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With the increasing application and utility of automatic identification systems (AISs), large volumes of AIS data are collected to
record vessel navigation. In recent years, the prediction of vessel trajectories has become one of the hottest research issues. In
contrast to existing studies, most researchers have focused on the single-trajectory prediction of vessels. *is article proposes a
multiple-trajectory prediction model and makes two main contributions. First, we propose a novel method of trajectory feature
representation that uses a hierarchical clustering algorithm to analyze and extract the vessel navigation behavior for multiple
trajectories. Compared with the classic methods, e.g., Douglas–Peucker (DP) and least-squares cubic spline curve approximation
(LCSCA) algorithms, the mean loss of trajectory features extracted by our method is approximately 0.005, and it is reduced by 50%
and 30% compared to the DP and LCSCA algorithms, respectively. Second, we design an integrated model for simultaneous
prediction of multiple trajectories using the proposed features and employ the long short-term memory (LSTM)-based neural
network and recurrent neural network (RNN) to pursue this time series task. Furthermore, the comparative experiments prove
that the mean value and standard deviation of root mean squared error (RMSE) using the LSTM are 4% and 14% lower than those
using the RNN, respectively.

1. Introduction

Since 2007, the International Maritime Organization
requested that the international vessels over 300 and non-
international vessels over 500 tons must be attached by
automatic identification system (AIS) transmitters and re-
ceivers [1]. *e AIS has become one of the most important
broadcast systems of vessel navigational message, e.g.,
longitude, latitude, course, and speed via VHF. *e message
of the AIS can not only be transmitted from ship to shore-
based center but can also be exchanged between ships.
*erefore, the AIS has been of great support for marine
traffic tracking and management such as collision avoidance
and risk evaluation [2–4]. With the wide use of the AIS, large

volumes of AIS data are generated and stored. Simulta-
neously, it is increasingly becoming a challenging issue to
efficiently utilize AIS data and provide vessel operators with
more effective and convenient navigation services. Espe-
cially, the vessel trajectory information-based AIS data play a
crucial role in the field of transportation studies for sig-
nificant guidance of navigation behavior analyses [5–9].

In recent years, the related studies can be mainly divided
into three categories. In the first category, most studies focus
on collision avoidance and accident analysis, and they use
AIS data to determine the parameters in the ship collision
avoidance model [2–4]. In the second category, the studies
briefly used AIS data for navigation behavior analysis and
classification, and several classification methods such as the
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k-nearest neighbor (KNN) algorithm and other new
methods were used to classify the trajectory [5, 6]. Zhao and
Shi focused on behavior analysis based on AIS data and
proposed an improved Douglas–Peucker (DP) algorithm for
compressing vessel trajectory data [7]. In the final category,
scholars mostly focused on trajectory reconstruction- and
prediction-based AIS data using regression analysis methods
[8–10]. Several scholars also focus on state-of-the-art ma-
chine learning techniques for trajectory prediction [11].
Among the above research studies, trajectory prediction is
the most key technique of vessel intelligent navigation
systems, which can provide navigation guidance and support
for vessel operators based on historical AIS data. However,
the existing research studies mainly pursued one single
trajectory prediction so that the model is lack of general-
ization ability, and a training process is required for each
trajectory individually [5–11].

