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Long waiting time at railway level crossings poses a risk on the safety and affects capacity of rail and road traffic. However, in most
cases, the long closing time can be prevented by reducing the time lost at a railway level crossing. The emphasis of this study is to
present a numerical optimisation algorithm to reduce the time lost per train trip at a railway level crossing. Thus, attributes with
the highest impact on the railway level crossing closing time were extracted from the data analysis of rail-road level crossings on
the southern corridor of the Western Cape metro rail. Powell’s optimisation algorithm was formulated on the minimisation of the
time lost at the railway level crossing per trip. Thus, time lost is constrained by the technical and train’s traction constraints. The
upper and lower bounds of Powell’s algorithm were defined by the threshold closing time in addition to the actual and expected
probability density functions. The algorithm was implemented in Matlab. Furthermore, the algorithm was trained on 8000 data
sets and tested on 2000 data sets. The developed algorithm proved to be effective and robust in comparison to the current state of
railway level crossings under study. Thus, the algorithm was validated to reduce the time lost at the railway level crossing by at

least 50%.

1. Introduction

A railway level crossing marks a point of shared responsi-
bility between rail and road transport. Both modes of
transports have different operational characteristics, but first
preference is given to the railway because of its operational
complexities. There is a growing concern of unsafe human
behaviour at the railway level crossings due to the long
closing time of gates on the passage of the train [1]. In
addition, the presence of railway level crossings increases the
train’s travel time in the network, thus constraining traffic
capacity. This is often attributed to the imposed speed re-
strictions as well as train’s scheduled stops. Moreover, long
waiting time is inevitable in the case of increased railway
traffic heterogeneity and volume. Furthermore, a train
travelling at the speed significantly lower than the maximum
permissible speed results in activation being triggered at the
same point as when the train is travelling at the maximum
permissible speed. Therefore, a train with slower speed

increases the closure duration [2, 3]. Thus, triggering of the
railway level crossing from far tends to result in the slower
train spending more time over the entire crossing section. As
a result, long waiting time poses safety and capacity risks at
the railway level crossings [1].

Railway level crossings are both safety critical and
sociotechnical. Therefore, the problem with such a system
tends to be cross dimensional with a large number of un-
derlying uncertainties. Thus, machine learning has dem-
onstrated superior performance in transit problems and is
drawing significant attention in data analysis and optimi-
sation of the railway level crossing parameters [4]. Extensive
literature exists in the application of machine learning in the
safety and capacity of the railway level crossings in area of
safety improvement. For instance, a data consolidation
model was developed to determine which railway level
crossings can be closed in the United States as part of the
effective safety program [5]. This involved the application of
an eXtreme Gradient Boosting (XGBoost) algorithm in
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determining the railway level crossing closing decision based
on the 14 features derived from safety, engineering, eco-
nomic, environmental, and social aspects. The model was
able to achieve an expert judgement with an accuracy of
0.991. On the other hand, an Analytic Hierarchy Process
based on the compromise ranking method was applied in
railway route planning and design [6]. The results dem-
onstrated that the explicit complex decision-making process
can be achieved in railway applications using multicriteria
optimisation methods.

Binary programming was applied in the prioritisation of
the railway level crossing project, based on the average
probability of having m crashes from the n railway level
crossings within the corridor [7]. Thus, the average prob-
ability obtained from the binary programming was able to
select the optimal set of safety improvement actions, which
could yield the maximum railway level crossing reliability
and mobility. Conversely, the Random Forest algorithm
proved effective in the ranking and analysis of the railway
level crossing attributes in the selection of the suitable
protection type [8]. The algorithm was able to identify the
key safety factors with highest influence on the safety im-
provement and collision prediction at the railway level
crossings in Canada. In addition, a full Bayesian analysis has
been applied in the selection of the best estimate of the
accident modification factors, based on the combination of
the likelihood and prior knowledge of countermeasures [9].
The framework was able to discern the anticipated safety
benefit of countermeasures in the face of uncertainty across
the accident modification factor credible interval.

