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*e development of connected and automated vehicle (CAV) techniques brings an upcoming revolution to traffic management.
*e control of CAVs in potential conflict areas such as on-ramps and intersections will be complex to traffic management when
considering their deployment. *ere is still a lack of a general framework for dispatching CAVs in these bottlenecks, which is
expected to ensure safety, traffic efficiency, and energy consumption in real time. *is study aimed to fill the technique gap, and a
comprehensive cooperative intelligent driving framework is put forward to study the problem, which can be used in both on-ramp
and intersection scenarios. Based on a multi-objective evolutionary algorithm, CAVs are denoted as a sequence to be searched in
solution space, while a multitask learning neural network with adaptive loss function is implemented for optimization target
feedback to surrogate the simulation test procedure. *e simulation results show that the proposed framework can get satisfying
performance with low time and energy consumption. It can reduce time consumption by up to 16.51% for the on-ramp scenario
and 9.8% for the intersection scenario, while reducing energy consumption by up to 16.39% and 11.39% for the two scenarios.
Meanwhile, an analysis of computation time is carried out, illuminating the flexibility and controllability of the new strategy.

1. Introduction

Connected and automated vehicles are considered to play an
important role in improving traffic efficiency and saving energy
[1]. *e fickle driving behaviors can easily lead to a series of
problems, including traffic congestion, energy consumption,
and accident [2–4], but transport systems consisting of intel-
ligent vehicles canmake a difference using vehicle-to-everything
(V2X) communication and advanced control techniques [5–7].

*e development of connected and automated vehi-
cles (CAVs) brings both opportunities and challenges to
traffic management. As the bottlenecks in traffic orga-
nization, intersection and on-ramp become the research
hot spots in the domain [8–10]. Conventionally, the
vehicles must adhere to the traffic signals in urban

scenarios, and corresponding studies are proposed to
optimize the trajectory of vehicles in this case [1, 11, 12].
Considering the traffic environment composed of CAVs,
traffic signals can be eliminated because the information
on the road can be fully obtained [13], while the vehicles
on the road can be fully controlled. It is possible to
implement cooperative control for CAVs through V2X
communication [14]. *us, the design of a cooperative
driving strategy through the use of real-time traffic in-
formation becomes particularly important. Ann and
Colombo [15] pointed out that an effective cooperative
driving framework can work in different traffic scenarios
such as intersections, merging roadways, and round-
abouts. On account of the significance of cooperative
driving, the researchers proposed many theoretical
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methods to solve the problem for different scenarios.
Grand cooperative driving challenges were also organized
to promote its development in practice [16].

Some of the existing studies belong to the optimization-
based method. Yan et al. [17] proposed a dynamic pro-
gramming algorithm to evacuate vehicles at the intersection
as soon as possible. Zhu and Ukkusuri [18] put forward a
linear programming model to dispatch vehicles at autono-
mous intersections in order to minimize total travel time.
Besides, mixed-integer linear programming (MILP) is
widely used to obtain solutions [19–21]. However, Li and
Wang [13] proposed a framework based on the optimization
principle, which utilized a tree search algorithm to achieve
the same purpose. All of the listed studies focus on searching
for optimal solutions based on different prior hypotheses.

Relevant studies pointed out that the key to solving the
problem is determining the right-of-way for CAVs
approaching the merging area [22–24]. In other words, the
vehicles can be formulated as a passing sequence in the form
of arrays, and the performance of the schedule strategy
hinges on the way to generate the best passing order among a
large number of possible solutions.