To address this issue, this article proposed a multiple-
trajectory prediction model. To realize predicting multiple
trajectories, a novel trajectory representation method is
proposed to be able to extract common features of multiple
trajectories using a series of AIS data points. *e proposed
method is based on a hierarchical clustering approach
[12, 13]. In this work, we use the Euclidean metric to
measure the similarity between two points (clusters) using
their longitude and latitude from AIS data and sequentially
combine two points (clusters) using a greedy order of
minimum distance between them. Using our method,
multiple trajectories can be represented as common feature
points with the same optimal number. Since the new
trajectory is still a classic time series data, the article
employs long short-term memory (LSTM)-based network
and recurrent neural network (RNN) to train the predic-
tion model based on the new features. In the first part of
numerical experiments, we compare the proposed features
with the traditional features extracted by DP and least-
squares cubic spline curve approximation (LCSCA) algo-
rithms. *e loss of our features against the original tra-
jectories is 0.005, which is reduced by 50% and 30%
compared with the DP and LCSCA algorithms, respec-
tively. In the second part of numerical experiments, we
train the trajectory prediction models based on our features
using the LSTM and RNN. *e measures of root mean
squared error (RMSE) is also used to estimate the per-
formance of different prediction models. We found that the
prediction models using both the LSTM and RNN can
obtain the significantly low RMSE when the dimension of
the proposed feature is set to 13. Especially, the model using
the LSTM with the optimal parameters (activation function
is relu, and dropout is 0.2) can obtain the minimum RMSE
of 0.0009, which dramatically outperformed the models
using the RNN. *e experimental results also show that the
mean value and standard deviation of RMSE using the
LSTM are 4% and 14% lower than those using the RNN,
respectively. *erefore, this article makes two main con-
tributions to the field of trajectory prediction. Firstly, the
proposed representation method can extract more ap-
proximate features to the original trajectories with fewer
AIS points. Secondly, this work solved the main limitation

of multiple trajectory prediction accounting for the com-
mon features extraction. *e models based on our features
show efficiency for trajectory prediction, and especially the
prediction models using the LSTM.

*e remainder of this paper is organized as follows.
Section 2 introduces the literature review of navigation
behavior analysis and trajectory prediction model. Section 3
describes the comparative experiments to evaluate the
performance of the proposed trajectory representation
method and trajectory prediction model. Finally, conclu-
sions are presented in Section 4.

2. Materials and Methods

2.1. Literature Review

2.1.1. Review of Trajectory Representation. *e DP is a
feature extraction algorithm that approximates the curve
using a series of line segments. In the field of maritime
engineering, the DP has been widely used for trajectory
representation based on AIS data. Initially, the DP starts
with a threshold to denote the maximum distance, and the
simplification result of the trajectory can be obtained
according to the following steps [14]:

(a) Draw a straight line from the beginning point to the
ending point of the original trajectory

(b) Set this line as the initial simplification
(c) Calculate the distance of each point to the simpli-

fication line
(d) Consider the point with the maximum distance as

the featured point
(e) Separate the simplification line into two line seg-

ments by the new point
(f ) Repeat steps (c) to (e) until the distance of all the

points to the simplification lines is smaller than the
threshold

An improved method that uses kernel-based sparse
representation to iteratively obtain a salient feature cluster
was proposed in [15, 16]. *is method applied an approx-
imate dependence analysis to further maintain comple-
mentarity, while eliminating redundancy among the features
is selected by the nonlinear orthogonal matching pursuit.

LCSCA is also an efficient method to represent trajectory
using featured points [15].When the number of the points of
the original trajectory is N, the points can be arranged as
T1 � (x1, y1), T2 � (x2, y2), . . . , TN � (xN, yN) in ascend-
ing order of time. *e original trajectory can be described as

T �

T1

T2

⋮

TN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (1)

We set the number of representative points as p, the node
vector as τ, and the parameter vector as
l � (0, l2, . . . , lN−1, lN). Node vector τ can be calculated as
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where i � 1, 2, . . . , p  and j � 2, 3, 4{ }. If the coordinates of
all the representative points are denoted as
T1′ � (x1′, y1′), T2′ � (x2′, y2′), . . . , Tp

′ � (xp
′, yp
′), the repre-

sentative points can form a matrix as

C �

T1′

T2′

⋮

Tp
′
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,

C � ϕ∇T.

(4)

*e control points can be obtained according to equa-
tion (3), and j is chosen to be 4 for cubic splines. *us,

ϕ �

K1,4 l1(  · · · Kp,4 l1( 

⋮ ⋱ ⋮

K1,4 lN(  · · · Kp,4 lN( 
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ϕ∇ � ϕTϕ 
− 1
ϕT,

(5)

where the matrix C of the representative points is the final
result.

