnerable
group. Once a pedestrian-vehicle accident occurs, even a
slight scratching accident may induce serious pedestrian
injury or even death [8, 9].

With the rapid development of current technology,
autonomous vehicles are getting closer to reality. Autono-
mous vehicles have signifcant potential in reducing colli-
sion-related casualties, improving trafc conditions, and
reducing trafc jams and vehicle emissions. Te U.S. De-
partment of Transportation released the Autopilot System
Safety Vision 2.0 in 2017, which aims to improve the safety
and reliability of the autopilot system in order to achieve the
purpose of reducing the accident rate [10]. In 2016, the
China Association of Automotive Engineers released a route
for autonomous vehicle technology. Te route mentioned
that every vehicle will have a fully automated driving system
or assisted driving system between 2026 and 2030 to im-
prove road trafc safety [11].
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Driving safely on urban roads is an important challenge
for autonomous vehicles. In particular, it should be pointed
out that there are a large number of pedestrians on urban
roads. As relatively complex individuals, their movement
behavior is afected by factors such as their own emotions,
trafc environment, and weather. Trough vision, sound,
gestures, and actions, the driver can understand the pe-
destrians’ intentions and then accurately complete the in-
teraction with the pedestrian. However, for autonomous
vehicles, it is difcult to understand the intentions of pe-
destrians and then accurately complete the pedestrian-ve-
hicle interaction [12, 13]. Te zebra crossing is the main
interaction area between pedestrians and vehicles.Terefore,
the research on the pedestrian crossing intention recogni-
tion model is carried out in this paper.

Te main contributions of this paper are as follows:

(1) Te current pedestrian crossing intention recogni-
tion models are mainly established based on tradi-
tional machine learning algorithms or deep learning
algorithms, and the recognition accuracy is relatively
low. Tis paper proposes a machine learning algo-
rithm combination framework that can improve
model recognition accuracy, namely, the stacking
ensemble learning framework, which integrates four
classical algorithms.

(2) Te current pedestrian crossing intention recogni-
tion model usually cannot take into account the
recognition accuracy and recognition advance time.
Diferent from the current model, this model greatly
increases the recognition advance time on the
premise of ensuring recognition accuracy.

2. Related Works

At present, scholars at home and abroad have carried out a
lot of research on pedestrian crossing intention recognition
and have achieved relatively fruitful research results.

Mingus et al. [14] considered the trajectory and posture
of pedestrians and established a pedestrian crossing inten-
tion recognition model based on the Gaussian dynamic
model. Te model recognition accuracy is 80%. Quintero
et al. [15, 16] collected the posture data of pedestrians
crossing the zebra crossing and divided the pedestrian
movement posture into 11 key points of the human body. A
pedestrian crossing intention recognition model is estab-
lished based on the hidden Markov model. When it is
recognized 0.125 s in advance, the accuracy of the model is
80%. Fang and Lopez [17] collected a large amount of
posture data of pedestrians crossing the zebra crossing. Te
direction parameters were calculated between diferent
points through the positioned human body key point data,
and a pedestrian crossing intention recognition model was
established using the support vector machine (SVM) algo-
rithm. Te model has high recognition accuracy, reaching
93%. Brehar et al. [18] proposed a method to identify pe-
destrian crossing behavior using a monocular far infrared.
Te method can still efectively identify pedestrian street
cross action in low visibility environments such as

nighttime, fog, heavy rain, or smoke, with an accuracy of
93.28%. Căilean et al. [19] propose a novel architecture for
improving pedestrian safety at crosswalks. Te architecture
can efectively detect pedestrians and predict their street
cross actions.

Völz et al. [20] established a pedestrian crossing in-
tention recognition model based on a data-driven method.
Te main input parameters of the model are the distance
between pedestrians and the zebra crossing, the distance
between vehicles and the zebra crossing parameters, etc. Te
pedestrian recognition accuracy is 84.74%. Camara et al. [21]
collected a large amount of pedestrian crossing data and
established a pedestrian crossing intention recognition
model by analyzing the relative position between pedestrians
and vehicles. Te recognition accuracy of the model can
reach up to 96%. Zhao et al. [22] used lidar to collect a large
amount of pedestrian crossing data and established a pe-
destrian crossing intention recognition model based on an
artifcial neural network (ANN) by analyzing the motion
parameters of pedestrians and vehicles before crossing the
zebra crossing. When recognized 0.5 s in advance, the model
recognition accuracy is 92.6%. Zhang et al. [23] proposed a
bidirectional long short-term memory network with an
attention mechanism (AT-Bi-LSTM) to establish a pedes-
trian crossing intention recognition model. Te recognition
accuracy is 90.68% when the model is 0.6 s in advance.

Ghori et al. [24] proposed a new pedestrian crossing
intention recognition framework, which combines con-
volutional neural networks (CNN) and LSTM networks.
When recognized 1 s in advance, the recognition accuracy of
the model is relatively low, at only 72%. Schulz and Stie-
felhagen [25] and Brouwer et al. [26] established a pedestrian
crossing intention recognition model by estimating the head
movement posture of pedestrians crossing the zebra
crossing. Hashimoto et al. [27] collected the intersection
information and established a pedestrian crossing intention
recognition model based on the dynamic Bayesian network
(DBN). Schneemann and Heinemann [28] combined the
image data and motion parameters of pedestrians crossing
the zebra crossing and established a pedestrian crossing
intention recognition model based on SVM.

Trough the literature review, it can be seen that the
current research on pedestrian crossing intentions has been
relatively mature. Te recognition accuracy of the intention
model is already good, and the highest value has exceeded
90%. However, the recognition advance time of the model is
relatively short. Overall, existing models do not seem to be
able to maintain high recognition accuracy while main-
taining a long recognition advance time.

In general, pedestrian crossing intention recognition can
be regarded as a time-series modeling and forecasting
problem. Terefore, this paper frst collects the continuous
data stream 2.1 s before pedestrians cross the zebra crossing.
Te data collection uses laser radar and a high-defnition
(HD) monitor. Secondly, the characteristic parameters re-
lated to the crossing intention are extracted. Te charac-
teristic parameters mainly include pedestrian speed, the
distance between pedestrian and zebra crossing, age, gender,
vehicle speed, the distance between vehicle and zebra
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crossing, and time to collision (TTC). Finally, a pedestrian
crossing intention recognition model is established based on
stacking ensemble learning. Te SVM, random forest (RF),
LSTM, and AT-Bi-LSTM algorithms were integrated. Fig-
ure 1 shows the research framework of this paper.