In terms of generating passing orders, the existing
studies can be classified into two categories. One is the rule-
based strategy, which uses some heuristic rules to determine
the passing order of vehicles. Dresner and Stone [25, 26]
proposed a reservation-based system and assigned right-of-
way to vehicles on a first-come-first-served (FCFS) basis.
Although the effectiveness of the FCFS method can be
proved [26, 27], its rule-based nature always leads to feasible
but not optimal solutions. Moreover, the reservation-based
strategy cannot outperform traditional signal control in
some cases [28, 29]. While the rule-based strategies cannot
always perform very well, the other approach to generate
passing orders is introduced, called “planning-based strat-
egy” [13]. Meng et al. demonstrated that the planning-based
strategy could consistently outperform the FCFS method in
intersection scenarios by comprehensive simulations [30].
Actually, the planning-based strategy is a framework that
can search for optimal solutions in a huge solution space.
*e strategy is essentially a traversal problem with intol-
erable computational complexity. *erefore, consequent
studies focused on the reduction in computing time. Xu et al.
[31] proposed a grouping-based strategy, which groups
CAVs to reduce the count of possible solutions. In their
other study, a Monte Carlo tree is built to keep the trade-off
between coordination performance and computation time
[32]. Meanwhile, Zhang et al. [33] reported a framework that
utilized a neural network to surrogate the simulation test
process with the intent to reduce computation time.
However, the only optimization target they considered is
about traffic efficiency indexes such as passing time or total
delay, while the value of other targets such as energy con-
sumption or queue length is difficult to acquire. *is is
caused by the weakness of the trajectory interpretation al-
gorithm in their studies.

*erefore, there is still a lack of a real-time, multi-ob-
jective cooperative driving strategy that can be maneuver-
able and reliable. To this end, we design a multi-objective

discrete evolutionary algorithm (MODEA) to search for
(near) optimal passing orders, which combines the non-
dominated sorting method [34] and state transition algo-
rithm [35]. A multitask learning model is proposed to be a
regressor, which can give feedback of objective values to
MODEA. *e scenario is simulated by Simulation of Urban
MObility (SUMO) [36]. *e simulation results indicate that
the framework can be applied to different scenarios, per-
forming well even under a high concurrency environment.

*e rest of the study is arranged as follows: Section
“Problem Statement” gives the general form of cooperative
driving problems and traffic scenarios the paper studied.
Section “Methodology” presents the framework we pro-
posed, including the MODEA and multitask learning
method in detail. Section “Simulation and Analysis” pro-
vides the simulation results of a series of experiments. Fi-
nally, conclusions are given in Section “Conclusion.”

2. Problem Statement

Highway on-ramps and urban unsignalized intersections are
two typical scenarios for cooperative driving (see Figure 1).
Rios-Torres and Malikopoulos [37] pointed out that the two
mainstream frameworks in the cooperative driving field are
centralized coordination and decentralized coordination,
respectively, while the method proposed in this study be-
longs to the former. *e centralized frameworks rely on a
central controller responsible for computing and sending
control commands. *e controller has a communication
range (CR) that defines the boundary of communication and
control. *is article denotes the CR as a circle, which is
widely adopted in previous studies [30, 33, 38]. Only vehicles
within the CR will communicate with the controller and be
controlled.

Some followed assumptions are listed to make the
analysis and implementation easier:

(i) Lane-changing behaviors are prohibited in CR for
safety consideration.

(ii) *e system has no interference from pedestrians
and non-motor vehicles.

(iii) All CAVs can transmit id, position, speed, and other
precise information to the controller spontaneously.

(iv) *e vehicles are homogeneous pure electric CAVs
for estimating energy consumption. *e energy
model can be found in [39].

*e general form of the objective function in cooperative
driving can be defined as follows:

min
x

F(x) , (1)

where F is the function that represents queue length, energy
consumption, or traffic delay, and x is the independent
variable that will give rise to the optimization target. In this
study, two objects are considered: (a) the minimization of
time consumption to evacuate all CAVs in CR and (b)
electricity consumption for CAVs in the process of a
scheduling scheme.
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*e input of the function x denotes a passing sequence,
which can be denoted as follows:

x � CAV1,CAV2, . . . ,CAVn  , (2)

where n is the number of vehicles in CR. Let f1 be the time
consumption to evacuate all CAVs in CR, and f2 be the
corresponding electricity consumption, and (1) can be
transformed to as follows:

min
x

f1(x), f2(x) , (3)

Here, f1(x) can be denoted as follows:

f1(x) � te CAVn( , (4)

where te represents the time when the vehicle CAVn exits
from CR. f2(x) can be denoted as follows:

f2(x) � 
n

i�1


te CAVi( )

0
e CAVi( , i ∈ (1, n), (5)

where e represents the energy consumption of CAVi in
discrete time, and readers can refer to [39] for the stepwise
energy consumption model.