However, Liang et al. proposed a similar framework on
the railway level crossing risk assessment. A probabilistic
risk assessment and improved decision was achieved based
on the application of Bayesian framework on datasets col-
lected from several railway level crossings in France [10].
Thus, the model indicated that about 81% of the rail and road
vehicle accidents resulted in zero fatalities, whilst 19% of
accidents were likely to result in fatalities [10]. A combi-
nation of Local Estimated Scatterplot Smoothing (LOESS)
and Generalized Additive Model (GAM) performed effec-
tively in evaluating the in-vehicle railway level crossing
warning system based on a taxi’s speed, acceleration, and
jerk data [11]. The model revealed that taxi drivers showed
improved behaviour with an in-vehicle warning system. Yet
speed, acceleration, and jerk difference per multiple transit
indicated that the model showed a lack of empirical gen-
eralizations of the taxi drivers who used the service.

Machine learning has also been applied in traffic control
at the railway level crossings. A multiagent system was
proposed in modelling urban traffic control to improve
capacity at the railway level crossings [12]. An intersection
agent (ISA) was used for the railway level crossing since it
marks the intersection of the rail and road. Therefore, fusion
of the intelligent ISA control cooperation and genetic re-
inforcement learning algorithm was proposed to ensure
effective cooperation among the rail and road agents. Thus,
the ISA control strategy would modify the signal cycle of
every intersection with the help of the reinforcement
learning in actualizing the local traffic optimisation. The

Journal of Advanced Transportation

study reported that the intelligent cooperation control is
most effective for higher traffic volume; however rein-
forcement learning allowed the evaluating index to increase
when the traffic flow increases and surpasses saturation [12].

An object detection railway level crossing protection
system is another field that has seen an increasing appli-
cation of machine learning. Hence, object parametrisation
and localisation usually involve the application of classifi-
cation learning algorithms and Kalman filtering for object
tracking [13, 14]. However, the challenge with these algo-
rithms is evident in video processing because they cannot
detect every pixel of the object [13]. Furthermore, machine
learning application confirmed that the three best measures
for managing railway level crossing accidents can be
achieved by the in-vehicle warning system, obstacle detec-
tion, and constant warning time [9, 11]. However, constant
warning time without optimal railway level crossing closing
tends to perpetuate unsafe human behaviour [1, 15]. The
impact of long railway level crossing closing time on the
railway planning and operation is often significant and, if
not monitored, may result in adverse consequences [3, 16].
Moreover, the inability to predict and reinforce minimal
railway level crossing closing time is likely to disintegrate the
traffic management system [17].

Nikolajevs et al. proposed prediction of the railway level
crossing closure duration, based on the train speed mea-
surement by either additional sensors or evaluation of the
track circuit’s impedance [2]. However, prediction of the
closure time does not reinforce adherence to minimal
railway level crossing closing time. Alternatively, Work et al.
proposed the use of a support vector machine in the pre-
diction of the train arrival time at the railway level crossing.
Comparative analysis of the various machine learning al-
gorithms indicated that the Random Forest algorithm
provides the best estimation within an appropriate time-
frame compared to linear regression and neural network
[18]. Likewise, the multitask deep neural network has proven
effective in estimating short-term transit delays [4]. Nogushi
et al. proposed the reduction of the railway level crossing
closing time using an optimal rail-road schedule. The op-
timal schedule was calculated from a genetic algorithm using
time delay for each train at each station as a gene value and
the closing time as the fitness value. Thus, the study con-
firmed the reduction of the railway level crossing blocking
time with the changing combinations of the departure time
[19]. Moreover, the study concluded that the rail-road
waiting time can be reduced through the application of the
genetic algorithm on the calculation of the schedule, taking
into account the train’s location and speed [20]. Thus far,
there is limited literature on the application of machine
learning or data-centric methods in the optimisation of the
railway level crossing closing time.

The present study proposes reducing the time lost at
railway level crossing per train trip. Thus, this study con-
tributes to the existing literature in the application of ma-
chine learning in the railway level crossing safety and
capacity analysis. Moreover, the study demonstrates the
significance of data-centric models on rail-road level
crossing operations. In this study, railway level crossings
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found the southern corridors of the Western Cape metro rail
are used to formulate the optimisation of the railway level
crossing closing time. Thus, the criterion used by Powell’s
method [21] is based on the minimisation of the area
bounded by the threshold closing time as well as the actual
and expected density functions. The proposed method is
compared to the current status quo of the railway level
crossings in the Western Cape, South Africa. The method
showed satisfactory results thus proving its effectiveness.