2.1.2. Review of Trajectory Analysis. In this section, we review
several related research on vessel trajectory analysis. *ey can
be divided into two main categories as trajectory classification
analysis and trajectory prediction analysis [17]. Trajectory
classification is to establish classic models to classify the tra-
jectories according to their attributes and characteristics. Liu
et al. set categories based on the direction of historical tra-
jectories and then applied the KNN method to recognize new
trajectories owing to the right category, which was regarded as
the future trends [5]. In [18–20], researchers focused on
establishing a vessel trajectory classification model in combi-
nationwith regressionmethods and statistical methods, such as
logistic regression and probability estimation methods. *ese
research studies included trajectory representation processes
before the training classification model, which can not only
dramatically save consuming time but also improve the

accuracy of trajectory classification. Trajectory prediction
analysis is another hot research topic in the field of vessel
navigation behavior analysis, which mainly focus on trajectory
reconstruction and approximation [21, 22]. Zhang et al. pro-
posed a trajectory construction model based on three sections
of a single trajectory [9]. *ey divided a trajectory into three
sections based on the vessel navigation states, and then the
spline model and linear regression model were applied to
reconstruct the trajectories. Tang et al. applied historical tra-
jectory to training LSTM models for prediction of the future
position [11]. However, there is an absence of multiple tra-
jectory prediction in the abovementioned studies.

2.2. Navigation Behavior Analysis and Trajectory Prediction
Model. *e purpose of this article is to implement simul-
taneous prediction for multiple trajectories using a common
model. Since individual trajectory presents different lengths
and also contains different numbers of points, it is a chal-
lenging issue to train prediction models based on different
scaling data. *erefore, this article proposes an integrated
framework consisting of two tasks. First, we propose a novel
trajectory representation method to solve the data scaling
problem, which can extract common features with the same
number of points. Second, we employ the RNN and LSTM to
solve the time series problem, which can train the models for
simultaneous prediction based on the proposed features.

2.2.1. )e Proposed Method for Trajectory Representation.
AIS data provides many attributes of trajectory, such as
navigation time, longitude, latitude, and direction. In this
article, longitude and latitude are considered as the typical
attributes. If a vessel trajectory T is given as equation (1), Ti

denotes the position point of longitude and latitude as
(xi, yi). We use the Euclidean metric as the measure of the
distance between two points in equations (6) and (7):

li � Dis Ti, Ti+1(  �

���������������������

xi − xi+1( 
2

+ yi − yi+1( 
2


(6)

S � l1, l2, . . . , ln−1 , (7)
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where li denotes the distance between Ti and Ti+1, and S

denotes the set of all distances in the original trajectory.
*en, the simplification process of the proposed method can
be described as follows:

(a) Calculate the distance li between each neighborhood
point

(b) Save all the distance li in S as the initial set
(c) Merge two points (clusters) with the minimum li

into the same cluster as Ti
′

(d) Recalculate the distance of Ti
′ with both sides of

neighborhood points (clusters)
(e) Update the set S with new distance li−1 and li

(f ) Repeat steps (c) to (e) until the number of clusters is
convergent to k

*us, the original trajectory can be represented by a
series of clusters, and we used the mean value of each cluster
as the featured point (see Figure 1).

*e number of the featured points of the representation
trajectory is determined based on the loss from the original
trajectory. *e article uses the dynamic time warping
(DTW) method to measure the similarity between two time
series of datasets. *erefore, the warp path between the
original trajectory T and representation trajectory T′ can be
described as W � (w1, w2, . . . , wK), the distance can be
described as D(T, T′), and the distance D(T,T′) is the loss
of the trajectory representation [23].

D T,T′(  � min

�������


K
k�1 wk



K

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (8)

2.2.2. )e Proposed Model for Multiple Trajectory Prediction.
Both the RNN and LSTM are based on neural networks and
widely used to pursue time series prediction. *e LSTM can
be considered as an improved type of the RNN, which has
the ability of long-term memory. *e proposed model of
multiple-trajectory prediction is shown in Figure 2. In the
LSTM cell, the input gate uses the tanh function, the for-
getting gate uses the sigmoid function, and the output gate
also uses the sigmoid function. If the trajectory number isM,
the memory module of the LSTM selectively remembers and
forgets the input information, and its formula is as follows:

Ft � σ Wf × ht−1 + Uf × Tt
′ + bf  (9)

Tt
′ represents the representation trajectory and can be

described as

Tt
′ �

T(1,1)
′

⋮

T(1,t)
′

. . .