Tis paper is divided into fve parts, namely, introduction,
related works, proposed solution, experimental results, and
conclusions. In the frst and second parts, it mainly analyzed
the confict between pedestrians and vehicles and introduced
the signifcance of the research on pedestrian crossing in-
tention recognition. In the third part, the crossing intention
recognition algorithm was introduced. Tis paper is based on
the stacking ensemble learning algorithm, which integrates
SVM, random forest (RF), LSTM, and AT-Bi-LSTM algo-
rithms. Data acquisition equipment and acquisition methods
were introduced. Te main data acquisition equipment is the
laser radar and an HD monitor. In the fourth part, the
characteristic parameters of pedestrian crossing intention were
analyzed, and the characteristic parameter set of pedestrian
crossing intention was obtained. Te fourth part also analyzed
the results of the pedestrian crossing intention recognition
model based on stacking ensemble learning and compares it
with the traditional intention recognition algorithm. Te ffth
part elaborated on the conclusions of this paper.

3. Proposed Solution

3.1. Methodology

3.1.1. Ensemble Learning. Ensemble learning improves the
performance of machine learning by combining multiple
models. Compared with a single model, this method allows
for better prediction performance. At present, it is widely
used in some well-known international machine learning
competitions (Netfix, KDD2009, and Kaggle) and has
achieved good rankings. Te ensemble learning method can
be used to solve classifcation and regression tasks [29].

For ensemble learning, there are two main problems
faced in the process of model integration, namely, (1) how to
change the distribution or weight of the data. (2) How to
combine multiple weak classifers into a strong classifer. For
the above two problems, there are three main solutions: (1)
bagging method for reducing variance. (2) Boosting method
for reducing bias. (3) Stacking method for improving pre-
diction results [30–32]. Stacking ensemble learning has a
better efect on improving recognition accuracy. Terefore,
this paper chose stacking ensemble learning.

Stacking is a typical representative of ensemble learning
methods. Individual weak classifers are called base classi-
fers, and the classifers used for combinations are called
meta-classifers. Te base classifer is usually a heteroge-
neous classifer.

3.1.2. Base Classifer and Meta-Classifer

(1) SVM-Base Classifer. SVM [33] is a commonly used
supervised learning algorithm for machine learning. It is a
typical linear binary classifer. SVM is also regarded as the

process of solving the optimal classifcation hyperplane. For
the SVM, the key is the determination of the kernel function,
the penalty function C, and the kernel function parameter g.
Te kernel function selected is the radial basis kernel
function.Te values of the penalty function C and the kernel
function parameter g are determined by the grid search
method. In this paper, when the pedestrian intention is
identifed at 0 s before crossing the zebra crossing, the values
of C and g are 36 and 2.73, respectively. When the pedestrian
intention is identifed at 0.5 s before crossing the zebra
crossing, the values of C and g are 48 and 2.32, respectively.
When the pedestrian intention is identifed at 1 s before
crossing the zebra crossing, the values of C and g are 45 and
2.08, respectively. Since SVM is a common and mature
algorithm, it will not be described in more detail in this
paper.

(2) RF-Base Classifer. RF [34] is a classifer composed of a
large number of decision trees, which is regarded as an
ensemble learning method. Multiple decision tree classifers
are trained by sampling with replacement (bootstrap). Each
decision tree classifer is independent of the others and has
no correlation. Many classifers are integrated into an RF
classifer, and multiple decision tree classifers obtain the
fnal classifcation result through voting. To achieve a good
recognition result, the adjustment of hyperparameters is
essential. Te hyperparameters refer to the number of de-
cision trees and the maximum number of features. In this
paper, we also use the grid search method to determine the
two important parameter values. When the pedestrian in-
tention is identifed at 0 s before crossing the zebra crossing,
the number of decision trees and the maximum number of
features are 80 and 5, respectively. When the pedestrian
intention is identifed at 0.5 s before crossing the zebra
crossing, the number of decision trees and the maximum
number of features are 115 and 5, respectively. When the
pedestrian intention is identifed at 1s before crossing the
zebra crossing, the number of decision trees and the max-
imum number of features are 125 and 5, respectively.

(3) LSTM-Base Classifer. At the end of the last century,
Hochreiter and Schmidhuber proposed LSTM on the basis
of RNN [35], which to some extent overcomes the problem
of gradient disappearance and explosion in the back
propagation process. Te LSTM network introduces the
concept of “gates,” which are the input gate, forget gate, and
output gate. Tese three gates are also called the memory
unit of the network.Te main purpose is to selectively delete
and retain the associated information in the data to achieve
the purpose of continuous update of the cell state and in-
crease the model recognition accuracy. Te grid search
method was used to determine the hyperparameter values.
When pedestrian intention is identifed at 0 s before crossing
the zebra crossing, the learning rate, hidden unit, and
dropout values are 0.01, 128, and 0.4, respectively. When the
pedestrian’s intention is recognized at 0.5 s before crossing
the zebra crossing, the values of the learning rate, hidden
unit, and dropout are 0.05, 100, and 0.4, respectively. When
the pedestrian intention is recognized at 1 s before crossing
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the zebra crossing, the learning rate, hidden unit, and
dropout values are 0.001, 100, and 0.5, respectively. Adam
was used as the optimizer. In addition, the LSTM network
also solves the problem of interdependence before and after
the input data so that the cell unit has a longer memory
capacity. Te specifc working steps of the LSTM network
are as follows:

Forget gate: the main function is to delete useless in-
formation in the cell unit, and the content of the information
is determined by the sigmoid function.

ft � σ Wf · ht−1, xt  + bf , (1)

where σ is the forget gate sigmoid function, Wf is the weight
matrix, bf is the bias term, and the output range of ft is [0,
1], and its value is inversely proportional to the degree of
forgetting.

Input gate: it updates the information in the cell unit of
the structure. Te sigmoid layer and the tanh layer deter-
mine the updated information in the cell information.

it � σ Wt · ht−1, xi  + bi( , (2)

Ct � tanh Wc · ht−1, xi  + bc( , (3)

where σ is the input gate sigmoid function, tanh is the input
gate function, Wt and Wc are weight matrices, bi and bc are
bias terms, it is the input gate cell state update value, and Ct

is the tanh function state update value.
Trough formulas (2)–(4), the fnal updated state value

of the cell unit is obtained, and the specifc expression is 4.5.