The structure of the paper takes the following form.
Section 2 discusses preliminaries of the railway level crossing
closing time and the application of numerical optimisation.
The adopted methodological process is outlined in Section 3.
Lastly, results and discussions are presented in Sections 4
and 5, respectively.

2. Preliminaries

The railway level crossing depends on the activation and
deactivation points denoted by A and C in Figure 1. A
simple illustration of the train trajectory at the railway level
crossing is shown in Figure 1; thus a track section is
delimited by at least two detection points (A or B or C). The
detection of the first train axle over A triggers the railway
level crossing protection. Similarly, detection of the last
train axle over C will withdraw the railway level crossing
protection. Thus, railway level crossing closing time is the
time difference between the insertion and withdrawal of the
protection. The train is expected to brake on the approach
of the railway level crossing’s activation track (t_a). Fur-
thermore, the train enters into coasting driving mode along
the railway level crossing inner area bounded by SO and
S0_1. Lastly, the train accelerates on the exit of the de-
activation point (C).

Assume that no vehicles or passengers get trapped
inside the railway level crossing once the protection is
enabled. The objective variable ¢ (level crossing closing
time) is the sum of the contribution of the feature vector x
at the i location on the railway level crossing. The
objective function is constrained by the technical and
traction parameters shown in Figures 1 and 2, respec-
tively. Hence, optimisation of the railway level crossing
time can be expressed as follows:

minimiseZti (xp)forieR, k=1,...,3,
ik
x,eX; (technical constraints stated in Table 1)
st Z F; = p, p € R(traction characteristics stated in Table 2).
i

(1)

The term x; denotes attributes extracted from data
collected from the railway level crossings under study. Thus,
technical constraints include dwell time, railway level
crossing speed restriction, and time delay on the protecting
signals. In contrast, traction characteristics include the
longitudinal forces and velocity at a location on the railway
level crossing. The resultant traction force shown in equation
(2) illustrates the relationship between the force acting on
the train and the velocity.
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F1GURE 2: Block diagram of the railway level crossing optimisation
solution.

Y F =F,(v)=R(vr,B) - F,(v) (2)
where

Mj is the train’s inertial mass,
F,(v) = u,M; dv/dt is the train’s traction force,

R(v,1,B) = ¢y + ¢,v+¢,v* + M;(D/1000r) +
Mg cos f is the sum of resistive forces,

F,(v) = (1/2)dev/dt is the train’s braking force,

(v,7,B) is the train’s speed, rail curvature radius, and
angle of inclination.

The rail curvature (r) and angle of inclination (f) are
different for each railway level crossing. Moreover, coeffi-
cients ¢, c,, and ¢, represent the axle-rail friction, me-
chanical resistance of shaft rotation, and aerodynamic
resistance; y, is the tractive resistance. Lastly, coefficient D
depends on the rail characteristics.

3. Methodology

Railway level crossing closing time is influenced by many
attributes, some generic or specific to each system. Generic
parameters are always accounted in the design whilst specific
parameters receive no attention [3, 22]. However, it is
imperative to assess specific attributes to achieve optimal
railway level crossing closing time. Thus, specific attributes
of the railway level crossings found on the southern corridor
of the Western Cape metro rail were analysed. Attributes
with highest influence in the railway level crossing closing
time were extracted from the analysis. It was found that
dwell time, train speed, and time delay imposed on the



protecting signals were the most important features influ-
encing the closing time on the southern corridor [15].
Furthermore, the analysis revealed that the coexistence of at
least two of these attributes has a severe effect on the level
crossing system’s capacity and safety [15].

The diagram in Figure 2 illustrates the method adopted,
followed by the detailed overview in Sections 3.1, 3.2, and
3.3. Data of events concerning the operation of the railway
level crossings on the southern corridor of the Western
Cape metro rail were collected. A total of 10000 separate
events of the track occupancy and signal routing involved
in the railway level crossing operation were recorded. Only,
‘occupied’ and ‘clear’ track occupancy statuses are con-
sidered. Thus, track occupation time marks the time at
which the first axle of the train is detected on the track
section, whilst the track’s vacancy or “clear” time marks the
time at which the last axle of the train is counted out of the
track section.