3. Methodology

Figure 2 illustrates the procedure of the framework this study
proposed. *e framework uses MODEA with non-dominated
sorting and multitask neural network to reduce computation
time and implement multi-objective optimization. A pop-
ulation-based evolutionary algorithm is used to search solutions
in solution space, while the fitness value of every individual can
be obtained from a neural network, which plays the role of
target regressor. *en, the framework will be introduced in
detail.

3.1. Multitask Learning Model. It is found that carrying out
learning for tasks jointly can improve the performance
compared with conducting them individually [40]. *us, in
this study, a multitask deep learning model is trained to
target the evolutionary algorithm’s feedback. *erefore, the
task of the model is learning for target yield in each traffic
state. Here, we consider the time consumption and elec-
tricity consumption as the targets defined in equations (4)
and (5).

For performing the regression task, the input should be
appropriately expressed. As in equation (2), a passing se-
quence can be denoted as an array including CAV ids. We
define the encoding of a single CAV as follows:

Ei � pi, vi, ai, encode lanei( ( , (6)

where pi is the position of CAVi from the beginning of the
lane, and vi is the speed, while ai represents the acceleration of
CAVi, andpi, vi, ai will be normalized for input into themodel.

In addition, encode(lanei) is the encoding of the lane
that the driving vehicle belongs to. *e encoding method is
different according to the different traffic scenarios. For the
on-ramp scenario shown in Figure 1(a), the one-hot
encoding is applied. However, in the intersection scenario,
considering the spatial relationship, we combine with ap-
proach direction and driving direction. Figure 3 shows the
encoding process that takes the scenarios in Figure 1 as an
example. For instance, vehicle D is coming from the west
approach, and it will turn left at the intersection, so the
encoding of its lane is (1, 0, 0, 0, 0, 1). Finally, a passing
sequence can be formulated as the concatenation of
encodings of CAVs.

When the vectorized representations of passing se-
quences are constructed, a neural network model can be
built to take the vectors as input. Similar to TextCNN
[41], we also use the convolutional neural network (CNN)
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Figure 1: Two typical cooperative driving scenarios in general road networks. (a) *e on-ramp in highway and (b) the unsignalized
intersection in urban road.
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to carry out the learning process, whereas CNN can
extract the features from original data automatically [42].
*e structure of the CNN-based multitask learning model
is shown in Figure 4. *e backbone part takes sequence
vectors consisting of several CAV encodings as inputs
and extracts latent feature representations for them; then,
the specific task part takes the feature representations as
input and output time consumption and energy con-
sumption of the sequences in a specific traffic scenario. In
the backbone part, one-dimensional convolution layers
with different scales of kernel size are applied to extract
features.

After determining the basic structure of the neural
network, the loss function should be specified to train the
learning model towards the optimization goals. Here,
considering the training process of two targets in two single-
task models, the loss functions are considered as mean
squared error (MSE), which is as follows:

MSE1 �
1
n



n

i�1

f1 xi(  − f1 xi(  
2
,

MSE2 �
1
n



n

i�1

f2 xi(  − f2 xi(  
2
,

(7)

where n is the count of test samples. f1 and f2 are predicting
values, while f1 and f2 are ground truth. Generally, the loss
function in the multitask learning model can be defined as
the naive weighted sum of losses, which is as follows:

