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As the mode share of the subway in Seoul has increased, the estimation of passenger travel routes has become a crucial issue to
identify the congestion sections in the subway network. This paper aims to estimate the travel train of subway passengers in Seoul.
The alternative routes are generated based on the train log data. The travel route is then estimated by the empirical cumulative
distribution functions (ECDFs) of access time, egress time, and transfer time. The train choice probability is estimated for
alternative train combinations and the train combination with the highest probability is assigned to the subway passenger. The
estimated result is validated using the transfer gate data which are recorded on private subway lines. The result showed that the
accuracy of the estimated travel train is shown to be 95.6%. The choice ratios for no-transfer, one-transfer, two-transfer, three-
transfer, and four-transfer trips are estimated to be 53.9%, 37.7%, 6.5%, 1.5%, and 0.4%, respectively. Regarding the practical
application, the passenger kilometers by lines are estimated with the travel route estimation of the whole network. As results of the
passenger kilometer calculation, the passenger kilometer of the proposed algorithm is estimated to be 88,314 million passenger
kilometer. The proposed algorithm estimates the passenger kilometer about 13% higher than the shortest path algorithm. This
result implies that the passengers do not always prefer the shortest path and detour about 13% for their convenience.

1. Introduction

In 2004, the municipal government of Seoul introduced the
automatic fare collection (AFC) system. The AFC system
makes it possible to analyze the travel behavior of transit
passengers. With smart card data obtained from the AFC
system, it has much attention to estimate the travel route of
passengers on subway networks [1]. Seoul’s transit fare
system charges passengers based on their travel distance, so
it is essential to ascertain the passenger’s travel routes [2].
Smart card data of the AFC system provide travel route
information of bus trips and transfer trips between the bus

and subway networks [3, 4]. The travel routes of the subway
passengers, however, are still hard to identify since the smart
card data do not provide route information of subway
passengers [5]. The card reader of the subway AFC system is
installed at the gates of the station, which is outside of the
platform. Since the information is only recorded at the
station gates that a passenger departs or arrives, thus there is
no way to know which route a passenger has traveled. The
crucial problem of estimating the travel routes of subway
passengers is that there is no information about transfer trips
between public subway lines [6]. Only privately owned lines
have installed the transfer gates, which are located on the
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transfer aisle. Travel route information of trips made
through the private lines can be identified with the transfer
gate data. For the transfer trips of public lines, the travel
route information is not provided since there is no transfer
gate at the transfer station.

The travel routes of urban railways have traditionally
been estimated based on utility maximization or regret
minimization models [7, 8]. However, these models could
not be valid for several reasons. The train arrival time is not
always consistent with the train schedule in a complex urban
railway system. Also, passengers might not choose the es-
timated travel route depending on their tap-in time and train
arrival time. Passengers could choose unexpected travel
routes with instantaneous decisions. Thus, the traditional
models were not always correct in these specific situations,
and the advanced method is required to estimate the travel
route [9].

Recently, many studies have explored route preference
using smart card data [10-14]. For example, Sun et al. [15]
estimated the passenger’s location with smart card data of
the Singapore MRT system. The spatiotemporal density of
passengers was estimated, and the trains’ trajectories were
identified from the move of estimated density. These results
were derived from the railway network in which consecutive
trains followed the same route without transfers. Similarly,
Kusakabe et al. [16] explored the passenger’s train choice
behavior with smart card data. The route with the longest in-
vehicle time was selected as the traveled route rather than the
earliest departing or arriving routes. Lee et al. [17] also
estimated the express train choice behavior using smart card
data. The Gaussian mixture model was used to decompose
the travel time distribution into two distributions, i.e., ex-
press train and local train. Each passenger was assigned to an
express or local train according to a density probability.