Railway level crossing closing time is approximated by
the time difference between the occupation time of the
activation track and clearing time of the deactivation track.
In addition, speed of train as it enters the activation track is
estimated from the distance, occupation, and release time
of the section. Some of the considered railway level
crossings have, at most, 15s time delay on the protecting
signals due to lack of braking distance. Thus, total time
delay incurred due to the timer on these signals is evaluated
from the time the activation track is occupied to the time at
which the train exits the track in response to elapsed signal
timer.

The regression model is derived from the data, as shown
in Figure 2. The data is passed into the kernel density es-
timation (KDE) algorithm which is used to determine the
probability density function of the time spent per train trip.
Numerical optimisation (Powell’s method) is formulated
based on the results of the regression model and KDE al-
gorithm. At last, numerical optimisation is applied to reduce
the time lost per train trip as a result yielding optimal railway
level crossing closing time.

3.1. Data Analysis. Regression techniques are used to derive
the model of the attributes with the highest influence on the
railway level crossing closing time. Hence, regression model
of railway level crossing closing time y and feature vector x
of n =3 features and m = 8000 training sets were built in
Matlab. Moreover, the model was tested using 2000 data sets.
The feature vector represents dwell time, train entry speed,
and time delay on the protecting signals denoted by x,, x,,
and x;, respectively. Dwell time exhibits a linear pattern
whereas others exhibit nonlinear patterns, as shown in
Figures 3, 4, and 5. Thus, feature transformation was applied
to the nonlinear features.

The hypothesis (hg(x)) of the regression model is given
in (2) with ¢, (x,6) and g, (x, ) being the parameterised
nonlinear function for train entry speed and time delay on
the protecting signal, respectively. The quadratic and ex-
ponential feature transformation functions were selected for
the train entry speed and time delay. The feature
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FIGURE 3: The best fit of the dwell time against railway level crossing
closing time.
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FIGURE 4: The best fit for the train’s entry speed against railway level
crossing closing time.

transformation has been introduced to allow for application
of the gradient descent and least squares. Thus, expressions
of the feature transformation function are shown in (3) and
(4). Gradient descent is applied to tune the parameters of the
model by minimising the regression cost function over 6 as
given in (5). In addition, Jacobian leverage is applied in
estimating the parameters of the nonlinear feature trans-
formation function.

3
hy(x) = Zhew (x;) (3)
i=1
where 0% = [6,, 6,17, 6 = [6,, 65, 6,]", and 6%

= [0, 05, 0,175 By (1) = 0y + 0,x;, hyer (x,) = 0, + 054,
(%35 05), By (x3) = 6, + 059, (x5, 0,).
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Time delay vs. railway level crossing closing time (s)
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FiGUure 5: The best fit for time delay against the railway level
crossing closing time.

max(x,)+1—-x
1 (%2, 65) = ( ( iz)o 2

(1+ 66x2)2’
9> (x3,6;) = exp(6;x3), (4)

1 | ; A2
. 0) = s h @y _ ,,0 )
meln]( ) mgln 2m|;;( e(x ) y )
0=16",0%,091": x® = [x®, x{ x"T. Here hy(x®)
represents the estimated closing time based on the derived
model and y is the actual closing time.

3.2. Density Estimation. The kernel density estimation
method is applied to reconstruct an estimate of the time
spent at the railway level crossing per train trip. The reason is
that kernel density estimation can converge to the true
density faster whilst guaranteeing a smooth output in
comparison to its counterparts [23, 24]. Thus, the kernel is a
smooth function K which determines the shape of the es-
timator [21, 25, 26]. In addition, the kernel function par-
titions dataset of railway level crossing closing time into
several bins and estimates the density from the bin count
[25, 26]. The Gaussian kernel is chosen for this application
and the performance of its estimator p(x) is assessed using
risk R and the mean squared error (MSE), expressed in
equations (5) and (8), respectively.