L � ω1MSE1 + ω2MSE2, (8)

where the loss weights ω1 and ω2 are uniform or manually
tuned. *e performance of the model highly depends on the
settings of the weight parameters. Cipolla et al. pointed out
that the loss function can be calculated based on maximizing
the Gaussian likelihood with homoscedastic uncertainty
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Figure 2: Flowchart of the proposed framework.
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[43]. As a result, let fW(x) be the outputs of neural network
with weights W, and the likelihood as a Gaussian can be
defined as follows:

p fj(x)|f
W

(x)  � Ν f
W

(x), σ2 (j � 1, 2) , (9)

where σ is a scalar that represents observation noise. Let
fj(x) be the sufficient statistics; then, the multitask likeli-
hood can be derived from the following:

p f1(x), f2(x)|f
W

(x)  � p f1(x)|f
W

(x)  · p f2(x)|f
W

(x) 

� Ν f1(x); f
W

(x), σ21 Ν

· f2(x); f
W

(x), σ22 .

(10)

Taking logarithmic form, the new loss function can be
defined as follows:

−log p f1(x), f2(x)|f
W

(x) ∝
1
2σ21

f1(x) − f
W

(x)
2

+
1
2σ22

f2(x) − f
W

(x)
2

+ log σ1σ2 �
1
2σ21

MSE1 +
1
2σ22

MSE2 + log σ1σ2.

(11)

Notice that σ1 and σ2 are the denominators in equation
(11). To avoid division by zero errors, the logarithmic form is
used for the actual training process:

ςj � logσ2j(j � 1, 2) . (12)

Finally, the loss function is given in equation (13), which
can be adaptive during the training process.

L �
1
2

e
− ς1MSE1 + e

− ς2MSE2 + ς1 + ς2(  . (13)

4. Multi-Objective Discrete
Evolutionary Algorithm

Generally, the average count of possible passing sequences in
cooperative driving grows almost exponentially with the
increase in numbers of CAVs in CR [30].*us, searching for

the best solution is hard when the number of CAVs is large,
so this study proposes a population-based evolutionary al-
gorithm to obtain (near) optimal passing order from this
perspective.

In multi-objective optimization problems, the Pareto
optimal solution is used to select according to the practical
problem [44]. *e conception of the Pareto optimal solution
set is introduced as below. First, in this minimization
problem, solution x0 Pareto dominates x1 only if:

fj x
0

 ≤fj x
1

 , ∀j � 1, 2

fj x
0

 <fj x
1

 , ∃j � 1, 2.
(14)

We use the corresponding symbol to denote the dom-
ination relationship:

x
0≻x1

, (15)

which represents that x0 dominates x1. If there is not any
solution that dominates x0, then x0 will be called the non-
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Figure 4: Structure of the proposed neural network. *e backbone layer is for feature extracting, and the specific task layer is for different
regression tasks.
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dominated solution. Accordingly, the Pareto optimal solu-
tion set Ps can be defined as the set consisting of all the non-
dominated solutions. *erefore, the primary purpose of the
algorithm is to search corresponding Pareto optimal solu-
tions. If there is more than one element in the Pareto optimal
solution set, two kinds of heuristic strategies can be used:

(i) Delay-first strategy (DFS): always choose the solu-
tion with minimal time consumption from Ps.

(ii) Energy-first strategy (EFS): always choose the so-
lution with minimal energy consumption from Ps.

*e form of the candidate solutions in the algorithm is
denoted as equation (2), while the initialization operation is
generating n different integers with ranges from 1 to n. *e
feasible solutions make up a population in the evolutionary
algorithm. Considering that lane-changing behavior is
prohibited in CR, some solutions will be illegal. For example,
in Figure 1(a), the passing order [C, A, B] cannot be ac-
cepted as candidate solution because A is supposed to be in
front of C. Hence, a repair operation is applied to repair
illegal sequence, which is defined as follows:

_x � Mrx, (16)

where _x represents a passing sequence that can be a can-
didate, and Mr is a matrix that carries out the repair op-
eration. *e matrix is constructed according to the order of
vehicles on the lanes. For unfeasible sequence [3, 1, 2], which
represents “C-A-B” in Figure 1(a), Mr is as follows:

Mr �

0 1 0

1 0 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (17)

*en, [3, 1, 2] will be transformed to [1, 3, 2], which
represents “A-C-B,” and it will be legal.