Many previous studies have sought to accurately explore
passenger’s train preferences using smart card data and train log
data, i.e., train logs or train schedules [18, 19]. For example, Sun
and Xu [20] estimated the egress time, access time, transfer time,
and in-vehicle time with the smart card data, train schedules,
and complementary manual surveys. With these estimated
attributes, the travel time distribution of each route was
established, and the passenger preference was explored. Zhou
and Xu [13] also estimated the traveled route to assign passenger
flow. With the train schedule data, feasible routes were gen-
erated, and each passenger was assigned to the route, which had
a minimum surplus time. Similarly, Zhu et al. [21] estimated the
train choice behavior with real timetables and smart card data.
The choice set was generated by the deletion algorithm, and the
route choice probability was estimated by Manski’s paradigm.
Sun and Schonfeld [22] proposed a route choice model using
smart card data. The choice set was generated based on the train
schedule connection network. The access time, egress time, and
transfer time were considered to assign passengers to the
generated route. Similarly, Hong et al. [23] also proposed a train
choice model with smart card data and train log data. The
passengers who have a unique route were defined as reference
passengers, and the traveled routes of passengers who have
multi-route were estimated by matching the reference
passengers.
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Although these previous studies attempted to estimate
the travel route, some improvements still remained. First,
the accuracy of the route estimation needed to be improved
using passenger’s experienced travel time attributes, i.e.,
access time, egress time, transfer time, and in-vehicle time.
The distribution forms of the travel time attributes are all
different by stations and origin-destination (O-D) pairs.
Thus, travel time attributes are required to estimate without
the distribution assumption. Second, there was a limitation
on validating the model performance since passenger’s travel
route information, such as transfer information, was not
recorded on smart card data. Previous studies have proposed
many methods to estimate travel routes. However, there is a
limit to identifying the accuracy of the method due to the
absence of revealed preference data of travel routes. To shed
light on these issues, this study proposed a methodology that
estimates passenger’s travel route (train) using smart card
data and train log data. The contributions of this study were
presented as follows: (1) the empirical distribution without
distribution assumption was developed to estimate the
probability of each travel time attribute; (2) model perfor-
mance was validated with revealed route information
(transfer gate) data; and (3) the practical application, such as
efficiency evaluation of each subway line, was performed
using estimated results of the whole subway passengers in
Seoul.

This study estimated the travel route of individual
subway passengers using the smart card data and train log
data. The alternative routes were generated based on the
train log data. The travel route was then estimated by the
empirical cumulative distribution functions (ECDFs) of
access time, egress time, and transfer time. With the ECDFs
of the time attributes, the train choice probability was es-
timated for alternative train combinations. Among the al-
ternative train combinations, the train combination with the
highest probability was assigned to the subway passenger.
The smart card data of the private lines were employed to
validate the results of the travel train estimation since it had
the exact information about the travel route transaction. The
proposed algorithm was then applied to estimate the travel
train of all subway passengers on the entire subway network
in Seoul.

2. Data Description

2.1. Description of the Network (Seoul Metropolitan Area).
The subway network in Seoul consists of 11 lines numbering
from 1 to 9, Bundang Line, and Shinbundang Line. The
subway network has 327 stations, including 127 transfer
stations to serve Seoul and its surroundings. Among 11 lines,
Line 9 and the Shinbundang Line are owned by private
companies. The total number of trips of the subway network
in Seoul is 6,313,176 trips per day. The headway of the
subway trains is about 6 minutes on average. The minimum
and maximum headways are about 2 and 26 minutes, re-
spectively. There is no way to identify the travel route with
the public lines. However, private lines have transfer gates at
all transfer stations to collect fares. With the data from the
transfer gate, it is possible to validate the results of the travel
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route estimation. Line 9 consists of 30 stations with nine
transfer stations, and the Shinbundang Line consists of 12
stations with five transfer stations. The number of trips of
Line 9 and Shinbundang Line is 472,436 trips per day. Since
the percentage of private trips accounts for about 7.4% of all
trips, it is possible to validate the estimation result.

The travel route estimation for the trips traveled private
lines was conducted to validate the performance of the
proposed algorithm. The process of estimating train choices
for the individual passenger was explained with an illus-
tration network that has two alternative routes for the same
O-D pair. The travel route for the subway network in Seoul
was also estimated to ascertain the practical applicability of
the algorithm. The subway network in Seoul is shown in
Figure 1.

2.2. Descriptions of the Smart Card Data and Train Log Data.
The smart card data store about 20 million trip information
per day, including about 7 million subway trips and 12
million bus trips. The smart card data can be obtained from
the Korea Transportation Safety Authority (KTSA) and
contain 38 data information for each trip. To estimate the
train choice, we used smart card data of October 31, 2017.
Among the 38 data information, we used 10; card ID,
transaction ID, line ID, boarding station ID, alighting station
ID, boarding time, alighting time, total travel time, transfer
station ID, and transfer time. The data information related to
the transfer is provided only from the trips on the two
private lines. Thus, it is possible to identify the travel route of
passengers who traveled on private lines. The data infor-
mation of the smart card data are shown in Table 1.