Ct � ft · Ct−1 + it · Ct, (4)

where Ct−1 is the unit cell state value at the previous
moment.

Te main function of the output gate is to transfer the
associated information to the cell unit at the next moment.

ot � σ Wo · ht−1, xt  + bo( , (5)

where ot is the output value of the output gate, Wo is the
weight matrix, and bo is the bias term.

Te fnal output ht of the unit cell at the current moment
can be expressed as follows:

ht � ot · tanh Ct( . (6)

(4) At-Bi-LSTM-Meta Classifer. Pedestrian crossing in-
tention recognition can be regarded as a sequence recog-
nition problem. Te movement state of pedestrians before
crossing the zebra crossing can refect the pedestrians’
crossing decision. Te data between a certain moment
before crossing the zebra crossing and the next moment has
a greater correlation. To better capture the characteristic
information of pedestrian crossing intentions and fully
obtain the correlation of sequence data in a period of time
before crossing the zebra crossing, this paper adopts Bi-
LSTM [36].

Te input of the Bi-LSTM model at time t is xt. During
information processing, the state of Bi-LSTM from the
forward to backward direction is updated as follows:

TTC Vehicle speed Pedestrian speed

Distance between pedestrian
and zebra crossing

Pedestrian crossing intention recognition based on natural observation data

Sequence data preprocessing (Filtering, normalization)

Statistical analysis of feature parameters of pedestrian crossing intention recognition

Laser radar HD monitor

Age

Gender

Distance between vehicle
and zebra crossing

RF

Stacking-based
ensemble learning

Bi-LSTM

SVM LSTM AT-BiLSTMBase-classifer

Meta-classifer

Figure 1: Research framework of pedestrian crossing intention: laser radar and HDmonitor acquire data before pedestrians cross the zebra
crossing. After the data are fltered, the characterization parameters of pedestrians’ crossing intention are obtained. After preprocessing, the
characterization parameters are input into the stacking learning algorithm, and then the pedestrian crossing intention recognition model is
established.
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hfwt � H Wfwxt + Wfw1hfwt−1 + bfw , (7)

whereH is the backward output function, Wfw is the weight
matrix from the input layer to the forward layer , Wfw1 is the
weight matrix between forward layers, and bfw is the bias
term.

Te Bi-LSTM model is then updated from the backward
to forward direction as follows:

hbwt � H Wbwxt + Wbw1hbwt−1 + bbw( , (8)

where H‘ is the forward output function, Wbw is the weight
matrix from the input layer to the back layer, Wbw1 is the
weight matrix between back layers, and bbw is the bias term.

Equation (9) describes the fnal output of the Bi-LSTM
model following the forward and backward superimposition
as follows:

ht � H Wfw2hfwt + Wbw2hbwt + bo , (9)

where H is the output function of the output layer, Wfw2 is
the weight matrix from the forward layer to the output layer,
and Wbw2 is the weight matrix from the backward layer to
the output layer.

Te parameters of the pedestrian crossing intention are
not equally important. To capture the most important in-
formation and shorten the fow distance of information, the
Bi-LSTM-based attention mechanism was introduced [37].
Te grid search method was used to determine the hyper-
parameter values. When the pedestrian intention is iden-
tifed at 0 s before crossing the zebra crossing, the learning
rate, hidden unit, and dropout values are 0.005, 120, and 0.4,
respectively. When the pedestrian intention is recognized at
0.5 s before crossing the zebra crossing, the values of the
learning rate, hidden unit, and dropout are 0.001, 120, and
0.4, respectively. When the pedestrian intention is recog-
nized at 1 s before crossing the zebra crossing, the learning
rate, hidden unit, and dropout values are 0.001, 100, and 0.2,
respectively. Adam was used as the optimizer. Figure 2
presents the four components of the AT-Bi-LSTM frame-
work, namely, (1) the input layer, which inputs the feature
parameter sequence of the crossing intention, (2) the LSTM
layer, (3) the attention layer, and (4) the output layer.

Te correlation function of the attention layer is
expressed as follows:

Q � tanh(P),

β � softmax c
T
Q ,

ε � PβT
,

h
∗

� tanh(ε),

(10)

where P is a vector composed of h1, h2, h3 . . . ht , T is the data
length, c is a trained parameter vector, and h∗ is the fnal
value used for classifcation.

3.1.3. Stacking-Based Ensemble Learning Algorithm
Description. Te training set based on stacking ensemble
learning includes a primary training set and a secondary

training set. In the training phase, the secondary training set
is generated using the base classifer. If the training set of the
primary classifer is used directly to generate the secondary
training set, the risk of over-ftting will be relatively high.
Terefore, cross-validation is generally used to generate
training samples for the meta-classifer. Te method used in
this paper is 5-fold cross-validation. Firstly, the base clas-
sifer (SVM, RF, LSTM, and AT-Bi-LSTM) is obtained
through the primary training set training, and the primary
training set is divided into 5 subsets. Secondly, the training
set is reconstructed through 5-fold cross-validation to obtain
the secondary training set, which is used to train the meta-
classifer. Finally, the meta-classifer (Bi-LSTM) is obtained
through the training of the secondary training set.

Figure 3 presents the framework of stacking-based en-
semble learning. Table 1 is the pseudocode of the stacking
algorithm, and the main steps of model training are de-
scribed as follows:

Step 1: divide the pedestrians’ intention sample dataset
S into the training set Strain and Stest according to the
ratio of 3 :1. According to the 5-fold cross-validation
method, we randomly and equally divide Strain into 5
subsets, namely, S1, S2, S3, S4, and S5, and select one of
the subsets Si (i� 1, 2, . . ., 5) as the verifcation subset in
turn. Use the remaining S+i � Strain − Si as the training
subset.
Step 2: we use S+i as the training set of base classifers
RF, SVM, LSTM, and AT-Bi-LSTM, use Si as the
verifcation subset, and output the test result xi. Si-
multaneously, we predict the test set Stest and output the
prediction result yi.
Step 3: we iterate step 2 fve times to obtain {x1, x2, x3,
x4, and x5}, and we merge the results according to the
columns to get the column vector X1 of the same length
as the original training set Strain. We combine the test