*e proposed algorithm uses selection operation,
crossover operation, state transition with swap operation,
shift operation, and symmetry operation for population
evolution. Corresponding operations can be described as
follows.

4.1. Selection Operation. Non-dominated sorting tech-
nique is used for layering individuals. Algorithm 1 shows
the process of non-dominated sorting. In the algorithm, c

is the non-dominated level, and XN is the set of all the
non-dominated solutions in P; fitness represents the
virtual value of individuals, which is used for selection
operation. Eventually, the roulette wheel method is ap-
plied to choose individuals in the population; then, the
crossover operation can be carried out. In the roulette
wheel method, the selection probability of individual i is
defined as follows:

Pr(i) �
cf − fitness(i)


cf−1
j�1 j

, (18)

where cf is the value of c after iterations in Algorithm 1.

4.2.CrossoverOperation. Tie-breaking crossover is introduced
in this study [45]. *is operation can prevent two identical
orders from appearing in a sequence, and the procedure is
indicated in Figure 5. *e start positions and length of sub-
sequences are generated randomly, so the results after crossover
could be with duplicated items. A crossover map will also be
generated, and the crossover map is actually a random order of
integers 0, 1, . . . , n − 1. Accordingly, the new sequences after
exchange can be transformed by multiplying the length of the
sequence and adding the crossover map. Finally, as shown in
Figure 5, offspring can be produced by sorting operation
according to phase 3.

4.3. State Transition. *e state transition procedure is
probabilistic in the light of predefined probability value p.
In this study, the value of p is set to 0.2 to keep the trade-
off between exploration and exploitation. *e state
transition operations include swap, shift, and symmetry
[35]. Swap transformation is used for randomly ex-
changing subsequences in passing sequences; shift
transformation is used for subsequence translation, and
symmetry transformation means two subsequences
symmetrical about a selected central point exchange their
values. *ese operations can be implemented by several
matrixes, which can be denoted as follows:

xk+1 � Msymmetry Mshift Mswapxk  , (19)

where xk+1 is a passing sequence after k iterations.
Msymmetry, Mshift, and Mswap represent the matrix, which
implements symmetry operation, shift operation, and
swap operation, respectively. Figure 6 illustrates the three
transformations. *e length of subsequences is a
hyperparameter for swap transformation and shift
transformation. *e values of these two operations are
generated randomly according to the number of CAVs.
While for symmetry operation, the length of subse-
quences and the position of the symmetry center can be
generated randomly. Note that the boundary condition
will be processed here when the indexes of elements may
be out of bounds.

5. Vehicle Control

When a passing order is determined, CAVs can move in the
light of the sequence. First of all, themotion of vehicles needs
to be constrained by the speed limit and acceleration ability:

0≤ vi ≤ vmax,

dmax ≤ ai ≤ amax,
(20)

where vmax denotes the maximum speed limit on the road,
and dmax is the maximum deceleration, while amax is the
maximum acceleration constraint by vehicle dynamics.

*e virtual vehicle mapping method is used in the
framework to ensure safety [46, 47]. Taking the case in
Figure 1(a) as an example, if the passing order is “A-C-B,”
then C will be mapped into lane1−1. CAV B will then follow
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a virtual vehicle mapped by CAV C, which means the
mode of motion of CAVs will be divided into two cases:
free driving and car following, respectively. *e control
process of the CAVs in sequences can be given by Al-
gorithm 2. Accordingly, Conflict is a function to judge
whether there are potential conflicts between x[i] and
x[j]. Carfollowing is a function to guide vehicle x[i] to
follow vehicle x[k]. *e equation of Carfollowing can be
denoted as follows:

min
t1

t�t0

pk − pi − Δs


dt, (21)

where t0 is the start time and t1 is the time when x[i]

arrives at the conflict zone or stop line. In addition, Δs is
the value of the safe gap between two consecutive CAVs.
*e gap here represents the distance from the front of the
following vehicle to the rear of the leading vehicle. If x[k]

is a real CAV, the value is set to €Δs, and if x[k] is a virtual
vehicle, a correction factor should be added to it, which
can be denoted as follows:

Δs � €Δs + b × L
M
i , (22)

where b is a bool variable, if x[k] is virtual, the value of b will
be 1, and LM will be the distance for x[i] to cross the conflict
zone.