R = (bias(p(x)))* + var (p(x)), (5)
bias (p (x)) = %aith’(mo(h“), (6)
var (5 (x)) = n—lhp(t)62+0(%>, (7)

MSE (p(x)) = O(n™“?), (8)

where p(x) = (1/n) Y, (1/h)K (x — X;/h) is the kernel
density estimator, x = [x,x,, x5]", 6 = [ K(t)dt, & =

sz(t)dt, and h is the smoothing bandwidth which de-
pends on sampling size ». In addition, it is assumed that the
true density function p (¢) is continuous at t and thath — 0
and nh — 0. On that note, the estimator p(¢) is assumed
to convergence in probability to the true density function
p(t), ie, p(t) —F p(t). The notation var is used for
variance.

Similarly, the Gaussian kernel density estimate g(x) of
the expected railway level crossing closing time per each
train trip is to be populated. The expected closing time is the
designed for case, based on the ideal railway level crossing
technical parameters and train traction characteristics.
Hence, g (x) is populated in accordance with the parameters
of the technical and train traction constraints defined in
Tables 1 and 2, respectively. Furthermore, threshold closing
time is the maximal permissible railway level crossing
closing time which takes into account the prevailing con-
straints. This varies for each railway level crossing. As al-
ready mentioned, the recovery of the time lost per passage
can improve the railway level crossing safety and capacity.
Therefore, time lost by trains at the railway level crossing is
represented by the surface area bounded by the threshold
railway level crossing’s closing time, density function g(x),
and density estimator p (x).

3.3. Optimisation Method. Optimisation of the railway level
crossing closing time is critical in improving safety and
traffic capacity. Thus, optimal closing time is achieved by
minimising the time spent by trains on activation, inner
area, and deactivation of the railway level crossing. The time
spent at the railway level crossings is constrained by the
technical parameters listed in Table 1. Dwell time relates to
the train’s scheduled stop. Hence, the effect due to dwell time
is restricted to 10% of anticipated train stop time at the
platform. Furthermore, the line speed and railway level
crossing speed restriction are applied in accordance with
specifications of the southern corridor of the Western Cape
metro rail. Lastly, time delay on the protecting signal is
limited to an average reaction rate of the driver of 2s to 4s.

Additionally, performance constraints are determined
by the tractive characteristics on the presiding compartment
of the railway level crossing closing time. Thus, resultant
force and associated train speed restriction per driving mode
are stated in Table 2.

As mentioned above, the time lost at the railway level
crossing is represented by the surface area bounded by the
threshold railway level crossing’s closing time, density
function, and density estimator g (x). Then, optimisation of
the railway level crossing closing time reduces the denoted
minimum surface area. In this case, the time lost at the
railway level crossing is obtained by computing numerical or
analytical integration, as shown in the following equation:
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TaBLE 1: Technical constraints.
Parameter Abbreviation Value
Dwell time t, 10%
Speed restriction Vi 30-35km/h
Time delay t; 2s-4s
Line speed vy 75km/h
TaBLE 2: Constraints in each train driving mode.

Driving mode > F v
Braking F,(v)=R(v,1,) = F,(v)<0 v <,
Coasting F,(v)-R(v,1,B) - F,(v)=0 v <V,
Acceleration F,(v)-R(v,1,B) - F,(v)>0 Vi SV <vp

b cd (f ~

I= J J J (g (x) — p(x))dx;dx,dx,, )
a c e

where the integral is evaluated over the 3D bounded region
defined by the kernel density estimators g (x) and p(x). The
points of interest of the region on which the integral is
evaluated are denoted by a, b on the i plane, ¢, d on the j
plane, and e, f on the k' plane.

Let f (x) = g(x) — p(x) which can be further composed
into f (x,,x,,x;); then numerical integration can be ap-
proximated to equation (10) by applying the generalized
Gaussian quadrature to evaluate the nodes and weights for
the product of the polynomial and logarithmic functions
[27]. The generalized Gaussian quadrature formula has been
proven to give better results for integration over three-di-
mensional regions particularly in common applications in
science and engineering [27].

b pd f
I = J J J‘ f((-xl;XZ,X3)dx3dx2dx1

c e

(10)