The train log data contain about 175,000 logs of real-time
train operation data per day. The train log data can be
obtained from the Open Data Portal (data.seoul.go.kr), and
it includes the arrival time information of the train at each
station. The reliability of the train log data is ensured because
it is the actual arrival time of the train. By integrating train
log data with the smart card data, it is possible to estimate the
passenger travel route. The train log data used in this study
are also from October 31, 2017. It contains eight data in-
formation, of which seven data information were used: line
ID, arrival time, the direction of train, train ID, train type,
boarding station ID, and alighting station ID. The data
information of train log data is shown in Table 2.

3. Methodology

The proposed train choice algorithm has two main meth-
odologies, i.e., choice set generation algorithm and empirical
cumulative distribution functions (ECDFs). The choice set
generation algorithm is used to generate the available train
combinations for each passenger. The ECDFs methodology
is used to estimate the passenger’s choice probability for each
alternative. The proposed train choice algorithm consists of
seven steps using a choice set generation algorithm and
ECDFs. The visualized concept of the train choice algorithm
and definition of notations are shown in Figure 2 and Table
3, respectively. For a better understanding of the proposed
train choice algorithm, the remainder of the methodology
section is organized as follows: the concept of choice set
generation algorithm and the concept of ECDFs is described
in order. Then, the seven steps of the proposed train choice
model are explained step by step.

3.1. Choice Set Generation. In this part, we proposed an
algorithm to generate alternative train combinations for an
individual passenger using the tap-in time and tap-out time
of smart card data, and train arrival time of train log data.
The alternative train combination connects the passenger’s
origin and destination stations during his/her travel time.
With the proposed algorithm, it is possible to generate all
train choice alternatives for each subway passenger.

The choice set generation is performed for each pas-
senger. Thus, alternative train combinations could be dif-
ferent for the passengers even with the same origin to
destination (O-D). The proposed algorithm considered all
alternative routes using alternative train combinations
during the passenger’s travel time. choice combinations
during the passenger’s travel time. The mathematical ex-
pression of the algorithm of generating the alternative train
combination is shown in equations (1) to (4). Equation (3) is
to find all available trains which depart the origin and arrive
at the destination stations between the tap-in and tap-out
times of an individual passenger. If there is a transfer station,
the train choice combination is generated by connecting
transferable trains and the available trains. Equation (4)
shows the mathematical expression of the alternative train
combination set of the trip i.

N ={1,2,3,...,363}, (1)
pi=(4" " 0pd;), o€N.deN, @

r :(8, tri T et trfn,trlgut, a,0, d), 0eN,deN, (3)

Rop (p) ={rl62t" a< /", 0 =0,d = d}. (4)
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—— Private lines (validation network)

—— O-D from SNUE to Dangsan station (example network)

—— Entire subway network in Seoul (application network)

FIGURE 1: Subway network in Seoul.

3.2. Empirical Cumulative Distribution Function. The ECDF
is a nonparametric estimator of the typical CDF of a
random variable. ECDF has an advantage in estimating
probabilities because assumptions are relatively free. For
example, distributions of the travel time attributes are
difficult to define in the specific form since the distri-
bution of each station and O-D pairs is all different. If
there are plenty of samples, the ECDF can improve the
accuracy of the model. In other words, the ECDF ap-
proximates the true CDF with the large samples. It esti-
mates a probability of 1/j to each sample, orders the
samples from smallest to largest in value, and calculates
the sum of the estimated probabilities up to and including
each sample value. The result is a step function that in-
creases by 1/j at each sample value. The ECDF is usually
denoted by f; or P;(X <x), and mathematical expression
is defined as follows:

J
fi() =P (X<x)=j 'Y I(x;<x). (5)
i=1

I(x, < x) is the indicator function and has two values. If
the event inside the brackets occurs, the value is 1, and if not,
the value is 0.

I(xp Sx) = b (6)

> X.