Using Algorithm 2, the first CAV in sequence drives
freely, and a CAV with a minimal relative distance with the
first CAV in the rest of the sequence is chosen as car fol-
lowing target.

Finally, if a passing sequence is determined, it will not be
altered unless the set of CAVs in CR changes.

6. Simulation and Analysis

6.1. Simulation Platform and CNN Training. *is study uses
the microscopic traffic simulation software SUMO to study
the cooperative driving strategy in two traffic scenarios in
Figure 1. Under the premise of comprehensive consideration
of reality, the simulation settings are given in Table 1. *e
simulation step is set to 0.2 s for smoother time-continuous
control. *e radius of CR in the on-ramp scenario is set to
1000m by considering the communication capability [38].
Meanwhile, we set the radius parameter to 200m in the
urban intersection scenario because the speed of vehicles in
this case is slow, while 200m is enough for vehicle braking.

First of all, more than 50000 records were collected in
SUMO for each traffic scenario to serve as the training data.
*e records include encoding of passing sequence and the
combination of two regression targets. We use message-
digest algorithm 5 (MD5) to delete duplicated data to ensure
the uniqueness of the records. Because the length of CAV
encoding in the two scenarios is 5 and 9, respectively, the
convolution kernel sizes are set to [2, 3, 4] and [2, 5, 7] to
extract different scales of features. *e Adam optimizer is
used to optimize the weights and biases for the network, and
a step decay schedule for learning rate is implemented in the
training process for better performance. Accordingly, the
rest of the hyperparameters (e.g., batch size, the initial
learning rate, and the scales of dense layers) were tuned
automatically by applying tree-structured Parzen estimator
(TPE), which can search significantly better results com-
pared with random search methods [48].

Input: Init population P

(1) : c⟵ 1
(2) : while length (P)> 0
(3) : B⟵XN

(4) : for each b ∈ B

(5) : fitness (b)⟵ c

(6) : end
(7) : c⟵ c + 1
(8) : Delete B from P

(9) : end

ALGORITHM 1: Non-dominated sorting.

Phase1: exchange

Phase2: generate
crossover map randomly

Phase3: multiplication
and addition

Phase4: sorting according
to result in phase3

original individuals
5 3 1 4 2

1 2 4 5 3

5 3 4 5 2

1 2 1 4 3

4 1 0 3 2

29 16 20 28 12

9 11 5 23 17

5 2 3 4 1

2 3 1 5 4

Figure 5: Procedure of tie-breaking crossover.
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6.2. Simulation Results. To evaluate the proposed strategy
comprehensively, we carried out two kinds of simulations
based on the pre-trained CNN model. One is a discrete
simulation, which is used for observing the performance of
the framework under different static numbers of vehicles to
be scheduled. *e other is a continuous simulation, which
is served to evaluate the framework in different traffic de-
mand levels using the trace data exported from SUMO.

We choose the FCFS strategy as a baseline, whereas it is
generally used in the domain. *e iteration step and pop-
ulation size inMODEA are set to 30 and 40, respectively. We
generate different numbers of CAVs distributed in lanes
randomly for the two scenarios, and the results of the
discrete simulation are shown in Figure 7. Obviously, the
proposed method always has a better performance than the
FCFS method. While in the on-ramp scenario, the gap
between the two methods becomes more significant with the
increase in CAVs.*us, the capability of global optimization
of MODEA can be verified, while the rule-based FCFS
method is regarded as weak to get satisfying solutions.

Meanwhile, when there is more than one solution in the
Pareto front, the final sequence can be chosen manually
according to specific requirements.