…

…

Forward
layer

Input
layer

Softmax

Attention
Layer

Output
layer

h1 h2 h3 ht

hbw1 hbw2 hbw3 hbwt

hfw1 hfw2 hfw3 hfwt

Backward
layer

BiLSTM

Figure 2: AT-Bi-LSTM structure: input layer is used to input data;
the data fows into the forward and backward layers of the Bi-LSTM
to obtain important clues in the data. Te attention layer is used to
remove useless information from data and extract key features. Te
softmax layer is responsible for outputting pedestrian intentions.
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Validation sub-set 

Training sub-set 2

Training sub-set 3

Training sub-set 4

Training sub-set 5

Training sub-set 1

Validation sub-set 

Training sub-set 3

Training sub-set 4

Training sub-set 5

Training sub-set 1

Training sub-set 2

Validation sub-set 

Training sub-set 4

Training sub-set 5

Training sub-set 1

Training sub-set 2

Training sub-set 3

Validation sub-set 

Training sub-set 5

Training sub-set 1

Training sub-set 2

Training sub-set 3

Training sub-set 4

Validation sub-set 

RF model SVM model LSTM model AT-BiLSTM model

N11

N12

N13

N14

N15

N21

N22

N23

N24

N25

N31

N32

N33

N34

N35

N41

N42

N43

N44

N45

Training Dataset label Training Dataset

Test dataset

M1 M2 M3 M4

Test Dataset
label

Test
Dataset

Test dataset

Test dataset

Test dataset

Test dataset

Model recognition
accuracy

5-fold cross validation

Bi-LSTM model

Figure 3: Stacking ensemble learning architecture: the data are divided into the training set and the test set. Te training set is divided into
four training subsets and one validation subset, and a new subset is obtained by the basic classifer RF, SVM, LSTM, and AT Bi LSTM. Te
new subset is trained by the meta-classifer to obtain the pedestrian crossing intention recognition model. Similarly, the new test set is
obtained by four base classifers. Te test set is input into the intention recognition model to obtain the fnal recognition accuracy.

Table 1: Pseudocode of the stacking algorithm.

Input: training set Strain � {(x1,y1), (x2,y2),. . ., (xm,ym)};
Base classifer: L1, L2, . . . LT;
Meta classifer: L (Bi-LSTM).

Process:
for t� 1,2, . . .., T do
ht � Lt (Strain)% train the base classifer separately using the training set

end for
N�Ø; % create new datasets
for i� 1, 2m do
for t� 1,2, . . ., T do
zit � ht (xi)% use the classifer ht to test the validation set

end for
N�N∪{(zi1, zi2,. . . ziT), yi}

end for
h’� L (N); % training a meta-classifer based on the Bi-LSTM algorithm with the newly combined dataset

Output: H(x)� h’ (h1 (x), h2 (x). . ., hT (x))
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samples and take the average to obtain a column vector
Y1 of the same length as the original test Stest.
Step 4: by sequentially performing step 3 on the base
classifers SVM, LSTM, and AT-Bi-LSTM, we obtain
X2, X3, and X4 from the original training set and Y2, Y3,
and Y4 from the original test set.
Step 5: we combine X1, X2, X3, and X4 and the label L of
the original training set Strain to obtain a new sample
dataset N� {X1, X2, X3, X4, and L}, and we use it as the
training dataset of the meta-classifer Bi-LSTM. We
obtain the accuracy of the meta-classifer via the test
dataset M� {Y1, Y2, Y3, Y4, and P}.

3.2. Experimental

3.2.1. Study Site. Figures 4 and 5 are diagrams of the study
site and equipment placement location, respectively. Te
zebra crossing section has no signal light control and
monitoring equipment. Te width of the zebra crossing is
12m, a two-way four-lane. Te road gradient is small and
negligible, and the road is separated by a double yellow line.
Tere is no green belt or bufer waiting area. Te selected
road is a common road in the city. Te trafc fow in this
section is mainly composed of small passenger vehicles.

3.2.2. Experimental Equipment. Te laser radar model
LUX4L-4 selected in this experiment is produced by the
German IBEO company, as shown in Figure 6. Te radar
used in the experiment belongs to the four-line radar, and
the scanning frequency is set to 12.5Hz.Te detection range
of the lidar is 0.3–200m, the vertical viewing angle is
3.2°FOV, and the horizontal viewing angle can reach 110°.
Te radar used in the experiment can perform real-time
scanning of all objects within the detection feld, including
moving objects and stationary objects. At the same time, the
data collected by the radar are read through the associated
software ILV-Premium, as shown in Figure 6. Trough this
software, the type, speed, and position of the target detected
by the radar can be displayed in real time. Te specifc
display interface of software is shown in Figure 6.

Te selected HD monitor is small in size, and the video
resolution is 1920×1080. Figure 6 shows the physical image.
Both the LUX radar and the driving recorder are powered by
small batteries. Te data collection location is 15m away
from the zebra crossing. In addition, the use of radar alone
will miss a large amount of data, making the selection work
more complicated. At the same time, the gender and age of
pedestrians cannot be judged. In order to overcome this
problem, radar and HD monitors are used together. After
the two devices are synchronized in time, the HDmonitor is
used to determine whether the pedestrian wants to cross the
zebra crossing. Te data of the pedestrian before or when
crossing the zebra crossing are collected by the laser radar.
Te radar point cloud image recorded by ILV-Premium is
the main, and the video recorded by the HD monitor is
auxiliary to realize the precise selection of data.

3.2.3. Data Collection and Analysis. To overcome the in-
fuence of time heterogeneity, all observation experiments
were conducted on sunny days. Pedestrian crossing inten-
tion recognition is a continuous-time series classifcation
problem. Te pedestrians’ crossing intention is determined
according to the speed change within a period of time before
the pedestrians cross the zebra crossing or the time series
change of the surrounding environment (vehicle speed or
the distance between the vehicle and the zebra crossing, etc.).
Generally speaking, when pedestrians are crossing the zebra
crossing, they determine their intention to cross the zebra
crossing by observing the surrounding environment (such as
the distance between the vehicle and themselves), which is
refected in the speed of the pedestrian crossing the zebra
crossing. If the pedestrian does not slow down, it may be a
direct crossing behavior. Figure 7 shows a schematic dia-
gram of the pedestrian crossing. In this paper, pedestrian
crossing intentions are divided into three categories, namely,
“walking-walking intention (WWI),” “walking-stopping
intention (WSI),” and “stopping-walking intention (SWI).”
WWI refers to a pedestrian crossing the zebra crossing
without stopping after reaching the curb. WSI means that
after considering the road trafc environment, pedestrians
did not choose to cross directly after reaching the curb but
waited. SWI means that pedestrians start to cross the zebra
crossing after waiting at the curb.