~ ;clf( (xl)l’ (xz)l’ (x3)1)’

where ¢, = w‘iwéwé‘ b-a)(d-o)(f-e) (x),=(b-a)
+a; (x,); = (d - c)r/j +6 (%)= (f —e)(, + e Theterm Lis
the number of selected point set over which the integration is
to be evaluated. .
Here, &;, 77, and (. are the node points, and w, w), and

wk are the corresponding weights in one dimension. Several
assumptions are postulated; features such as dwell time, train
entry speed, and time delay on the protecting signal are
nonnegative. Furthermore, the constrained set is nonempty
and the objective function f(x;,x,,x;) is finite. Thus,
numerical optimisation can be formulated as follows:

I
min ) ¢ f ((x,)p (x,)p (x3);) for j=1,2,3

=1

xJeRq

arg min(hgm (xl)) < tg,arg max(hem (xz)) < Vi
subject to

arg min((hgm (x3)) <t,F,(x,) = R(x,,7,8) = Fp(x,)< 0.
(11)
Powell’s optimisation method is applied to minimise the
time lost at the railway level crossing per train trip. The
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Powell method is a single-shot and fast converging method
which attempts to find the local fit-statistics minimum
nearest to the starting point [28]. The advantage of using the
Powell method is its robust direction set. Hence, it will move
in one direction until it finds the minimum [28, 29]. Fur-
thermore, it is a gradient-free minimisation algorithm and
therefore it does not require the objective function to be
smooth [29-31]. In this application there are 3 design
variables x;, x,, and x3; thus the Powell algorithm can
converge faster than numerical optimisation algorithms. In
addition, it has been proven effective for problems with less
than 10 design variables [28]. Although the algorithm can
find multiple local optima there is no guarantee that it will
find the global optimum [29]. Nonetheless, it can produce
better results for this application.

The new unconstrained optimisation algorithm (NEW-
UOA) software of the Powell method is implemented in Matlab
due to its efficacy in minimising a noisy objective function [30].
NEWUOA uses a truncated conjugated gradient algorithm to
find the minimum . within the trust region [32]. The effi-
ciency of the algorithm is derived from the intermingled trust
region iteration and model iteration. Thus, objective of the trust
region step is to find the better objective function value whilst
the model iteration improves the model [32]. Assume a starting
point x_ for each design variable with the objective function
f (x,) and initial interpolation set Y containing x. The initi-
alisation stage assigns k0, Ay and
xp ——argmin{f (y;), y; € Y}. The initial point of the
NEWUOA x; is chosen as a point with lowest objective
function value. The result of optimisation is that the step s, is
added to x; to give the new point; x «— x; + s;. The length of
s, can either become the trust region iteration or model iter-
ation. Thus, if the length of s is the too short, it indicates that
the model must be improved; therefore it is referred to as model
iteration. Otherwise, the length of s, becomes the trust region
iteration.

In the trust region step, where f (x}) < f (x;), the objective
function value is replaced by the new point x}, whereas in the
model iteration, a point x; will not be added to the model.
Instead, a new point will be calculated and will replace the point
furthest from x,,;. Moreover, new point is chosen in such a way
that it improves minimisation #1;. The algorithm uses several
parameters such as the trust region radius A, which is related to
initial current radius (pj,), lower limit of the radius (p,q), and
upper limit of the radius (p;). The normal trust region radius
Ay is used to limit the step length. In addition, py., is used to
keep enough distance between the interpolation points
(> ((2n+ 1) + n)*,n = 3) in the initial model so that it is still
accurate in case of presence of errors in the evaluation of f. The
following parameters were used for the NEWUOA model.

4. Results

The results of the study are presented as follows. Section 4.1
entails the results of the data analysis followed by the kernel
density estimation and optimisation results in Sections 4.2 and
4.3, respectively. Validation of the proposed method is pre-
sented in Section 4.4. Throughout, the study training dataset of
8000 samples and test dataset of 2000 samples have been used.
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4.1. Data Analysis. The gradient descent algorithm has been
applied to estimate the parameters of the model listed in
Tables 3 and 4. Similarly, the learning curve shown in
Figure 6 indicates that the regression algorithm converges to
the local or global minima. The deviation in the training and
test cost functions after convergence is not vast; thus there is
no indication of overfitting or underfitting. However, the
learning curve does not give an indication of the impact of
the residuals. Hence, error analysis in Table 5 indicates that
outliers, due to feature transformation, have been heavily
penalised. Yet, the model achieves accuracy of 78.2 % which
is relatively good given the data.