As for continuous simulation, different arrival rates of
CAVs are deployed for 2000 simulation steps, and the trace
data are exported per 4 times steps. *e trace datasets in-
clude the information of CAVs such as position, speed, and
acceleration, and then, we reload these data in SUMO and
carry out simulations. In other words, the same trace data are
used for result comparison so that the randomness can be
eliminated.

All results presented are averaged over 10 independent
runs, when the best results are shown in bold in Table 2.
According to Table 2, there is no significant difference be-
tween DFS and EFS, which may be caused by the regression
error of the neural network. However, with the increase in
CAV arrival rate, the difference in results between FCFS and
the proposed framework gets more remarkable. It demon-
strates that the MODEA can optimize the two objectives
jointly.

swap

shift

symmetry

symmetry
center 

5 3 1 4 2

5 3 1 4 2

5 3 1 4 2

5 3 2 4 1

5 3 4 2 1
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Figure 6: Sketch of swap operation, shift operation, and symmetry operation. *e length of subsequences in this figure is 1.

Input: *e passing sequence x

(1) : for i ∈ 1: length(x)

(2) : if i � 1
(3) : ai � (vi − vmax)&&amax
(4) else
(5) : k⟵ 1, rp1 � p1 − pj − Δs
(6) : for j ∈ 2: i

(7) : rpj � pi − pj − Δs
(8) : if Conflict(x[i], x[j])&& rpj < rp1
(9) : k⟵ j

(10) : end
(11) : Carfollowing(x[i], x[k])

(12) : end
(13) : end
(14) : end

ALGORITHM 2: Simple sequence control.
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Table 1: Parameter configuration in simulation.

Item Value Unit
Generic settings
Maximum acceleration of CAVs 2.6 m/s2
Maximum deceleration of CAVs 4.5 m/s2
Length of single lane 1000.0 m
Size of single simulation step 0.2 s
Safe gap €Δs 2.5 m
For on-ramp scenario
Road speed limit 120.0 km/h
Radius of CR 1000.0 m
For intersection scenario
Road speed limit 60.0 km/h
Radius of CR 200.0 m
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Figure 7: Continued.
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7. Discussion about Computation Time

In cooperative driving tasks, the computation time of al-
gorithms is vital to ensure safety and efficiency. We focus on
the time performance of the proposed framework in this
part, and we only consider the on-ramp scenario for eval-
uating computation time because the time complexity of the
algorithm in the two scenarios is equal. All experiments were
conducted using Julia programming language on Windows
10 operating system with Intel CORE i7-10750H CPU.
Meanwhile, BenchmarkTools.jl package is used to precisely
evaluate the computation time performance [49].

As Figure 8 shows, the computation time of the proposed
method mainly depends on the population size of MODEA,
while the number of CAVs in CR has little effect on the
computation complexity, which means that we can control
the computation time flexibly by setting the population size
of the algorithm manually.

Meanwhile, the influence of computation time on the
traffic system should be discussed. First, safety is always the
most primary goal to be achieved. *e impact of computing
time on safety considerations will be reflected in the safe gap
€Δs. *e €Δs can be roughly revised with the time con-
sumption td:
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Figure 7: Performance of the proposed framework compared with FCFS strategy under different CAV number circumstances. (a) For
on-ramp scenario and (b) for intersection scenario.
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Δs’ � €Δs + td × vmax, (23)

where vmax is used for ensuring safety under any circum-
stance, so that Δs will be changed in simulations in terms of
equation (22).

*en, we carry out a series of simulations using the
same trace data exported from SUMO to compare the
performance of the control framework under different
computation delays. In the test, the delay caused by

computation varies from 0.1 s to 0.4 s, while DFS is
chosen to get solutions. Figures 9(a) and 9(b) show the
time consumption and energy consumption under dif-
ferent circumstances. On average, the FCFS rule will
outperform the proposed framework in the time con-
sumption aspect when the computation delay reaches
0.3 s, and it will have almost identical performance in the
electricity consumption aspect when the computation
delay reaches 0.4 s.

Table 2: Simulation result comparison.