In this paper, the main process of selecting the char-
acteristic parameters of pedestrian intention before crossing
the zebra crossing is as follows.

Check whether the pedestrian has the intention of
crossing the zebra crossing through the HD monitor. If the
video shows that the pedestrian is WWI, then we need to go
back for a certain period of time and collect the pedestrian-
related data and vehicle-related data during this period of
time through the laser radar. If it is determined through the
video that the pedestrians’ intention to cross the zebra
crossing is WSI or SWI, we use the same method to reverse
the laser radar and record it.

Te intention characterization parameters selected in
this paper are mainly pedestrian speed, the distance between
the pedestrian and the zebra crossing, vehicle speed, the
distance between the vehicle and the zebra crossing, and
TTC. In addition, the paper also introduces the infuence of
pedestrian age, gender, and group on pedestrians’ intention
to cross the zebra crossing. Te specifc defnition is as
follows:

Pedestrian speed is the mean speed value of pedestrians
during a period of time before crossing the zebra crossing,
obtained by laser radar. In the process of collecting pe-
destrian speed by radar, the true speed value is obtained after
Kalman fltering, and the speed value of each frame is
counted to fnally get the mean speed of the pedestrian
before crossing the zebra crossing.

Te distance between the pedestrian and the zebra
crossing (DPZC) refers to the square and root result of the
two parameters of the vertical distance between the pe-
destrian and the curb and the vertical distance between the
pedestrian and the zebra crossing.
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Figure 4: Schematic diagram of the study site: the equipment is placed at the curb, about 15 meters away from the zebra crossing.

25°85°

Figure 5: Photograph of the study site: lidar detection angle is 110°. It can completely cover the whole road.
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Figure 6: Laser radar and HD monitor: the upper part of the picture is a radar map, and the lower part is a camera map. Time syn-
chronization between two devices.
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Te distance between the vehicle and the zebra crossing
(DVZC) refers to the vertical distance between the vehicle
and the zebra crossing.

TTC refers to the distance between the vehicle and the
zebra crossing divided by the current speed of the vehicle.

3.2.4. Data Preprocessing. Te data obtained from the radar
will bring a lot of noise and interference signals. In order to
make the collected data closer to the real value, this paper
uses a Kalman flter to flter the data directly collected by the
radar. It should be pointed out that the distance value be-
tween the vehicle and the zebra crossing and the vehicle
speed value is larger than the pedestrian speed value and the
value between the pedestrian and the zebra crossing, in order
to more accurately capture the key information in the data,
reduce the training time of the model, and improve model
recognition accuracy. Tis paper uses the min-max function
to normalize the characteristic parameters.

4. Experimental Results

4.1. Characteristic Parameter Analysis Results

4.1.1. Time to Collision. Figure 8(a) shows the TTC line chart
under diferent crossing intentions within 2.1 s before
crossing the zebra crossing. It can be seen that when the
intention is WWI, the selected TTC value when pedestrians
cross the zebra crossing is the largest, which is at the top of
the three curves. When the intention is SWI, the TTC value
selected by pedestrians crossing the zebra crossing is second,
in the middle of the three curves. When the intention isWSI,
the TTC value selected by pedestrians crossing the zebra
crossing is the smallest, which is at the bottom of the three
curves. As time goes by, the TTC value under diferent
intentions shows a steady downward trend.

Figure 8(b) is a box diagram of the TTC under diferent
crossing intentions. When the intentions are WWI, SWI,
and WSI, the mean values of TTC are 5.79 s, 5.22 s, and
2.51 s, respectively. One-way analysis of variance (ANOVA)

found that there were signifcant diferences in TTC values
under diferent intentions (F (2, 1977)� 1719.60, p< 0.001),
and the post-hoc test found that there were signifcant
diferences in TTC values after pairings with diferent in-
tentions (p< 0.001).

4.1.2. Vehicle Speed. Figure 9(a) shows the vehicle speed line
chart under diferent crossing intentions within 2.1 s before
crossing the zebra crossing. It can be seen that when the
intention is SWI, the vehicle speed value when pedestrians’
cross the zebra crossing is the largest, which is at the top of
the three curves. When the intention is WWI, the vehicle
speed value is the second, in the middle of the three curves.
When the intention is WSI, the vehicle speed value is the
smallest, which is at the bottom of the three curves. Gen-
erally speaking, with the change of time, the value of vehicle
speed does not change much, and the value is relatively
stable.

Figure 9(b) is a box diagram of vehicle speed under
diferent crossing intentions. When the crossing intentions
are WWI, SWI, and WSI, the mean values of vehicle speed
are 30.61 km/h, 29.94 km/h, and 31.21 km/h. One-way
ANOVA found that there were signifcant diferences in
vehicle speed values under diferent intentions (F (2, 1977)�

83.69 and p< 0.001), and the post-hoc test found that there
was no signifcant diference in the vehicle speed values
between WWI and SWI (p � 0.15> 0.05). Tere is a sig-
nifcant diference in the vehicle speed value between WWI
and WSI (p< 0.001). Tere is a signifcant diference in the
vehicle speed value between SWI and WSI (p< 0.001).

4.1.3. Distance between Pedestrian and Zebra Crossing.
Figure 10(a) shows the DPZC changes under diferent
crossing intentions within 2.1 s before crossing the zebra
crossing. It can be seen that when the intention is WWI, the
DPZC value when pedestrians cross the zebra crossing is the
largest, which is at the top of the three curves. When the
intention is WSI, the DPZC value is the second, in the
middle of the three curves. When the intention is SWI, the
DPZC value is the smallest, which is at the bottom of the
three curves. Generally speaking, as time goes by, the DPZC
value with the intention of WWI and WSI shows a steady
downward trend.Te DPZC value with the intention of SWI
did not change signifcantly.