4.2. Kernel Density Estimation. The bias-variance kernel
density estimator trade-off is used to determine the amount
of smoothing required. The optimal amount of smoothing
minimises the risk and consequently reduces the mean
square error. The smoothing bandwidth is chosen to be a
multiple of the sampling rate. The iterations of smoothing
bandwidths are run to determine the bandwidth that
minimises the risk and mean square error by visually ob-
serving the estimator output. The summary of results is
shown in Table 6. It can be observed that the appropriate
smoothing bandwidth for this application is 0.08 since the
spurious effect of the data is not masked. Furthermore,
density estimators of the features with significant impact on
the railway level crossing time per train trip are shown in
Figure 7. The culmination of the estimators would result in
the 3D output; however for this analysis they are separated.
The contribution of the dwell time is less significant on the
first lobe in comparison to the entry velocity and time delay.

4.3. NEWUOA Method. The NEWUOA software which is a
Powell new unconstrained optimisation algorithm was used
to minimise the area of a region between the density esti-
mates of the features with highest influence on the railway
level crossing time. The NEWUOA algorithm developed by
Powell is run on Fortran and is interfaced to Matlab [29, 30].
The sensitivity analysis of the algorithm is shown in Table 7.
Herein, the time consumption and number of iterations
required for convergence at chosen initial points
[(x1, %), (x5, ¥), (x5, ¥)] are also presented.

The sensitivity analysis of the optimisation solution
indicates that the a priori information can significantly
reduce the computation time and the number of iterations
required. Moreover, choosing the initial point in between
the far extremes reduces the computation time and number
of iterations. The minimum required number of iterations
((2n+1)+n)* has been kept, to increase chances of
obtaining the global optima.

4.4. Validation. The efficacy of the solution is validated on
the dataset of 2000 samples from the eight railway level
crossings under study. The actual and optimal time lost at
the railway level crossings are shown in Table 8. Thus, results
indicate that the optimisation algorithm can achieve, at
most, 40% reduction of the time lost at the railway level

crossing. However, the effectiveness of the optimisation
algorithm is not the same for each railway level crossing.

5. Discussion

In this study, it has shown that long closing time at the
railway level crossings is attributed to three features. The
features identified to have highest impact are dwell time,
time delay on the protection signals, and train entry speed.
The regression model confirmed the relationship of these
features and the railway level crossing closing time. The
model has shown that dwell time is directly proportional to
the railway level crossing closing time. Since it is inevitable to
remove the platform at activation of some railway level
crossings, the algorithm imposed a delay on the triggering of
the protection system, such that the impact is well mitigated.
Similarly, train entry speed plays a significant role in the
railway level crossing system. The model indicated that the
railway level crossing closing time decreases with an increase
in train speed following a hyperbolic trend. Train travelling
over the railway level crossing at speed lower than the
permissible speed results in longer closing time. Lastly, time
delay imposed on the protecting signal tends to introduce a
delayed train driver response and consequently increases the
closing time.

The model has shown that the railway level crossing
closing time increases with time delay on the protecting
signal in an exponential manner particularly where auto-
matic routing is applied. The presented railway level crossing
optimisation incorporated regression models of the iden-
tified attributes. In addition, the optimisation algorithm
makes use of the density functions of the features to define
the time lost at the railway level crossing per train trip. The
threshold closing time, as well as the actual and expected
closing time density function, defines the lower and upper
boundaries of the Powell algorithm. Thus, recovery of the
time lost at the railway level crossing is posed as the min-
imisation of the area bounded by the threshold railway level
crossing closing time, actual, and expected density functions.

The optimisation of the railway level crossing closing
time is subjected to train speed (at least minimal permissible
speed), dwell time (at most 10% of the anticipate dwell time
value), and time delay of at least the average driver reaction
time. Furthermore, train traction characteristics constrained
the objective function. The developed optimisation algo-
rithm was trained on 8000 data samples. The algorithm
exhibited high performance for the number of training
datasets. However, performance can still be improved by
increasing the number of training datasets, as well as in-
troducing additional attributes. Validation of the algorithm
proved that the features identified have a significant impact
on long level crossing closing time. Moreover, the optimi-
sation algorithm achieved at least 50 % decrease in the time
lost at the railway level crossings on 2000 test datasets.