FCFS MODEA-DFS MODEA-EFS Optimization
Rate (%)

Time cost (s) Energy cost (Wh) Time cost
(s)

Energy cost
(Wh) Time cost (s) Energy cost (Wh) Time Energy

On-ramp scenario
400 veh/(lane · h) 71.5 ± 9.2 302.9 ± 88.0 71.1 ± 9.1 302.2 ± 88.8 71.1 ± 9.2 298.8 ± 86.8 0.56% 1.35%
600 veh/(lane · h) 75.4 ± 7.7 488.8 ± 132.4 74.6 ± 7.9 479.0 ± 129.5 75.0 ± 7.6 475.3 ± 128.0 1.06% 2.76%
800 veh/(lane · h) 80.5 ± 6.8 679.8 ± 172.8 79.0 ± 7.0 658.9 ± 168.7 79.9 ± 7.2 653.0 ± 167.2 1.86% 3.94%
1000 veh/(lane · h) 90.1 ± 7.9 933.5 ± 239.2 82.8 ± 6.6 833.3 ± 220.0 83.2 ± 6.9 831.7 ± 210.5 8.10% 10.91%
1200 veh/(lane · h) 106.6 ± 10.5 1276.3 ± 324.1 89.0 ± 8.4 1070.9 ± 277.6 90.0 ± 8.1 1067.1 ± 274.9 16.51% 16.39%
Intersection scenario
400 veh/(lane · h) 41.4 ± 12.7 140.2 ± 49.5 41.0 ± 12.9 137.8 ± 48.3 41.7 ± 12.8 140.0 ± 49.4 0.10% 1.71%
600 veh/(lane · h) 58.6 ± 15.6 293.5 ± 150.5 56.7 ± 14.4 287.3 ± 141.3 57.1 ± 14.5 288.9 ± 142.9 3.24% 2.11%
800 veh/(lane · h) 106.5 ± 44.2 951.5 ± 661.3 98.2 ± 37.4 861.9 ± 574.0 98.6 ± 38.5 861.4 ± 572.1 7.79% 9.47%
1000 veh/(lane · h) 141.8 ± 60.9 1468.5 ± 829.0 127.9 ± 35.9 1323.5 ± 639.4 130.4 ± 38.5 1301.3 ± 610.2 9.80% 11.39%
1200 veh/(lane · h) 197.4 ± 44.9 2572.5 ± 812.1 182.3 ± 42.9 2384.1 ± 780.9 186.7 ± 57.8 2352.6 ± 779.8 7.65% 8.55%
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Figure 8: Average computation time of the proposed framework based on the different number of CAVs and population size in MODEA.
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8. Conclusions

Over the last few years, many methods have been put
forward in the cooperative driving field, but the con-
trollability of optimization objectives and the efficiency of
algorithms are still difficult to deal with. Based on the
combination of evolutionary algorithm and machine
learning technique, this study proposes an intelligent
framework that considers both the delay and the energy
consumption of vehicles. An encoding approach of CAVs
is implemented, and a passing sequence of CAVs is ap-
proximately regarded as a sentence in natural language so
that the TextCNN can be applied to extract features.
Compared with other frameworks, it has some significant
advantages:

(i) Controllability and flexibility: the optimization ob-
jectives and computation time can be adjusted
manually, and it can be instrumental under different
design requirements.

(ii) General applicability: similar to FCFS protocol, the
framework can be applied in different cooperative
driving scenarios such as intersection and on-ramps.

In future research, a more concrete vehicle control method
is supposed to be studied for practicability.Moreover, the neural
network this study implements can only deal with a finite
number of cases because the input length for the network is

fixed. *erefore, the maximum number of CAVs must be
assigned, and the zero paddings will be used if the number of
CAVs is less than the predefined maximum length. Hence, the
form of the neural network and CAV encodings can be further
studied for better performance; for example, the encoder-de-
coder structure can be applied to study the cases of different
numbers of CAVs. Finally, the lane-changing behavior of ve-
hicles and pedestrian crossing rules can be considered in the
system.However, amore complex butmore realistic systemwill
be put before us to study.
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