Figure 10(b) is a box diagram of DPZC for pedestrians
under diferent crossing intentions. When the crossing inten-
tions are WWI, SWI, and WSI, the mean values of DPZC are
1.05m, 0.44m, and 0.18m. One-way ANOVA found that there
were signifcant diferences in DPZC values under diferent
intentions (F (2, 1977)� 2018.46, p< 0.001), and the post-hoc
test found that therewere signifcant diferences inDPZC values
after pairings with diferent intentions (p< 0.001).

4.1.4. Pedestrian Speed. Figure 11(a) shows the pedestrian
speed changes under diferent crossing intentions within
2.1 s before crossing the zebra crossing. It can be seen that
when the intention isWWI, the pedestrian speed value when
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Figure 7: Time-series schematic diagram before pedestrians cross
the zebra crossing: the dotted line is the curb, and the gray box is the
zebra crossing. Time series T refers to the time from the beginning
of the pedestrian trajectory to the time when pedestrians arrive at
the zebra crossing.
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pedestrians cross the zebra crossing is the largest, which is at
the top of the three curves. When the crossing intention is
WSI, the pedestrian speed value is the second, in the middle
of the three curves. When the intention is SWI, the pe-
destrian speed value is the smallest, which is at the bottom of
the three curves. Generally speaking, as time goes by, there is
no signifcant change in the value of pedestrian speed with
WWI. Te value of pedestrian speed whose intention is WSI
drops rapidly. Te pedestrian speed value with the intention
of SWI shows a slow upward trend.

Figure 11(b) is a box diagram of pedestrian speed for
pedestrians under diferent crossing intentions. When the
crossing intentions are WWI, SWI, and WSI, the mean
values of pedestrian speed are 4.27 km/h, 0.39 km/h, and
2.22 km/h. One-way ANOVA found that there were sig-
nifcant diferences in pedestrian speed values under dif-
ferent intentions (F (2, 1977)� 2274.09 and p< 0.001), and
the post-hoc test found that there were signifcant difer-
ences in pedestrian speed values after pairings with diferent
intentions (p< 0.001).
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Figure 8: TTC under diferent crossing intentions. (a) Line chart of TTC change with time under diferent intentions. (b) Box diagram of
TTC under diferent crossing intentions.
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Figure 9: Vehicle speed under diferent crossing intentions. (a) Line chart of vehicle speed change with time under diferent intentions. (b)
Box diagram of vehicle speed under diferent crossing intentions.
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4.1.5. Distance between Vehicle and Zebra Crossing.
Figure 12(a) shows the DVZC changes under diferent
crossing intentions within 2.1 s before crossing the zebra
crossing. It can be seen that when the intention is WWI, the
DVZC value when pedestrians cross the zebra crossing is the
largest, which is at the top of the three curves. When the
intention is SWI, the DVZC value is the second, in the
middle of the three curves. When the intention is WSI, the
DVZC value selected by pedestrians crossing the zebra

crossing is the smallest, which is at the bottom of the three
curves. Generally speaking, as time goes by, the DVZC value
under diferent intentions shows a steady downward trend.

Figure 12(b) is a box diagram of DVZC for pedestrians
under diferent crossing intentions. When the crossing in-
tentions areWWI, SWI, andWSI, the mean values of DVZC
are 49.28m, 45.13m, and 19.44m. One-way ANOVA found
that there were signifcant diferences in DVZC values under
diferent intentions (F (2, 1977)� 2247.65, p< 0.001), and
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Figure 10: DPZC under diferent crossing intentions. (a) Line chart of DPZC change with time under diferent intentions. (b) Box diagram
of DPZC under diferent crossing intentions.
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Figure 11: Pedestrian speed under diferent crossing intentions. (a) Line chart of pedestrian speed change with time under diferent
intentions. (b) Box diagram of pedestrian speed under diferent crossing intentions.
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the post-hoc test found that there were signifcant difer-
ences in DVZC values after pairings with diferent intentions
(p< 0.001).

4.1.6. Age and Gender. Numerous studies have shown that
the age and gender of pedestrians have great diferences in
the choice of pedestrians to cross the zebra crossing. Gen-
erally speaking, men’s choice of crossing the zebra crossing is
relatively aggressive, and women’s choice is relatively cau-
tious [38, 39]. Te ages of pedestrians are usually divided
into young, middle-aged, and old. When crossing the zebra
crossing, elderly pedestrians choose relatively cautiously,
while middle-aged pedestrians choose more aggressively.
Generally, 18–30, 30–59, and >59 are young, middle-aged,
and old, respectively [40–42].

4.2. Model Results. Trough the analysis in the previous
chapter, the input parameter set of the model is fnally
determined, which includes TTC, DPZC, DVZC, vehicle
speed, pedestrian speed, age, and gender. In this paper, a
total of 1980 sets of valid data are selected, of which 75% are
used as the training set, and the remaining 25% are used as
the test set. Te training set uses a fve-fold cross-validation
method. Table 2 shows the number of training samples and
the number of test samples under diferent intentions. In
this paper, the pedestrian crossing intention recognition
models at 0 s, 0.5 s, and 1 s before crossing the zebra
crossing are established, respectively. Te performance of

the model was evaluated by precision, recall, F1 score,
confusion matrix, and receiver operating characteristic
(ROC) curve.

4.2.1. Model Recognition Results at 0 s before Crossing the
Zebra Crossing. Table 3 shows the model evaluation results
when the model is 0 s before crossing the zebra crossing.
Compared with several traditional machine learning algo-
rithms, it is found that the pedestrian crossing intention
model based on stacking ensemble learning has the highest
recognition accuracy, reaching 98.79%.Te precision, recall,
and F1 score of this model for identifying WWI are 98.78%,
98.78%, and 98.78%, respectively. In the same way, the
precision, recall, and F1 scores of the model for identifying
SWI are 99.38%, 98.76%, and 99.07%, respectively. Te
precision, recall, and F1 scores of the model for identifying
WSI are, respectively, 99.24%, 98.82%, and 98.53%. Te
comprehensive evaluation found that the pedestrian
crossing intention model based on stacking-based ensemble
learning introduced in this paper has the best recognition
performance. Te running time of the stacking model is
0.0083 s, and the running times of the AT-Bi-LSTM, LSTM,
RF, and SVM models are 0.0032 s, 0.0054 s, 0.0065 s, and
0.0046 s, respectively. It can be seen that the running times of
the above models are all in milliseconds, which can meet the
actual needs.