⋱

. . .

T(M,1)
′

⋮

T(M,t)
′
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where T(M,t)
′ denotes the t-th point of the M-th represen-

tation trajectory as input. Notation ht−1 is the output of the
hidden layer at the (t−1) point. Notation σ is the sigmoid
activation function, and notations Ft,Wf,Uf, and bf are the
output, weight of Wf, weight of Tt

′, and bias of the forgotten
gate, respectively. *e sigmoid layer determines the updated
value as follows:

dt � σ Wi × ht−1 + Ui × Tt
′ + bi(  (11)

where notations Wi, Ui, bi denote the weight of ht−1, weight
of Tt
′, and bias of the input gate, respectively. *e tanh layer

provides a candidate vector for the cell and can be described
as follows:

Ct � tanh Wc × ht−1 + Uc × Tt
′ + bc(  (12)

where notations Wc, Uc, bc denote the weight of ht−1, weight
of Tt
′, and bias, respectively. *e output values of the for-

gotten gate and input gate update the cell state Ct can be
described as follows:

Ct � Ct−1 × Ft + Ct × dt. (13)

*e final output uses the new cell state to output content:

Ot � σ Wo × ht−1 + Uo × Tt
′ + bo( ,

ht � Ot × tanh Ct( ,
(14)

where notations Wo, Uo, bo, and ht denote the weight of ht−1 ,
weight of Tt

′ , bias, and the output of the hidden layer,
respectively [24]. If the input is the (i−1) number points ofM
representation trajectories, the number of the point of the
representation trajectory is K, and hi is the i number of
points, the notation ht can be described as
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, t � 1, 3, . . . , (K − 1).

(15)

*en, we use root mean squared error (RMSE) as the
evaluation indicator of prediction models. If h(i,t) denotes
the actual point t of the trajectory i and h(i,t)

′ denotes the
actual point t of this trajectory, the RMSE of the predicted
value h(i,t)

′ and the actual value h(i,t) can be calculated as
follows:

RMSE �

���������������������������������

1
M



M

i�1
x(i,t) − x(i,t)

′ 
2

+ y(i,t) − y(i,t)
′ 

2
 




. (16)

where (x(i,t), y(i,t)) denotes the coordinate of h(i,t), and
(x(i,t)
′ , y(i,t)
′ ) denotes the coordinate of h(i,t)

′ .

3. Experiments and Results

3.1. Design of Experiments. In this article, the vessel tra-
jectories were collected using AISs, and the location is Dalian
port as shown Figure 3. *e dataset contains 33 vessels with
400 trajectories, and the frequency of points included in each
trajectory is from 20 points to 380 points.

Firstly, we pursue the original trajectories to extract
featured points with the proposed method, DP and LCSCA.
*e loss of each representation trajectory was calculated and
compared with the DTW. *e number of extracted points
using the proposed method is optimized according to the
loss decline rate of DTW. Secondly, we used 90% points of
400 representation trajectories as training data and the

remainder 10% as testing data.*e RNN and LSTM are used
to learn the prediction models, and the comparative ex-
periments for parameters adjustment were conducted to
improve the prediction accuracy.

3.2. Comparison of Trajectory Representation. To measure
the performance and effectiveness of the proposed method,
the DP and LCSCA were used as the comparisons. Figure 4
shows that the mean loss of all trajectories at different values
of the simplified rate (the ratio of the number of points in the
representation trajectory with the number of points in the
original trajectory) for the three methods. It is found that the
mean loss using our method is lower than that using the DP
and LCSCA methods in all situations. When the simplified
rate is lower than 0.14, the mean loss of the proposedmethod
is almost 50% lower than that of DP and LCSCA methods. It
is observed that the deviation of the proposed method is
always lower than that of the other two methods.