Overall, the algorithm has proven to improve safety and
capacity at the railway level crossings by reducing the time
lost per train trip. Hence, optimal railway level crossing
closing time is feasible if the technical and train tractive
constraints are adhered to. However, the inconsistency of
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TaBLE 3: NEWUOA parameters.
Description Term Value
Initial radius Pheg 0.01
Lower limit of the radius Pend 0.01
Upper limit of the radius Pr 0.3
Trust region radius A 0.05
TABLE 4: Parameters of the trained regression model.
0, 0, 0, 05 0, 0 0 0,
Model 0.05 1.27 11.28 0.701 18.06 9.934 -1.23 -0.15
Learning curve for the derived model
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FIGURE 6: Learning curve for the regression model.
TaBLE 5: Error analysis.
. Error
Iterations . Accuracy
Train error Test error
500 105.23 100.77 0.5820
1000 91.08 90.182 0.6530
3000 78.97 69.61 0.714
4000 78.34 68.97 0.734
5000 78.05 68.39 0.782
TaBLE 6: Performance analysis of kernel density estimates.
Smoothing bandwidth Observation
0.001 Undersmoothed
0.008 Undersmoothed
0.01 Undersmoothed
0.08 Just right
0.1 Oversmoothed
0.8 Oversmoothed
1 Oversmoothed
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Gaussian kernel density estimates of the feature vector x
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FIGURE 7: Gaussian kernel density estimator of the features with
highest impact on the railway level crossing closing time.

TABLE 7: Sensitivity analysis of the Powell optimisation using
NEWUOA software.

Initial condition Time (s) Iterations
(0,30),(8.5,30),(2,30) 13.430 10000
(15,40),(7.1,40),(4,40) 8.005 7060
(30,50),(5,50),(10,50) 6.233 5002
(35,60),(9,60),(14,60) 2.511 1890
(35,70),(4,70),(12,70) 2.084 1055
(30,80),(4.2,80),(10,80) 1.552 1010
(40,90),(5.2,90),(14,90) 2.126 1580
(35,100),(6,100),(10,100) 2.905 2806
(45,120),(4.3,120),(10,120) 3.057 3500

TaBLE 8: Validation of the recovered time lost at the railway level
crossing.

Level crossing Line Actual Optimal
Albertyn rd 1 0.3167 0.12192
Albertyn rd 2 0.3678 0.14381
Austell rd 1 0.4156 0.16694
Austell rd 2 0.3167 0.12669
Beach rd - 0.4001 0.15163
Kalkbay rd 1 0.4224 0.14872
Kalkbay rd 2 0.5774 0.20951
Military rd 1 0.6367 0.23717
Military rd 2 0.5786 0.21839
Uxbridge rd 1 0.2852 0.11460
Uxbridge rd 2 0.6131 0.24483
White rd 1 0.5364 0.20917
White rd 2 0.6123 0.24495
York rd 1 0.4035 0.16183
York rd 2 0.4044 0.16092

the optimiser on respective railway level crossings suggests
that there may be unique features other than those con-
sidered. Therefore, increasing the number of features may

improve the generality of the algorithm. In addition, the
solution does not take into account mechanical failures of
the train at the railway level crossing.

6. Conclusion

The present study developed an optimisation method to
reduce the time lost at the railway level crossing per train
trip. As a result, optimal railway level crossing closing time
can be achieved. The algorithm used minimisation of the
area bounded by the threshold closing time, as well as the
actual and expected density function of the railway level
crossing closing time per train trip, as the criterion. Powell’s
optimisation algorithm was trained on 8000 datasets and has
shown to converge to the optimal solution. Furthermore, the
algorithm was validated. The reduction in the time lost at the
rail-road level crossing is at least 50% on 2000 test datasets.
The proposed solution is critical in ensuring improved safety
and capacity at the railway level crossings. However, the
algorithm is still selective in the optimisation of some of the
railway level crossing closing times, thus suggesting that
improvement can be made to achieve consistent results.
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