Figure 13 shows the ROC curve of each model. It can be
seen from the fgure that when the false positive rate is 5%,
the pedestrian crossing intention recognition model based
on stacking ensemble learning has the highest true positive
rate, followed by AT-Bi-LSTM, LSTM, RF, and SVM. Sec-
ondly, the area under the ROC curve based on the stacking
ensemble learning method is the largest, which is higher
than the other four algorithms. In addition, the ROC curves
of the fve algorithms are relatively far from the straight-line
y� x, which shows that the recognition performance of the
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Figure 12: DVZC under diferent crossing intentions. (a) Line chart of DVZC change with time under diferent intentions. (b) Box diagram
of DVZC under diferent crossing intentions.

Table 2: Number of intention samples.

Label Train sample Test sample
WWI 494 164
SWI 482 160
WSI 510 170
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fve models is better. A comprehensive comparison found
that the performance of the pedestrian crossing intention
recognition model based on stacking ensemble learning
introduced in this paper is the best.

Figure 14 shows the confusion matrix of the fve algo-
rithms. It can be seen from the confusion matrix that the
SVM-based intention recognition model has the most
misrecognition times. Te number of times that WWI is
recognized as SWI andWSI is 6 and 11, respectively, and the
times that SWI is recognized as WWI and WSI are, re-
spectively, 5 and 7, and the number of times that WSI is
recognized as WWI and SWI is 12 and 8, respectively. In
contrast, the pedestrian crossing intention recognition
model based on stacking integrated learning has the least
number of misrecognitions and the best model performance.
Among them, the times that WWI is recognized as SWI and
WSI are 1 and 1, respectively, and the times that SWI is
recognized as WWI and WSI are 1 and 1, respectively, and
the times of WSI being recognized as WWI and SWI are 2
and 1, respectively.

4.2.2. Model Recognition Results at 0.5 s before Crossing the
Zebra Crossing. Table 4 shows the model evaluation results
when the model is 0.5 s before crossing the zebra crossing.
Compared with several traditional algorithms, it is found that

the intention recognition model based on stacking ensemble
learning has the highest accuracy of 95.36%, the model
recognition accuracy based on AT-Bi-LSTM is 92.12%, the
model recognition accuracy based on LSTM is 89.30%, and
the model recognition accuracy based on RF is 87.07%. Te
SVM-basedmodel has the lowest recognition accuracy, which
is 85.26%. It can be seen fromTable 4 that the precision, recall,
and F1 score of the pedestrian crossing intention model based
on stacking ensemble learning are signifcantly higher than
the other four algorithms. It can be seen that the stacking
ensemble learning method introduced in this paper has the
best recognition performance at 0.5 s before crossing the zebra
crossing. Compared with Table 3, it can be seen that when the
model is recognized at 0.5 s before crossing the zebra crossing,
the accuracy has decreased to a certain extent. Te main
reason is that some key features contained in the sequence
data have been deleted. However, in general, the accuracy of
the model can still meet actual needs.Te running time of the
stacking model is 0.0076 s, and the running times of the AT-
Bi-LSTM, LSTM, RF, and SVM models are 0.0027 s, 0.0060 s,
0.0061 s, and 0.0052 s, respectively.

Figure 15 shows the ROC curve of each model. It can be
seen from the fgure that when the false positive rate is 5%,
the pedestrian crossing intention recognition model based
on stacking ensemble learning has the highest true positive
rate, followed by AT-Bi-LSTM, LSTM, RF, and SVM. Sec-
ondly, the area under the ROC curve based on the stacking
ensemble learning method is the largest, which is higher
than the other four algorithms. Compared with Figure 16, it
can be seen that the area under the ROC curve corre-
sponding to each algorithm has been reduced, and the
performance of the model has begun to decline.

Figure 16 shows the confusionmatrix of the fve algorithms.
It can be seen from the confusion matrix that the SVM-based
intention recognition model still has the most misrecognition
times.Te number of times thatWWI is recognized as SWI and
WSI is 10 and 15, respectively, and the times that SWI is
recognized asWWI andWSI are, respectively, 7 and 11, and the
number of times thatWSI is recognized asWWI and SWI is 19
and 11, respectively. In contrast, the pedestrian crossing in-
tention recognition model based on stacking ensemble learning
has the least number of misrecognitions and the best model
performance. Among them, the times that WWI is recognized
as SWI and WSI are 3 and 5, respectively, and the times that
SWI is recognized as WWI and WSI are 2 and 5, respectively;
the times of WSI being recognized as WWI and SWI are 7 and
3, respectively. Compared with Table 3, the number of mis-
recognition times has increased.

Table 3: Model evaluation result at 0 s before crossing the zebra crossing.

Algorithm Accuracy (%)
WSI WWI SWI

Pr (%) Re (%) F1 (%) Pr (%) Re (%) F1 (%) Pr (%) Re (%) F1 (%)
SVM 90.08 88.24 89.29 88.76 89.63 89.63 89.63 92.50 91.36 91.93
RF 92.12 90.59 91.67 91.12 92.07 92.07 92.07 93.75 92.59 93.17
LSTM 93.54 91.76 93.41 92.58 93.9 93.33 93.62 95.00 93.83 94.41
AT-Bi-LSTM 96.15 95.29 95.86 95.58 96.34 95.76 96.05 96.88 96.88 96.88
Stacking 98.79 98.24 98.82 98.53 98.78 98.78 98.78 99.38 98.76 99.07
Note. Pr represents precision, Re represents recall, and F1 represents F1 scores.
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Figure 13: ROC curves of diferent models at 0 s before crossing
the zebra crossing.
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Figure 14: Confusion matrix at 0 s before crossing the zebra crossing: the cyan color indicates the number of correct recognitions and their
proportion in all samples, and the light red color indicates the number of misrecognitions and their proportion in all samples.Te rightmost
column in the fgure is precision, and the bottom column is recall. (a) Confusion matrix of SVM; (b) confusion matrix of LSTM; (c)
confusion matrix of AT-Bi-LSTM; (d) confusion matrix of stacking.

Table 4: Model evaluation result at 0.5 s before crossing the zebra crossing.