*en, the optimal number of extracted points is dis-
cussed in Figure 5. Figure 5 shows the line plots of the loss
and loss decline rate changing with the number of repre-
sentation points. It can be observed that the loss decline rate
can be firstly obtained at the minimum value of 15% when
the number of representation points is equal to 13. To reduce
the complexity of the prediction model, we use 13-dimen-
sional features as the representation trajectories.

3.3. Comparison of Trajectory Prediction. According to pa-
rameter tuning, we choose relu as the active function, 0.2 as
dropout, and 100 as the epoch. *e RNN and LSTM initially
consider that the number of input is set to 80, and two
hidden layers with the number of neurons are set to 80 and
40, respectively. From the third hidden layer, the number of
neurons is set to half of the prior one. Table 1 shows the
mean values (M.V.s), maximum values (Max.V.s), mini-
mum values (Min.V.s), and standard deviation (S.D.) of
prediction RMSE of 400 trajectories using the LSTM and
RNN with different numbers of hidden layers, and the
boxplot charts of the RNN and LSTM are drawn in Figures 6
and 7. Figure 6 shows that when the RNN contains five
hidden layers, the prediction model shows the best
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Figure 1: Illustration of feature extraction from the original trajectory.
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Figure 3: Geographical location of research data.
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Figure 2: Illustration of the trajectory prediction model.
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performance. Simultaneously, Figure 7 shows that the model
using the LSTM containing four hidden layers can obtain the
best performance. We also found that M.V. and S.D. of

RMSE of best models using the LSTM were 4% and 14%
lower than those of the models using RNN as shown in
Figure 8.
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Figure 5: Mean loss and loss decline rate of the proposed feature with different numbers of representation points.

Table 1: Results of the RNN and LSTM with different numbers of hidden layers (batch size� 1)

Hidden layer
LSTM RNN

M.V. Max.V. Min.V. S.D. M.V. Max.V. Min.V. S.D.
1 0.0273 0.0821 0.0004 0.0160 0.0278 0.0900 0.0009 0.0176
2 0.0249 0.0716 0.0003 0.0117 0.0264 0.0798 0.0010 0.0159
3 0.0226 0.0832 0.0009 0.0125 0.0293 0.0831 0.0023 0.0136
4 0.0215 0.0858 0.0017 0.0114 0.0267 0.0897 0.0011 0.0132
5 0.0237 0.0899 0.0017 0.0135 0.0224 0.0871 0.0002 0.0132
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Figure 4: Mean loss of the proposed feature, DP, and LCSCA.
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*en, we draw boxplot charts of RMSE values for the
model using the LSTM with different batch sizes in Figure 9
and summarize the numerical results in Table 2. However,

the best Min.V., Max.V., and S.D. of RMSE can be obtained
when the batch size equals 2. *e minimum M.V. of RMSE
can be dramatically improved when the batch size equals 4.
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Figure 8: Comparison of the M.V. and S.D. of the RNN and LSTM with different numbers of hidden layers.

0.1

0.08

0.06

0.04

0.02

RM
SE

0 1 2 3 4 5
The number of hidden layers
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4. Conclusions

In this article, a prediction model for multiple trajectories was
demonstrated based on a novel trajectory representation
method. *e proposed method used a hierarchical clustering
approach to extract the featured point from the original tra-
jectory based on AIS data, and the common features of multiple
trajectories can be obtained by a series of simplification line
segments. Compared with traditional methods such as the DP
and LCSCA, our method shows low loss from the original
trajectory, and the lowest loss decline rate can be obtained at 13-
dimensional features based on the measures of DTW. To in-
vestigate the performance of proposed features, we used a real-
world case of the Dalian port and collected the AIS data
containing 400 trajectories from 33 vessels. In the experiments,
the LSTM and RNN are employed to learn the trajectory
prediction models, and both the LSTM and RNN show high
performance on multiple trajectory prediction. Especially, the
LSTM can obtain the highest performance with the parameters
fine-tuning.

In the future work, we plan to improve our method in
two parts. First, we will design an automatic process to
combine the feature extraction and model construction,
which can simultaneously obtain the optimal prediction
model based on the optimal features. Second, based on the
above automatic process, we will implement our model to
real-time trajectory prediction in online mode of AISs.
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