Algorithm Accuracy (%)
WSI WWI SWI

Pr (%) Re (%) F1 (%) Pr (%) Re (%) F1 (%) Pr (%) Re (%) F1 (%)
SVM 85.26 84.76 84.24 84.50 88.75 87.12 87.93 82.35 84.34 83.33
RF 87.07 86.59 86.59 86.59 90.63 88.41 89.51 84.12 86.14 85.12
LSTM 89.30 90.24 88.62 89.43 91.88 90.74 91.30 87.06 88.62 87.83
AT-Bi-LSTM 92.12 92.07 91.52 91.79 93.75 93.17 93.46 90.59 91.67 91.12
Stacking 95.36 95.12 94.55 94.83 96.88 96.27 96.57 94.12 95.24 94.67
Note. Pr represents precision, Re represents recall, and F1 represents F1 scores.
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Figure 15: ROC curves of diferent models at 0.5 s before crossing the zebra crossing.
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4.2.3. Model Recognition Results at 1 s before Crossing the
Zebra Crossing. Table 5 shows the model evaluation results
when the model is 1 s before crossing the zebra crossing.
Compared with several traditional algorithms, it is found
that the intention recognition model based on stacking

ensemble learning has the highest accuracy of 89.27%, the
model recognition accuracy based on AT-Bi-LSTM is
85.23%, the model recognition accuracy based on LSTM is
81.18%, and the model recognition accuracy based on RF is
78.35%. Te SVM-based model has the lowest recognition
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Figure 16: Confusionmatrix at 0.5 s before crossing the zebra crossing: the cyan color indicates the number of correct recognitions and their
proportion in all samples, and the light red color indicates the number of misrecognitions and their proportion in all samples.Te rightmost
column in the fgure is precision, and the bottom column is recall. (a) Confusion matrix of SVM; (b) confusion matrix of LSTM; (c)
confusion matrix of AT-Bi-LSTM; (d) confusion matrix of stacking.

Table 5: Model evaluation result at 1 s before crossing the zebra crossing.

Algorithm Accuracy (%)
WSI WWI SWI

Pr (%) Re (%) F1 (%) Pr (%) Re (%) F1 (%) Pr (%) Re (%) F1 (%)
SVM 76.33 76.22 75.30 75.76 82.50 78.57 80.49 70.59 75.00 76.22
RF 78.35 78.05 77.58 77.81 83.75 80.72 82.21 73.53 76.69 78.05
LSTM 81.18 81.71 79.76 80.72 86.25 83.64 84.92 75.88 80.12 81.71
AT-Bi-LSTM 85.23 85.98 83.43 84.68 90.00 87.80 88.89 80.00 84.47 85.98
Stacking 89.27 89.63 88.02 88.82 93.13 90.85 91.98 85.88 88.48 89.63
Note. Pr represents precision, Re represents recall, and F1 represents F1 scores.
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accuracy, which is 76.33%. It can be seen from Table 5 that
the precision, recall, and F1 score of the pedestrian crossing
intention model based on stacking ensemble learning are
signifcantly higher than the other four algorithms. It can be
seen that the stacking ensemble learning method introduced
in this paper has the best recognition performance at 1s

before crossing the zebra crossing. Compared with Tables 3
and 4, it can be seen that when the model is recognized at 1s
before crossing the zebra crossing, the accuracy has de-
creased. Te main reason is that most of the key features
contained in the sequence data have been deleted. However,
the method introduced in this paper still has high
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Figure 17: ROC curves of diferent models at 1s before crossing the zebra crossing.
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Figure 18: Confusion matrix at 1s before crossing the zebra crossing: the cyan color indicates the number of correct recognitions and their
proportion in all samples, and the light red color indicates the number of misrecognitions and their proportion in all samples.Te rightmost
column in the fgure is precision, and the bottom column is recall. (a) Confusion matrix of SVM; (b) confusion matrix of LSTM; (c)
confusion matrix of AT-Bi-LSTM; (d) confusion matrix of stacking.
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recognition accuracy. Te running time of the stacking
model is 0.0094 s, and the running times of the AT-Bi-
LSTM, LSTM, RF, and SVM models are 0.0035 s, 0.0059 s,
0.0071 s, and 0.0040 s, respectively.

Figure 17 shows the ROC curve of each model. It can be
seen from the fgure that when the false positive rate is 5%,
the pedestrian crossing intention model based on stacking
ensemble learning has the highest true positive rate, over
80%. Te recognition accuracy of the remaining four al-
gorithms has dropped signifcantly, and the corresponding
value is less than 80%. Secondly, the area under the ROC
curve based on stacking ensemble learning is the largest,
which is higher than the other four algorithms. Compared
with Figures 16 and 17, it can be seen that the area under the
ROC curve corresponding to each algorithm has been
reduced.

Figure 18 shows the confusion matrix of the fve algo-
rithms. It can be seen from the confusion matrix that the
SVM-based intention recognition model has the most
misrecognition times. In contrast, the pedestrian crossing
intention recognition model based on stacking ensemble
learning has the least number of misrecognitions and the
best model performance. Compared with Figures 14 and 16,
the number of misrecognition times has signifcantly
increased.

5. Conclusions

Tis paper frst collected the motion parameters of pedes-
trians and vehicles with laser radar and HD monitor and
selected 1980 efective samples. Secondly, the statistical
method is used to obtain the characteristic parameter set that
can refect the pedestrians’ crossing intention. Finally, using
the characteristic parameter set as the input of the stacking
integrated learning method, a pedestrian crossing intention
model with high recognition accuracy is trained and com-
pared with traditional machine learning algorithms. Te
results show that the accuracy rate of the pedestrian crossing
intention recognition model based on stacking ensemble
learning is 98.79%when it is recognized at 0 s before crossing
the zebra crossing. When it is recognized at 0.5 s before
crossing the zebra crossing, the accuracy rate of the pe-
destrian crossing intention recognition model based on
stacking ensemble learning is 95.36%. When it is recognized
at 1 s before crossing the zebra crossing, the accuracy of the
pedestrian crossing intention recognition model based on
stacking ensemble learning is 89.27%. Compared with tra-
ditional machine learning algorithms, the method intro-
duced in this paper has the best recognition performance.
Te method introduced in this paper has a high accuracy of
intention recognition, which is of practical signifcance for
future fully autonomous vehicles to efectively avoid human-
vehicle conficts and improve the efciency of urban road
driving.
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