1, whenx, <x,
0, whenx

r

3.3. Train Choice Algorithm. To estimate the passengers’
travel train combinations, we developed a train choice
algorithm using smart card data and train log data. The

proposed algorithm consists of seven steps. Step 1 is to
extract information about passengers who have a clear
train combination to travel. In this case, the passenger has
only one train available to travel from the origin station to
the destination station between tap-in time and tap-out
time. In Step 2, the time attributes, i.e., access time, egress
time, and transfer time, are calculated by the extracted
passenger’s tap-in time and tap-out time and train arrival
time and departure time. In Step 3, the ECDFs of access
time, egress time, and transfer time for each station are
developed using the calculated time attributes. Step 4 is
for generating alternative train choices for a passenger
who has more than two alternative trains on his/her route.
In Step 5, the choice probability is estimated for each
alternative train. The train choice probability is calculated
by multiplying the probability of time attribute, i.e., access
time, egress time, and transfer time for all of the alter-
native trains. The probability of each travel time attribute
converges to 1 as it approaches the mode value. In step 6,
the train combination with the highest choice probability
is assigned to a passenger. Step 7 is the iteration step for
estimating the next passenger’s travel train combination.
The mathematical expression of the travel train estimation
algorithm is shown in equations (7) to (19).

Step 1. Select the set of passengers who have only one al-
ternative train combination during his/her travel time.
The passenger group with one train available is selected
by comparing the tap-in time and tap-out time of smart card
data to the train arrival time at the origin station of the train
log data. Specifically, all available train combinations during
the tap-in time and tap-out time of each passenger are
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TaBLE 1: Description of the smart card data.

TaBLE 2: Description of the train log data.

No. Data information No. Data information

1 Card ID* 1 Name of affiliate

2 Transaction ID* 2 Line ID

3 Mode code 3 Arrival time

4 Line ID* 4 The direction of the train
5 Name of the transit line 5 Train ID

6 Vehicle ID 6 Train type

7 Vehicle number 7 Boarding station ID

8 Boarding station ID* 8 Alighting station ID

9 Alighting station ID*

10 Name of boarding station

11 Name of alighting station k k

12 Boarding (t%\p—ing) time™ I = tou = ip- (10)
13 Alighting (tap-out) time* .

14 I%Tumlg)er opf transfer Subject to

15 Total travel distance

16 Total travel time* r= (5, tritrl tritrl otk ek Lo, d) € Rop (pi)-

17 Boarding fare (11)
18 Alighting fare

19 The number of users in L out

20 Boarding violation penalty Pi _(ti L 0 di) €v (12)
21 Alighting violation penalty

22 General user code

23 Student user code Step 3. Develop the empirical cumulative distribution
24 Child user code function (ECDF) of time attributes.

25 Other user _COde ECDFs are set up using the access time, the egress time,
26 User division and the transfer time of individual passengers who have only
27 User group one train available.

28 Company code

29 Company name

0 o Fo(a2) = f;(aS), forustp, €U, (13)
31 Starting run time

32 Ending run time Ff(ei) = fj(ez), forus.t.p, €U, (14)
33 Boarding date

34 Alighting date

35 8 Yea% Ffr(trﬁ) = fj(trﬁ), forus.t.p, € U. (15)
36 Zone code

37 Transfer station ID

38 Transfer time

*Used in this study.

checked, and a passenger who has only one available train is
selected in this step.

U ={piln(Rop (P;)) = 1,
= {PpP2>P3) ceoPi--s ’P6,313,176}}'

p;€P
(7)

Step 2. Calculate the travel time attributes of the set of
passengers who have only one alternative train combination.

The access time, the egress time, and the transfer time of
individual passengers are estimated using the tap-in time
and tap-out time from the smart card data and train arrival
time at the origin, transfer, and destination stations.

a;=8-t" (8)

M a, 9)

Step 4. Generate alternative train combinations for a pas-
senger who has multiple alternatives.

The set of passengers could be generated when they have
multiple trains available at origin, transfer, and destination
stations between their tap-in time and tap-out time.

M ={p;In(Rop (p)) > 1,

:{Pl’PZ’Py...,piu.

p;€P
(16)
’p6,313,176}}'

Step 5. Calculate the choice probability of each alternative
train.

The choice probability of each alternative train was es-
timated by multiplying three probabilities of access time,
transfer time, and egress time. The probability of the mode
value was assumed to be 100% since the travel time attributes
formed the skewed distribution. As the travel time attributes
become closer to the mode value, there will get a higher
chance to board the train. Therefore, the probability was
defined based on the distance from the mode value as the
probability of the corresponding time attributes.
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Step 1: Select the set of passengers who
have only one alternative train combination.

v

Step 2: Calculate the travel time attributes of
passengers who have only one alternative.

v

Step 3: Develop the empirical cumulative
distribution function (ECDF) of time attributes.

v

Tap-in time

Origin station

LIS
e
Access tim?&f_“; ——

Transfer station

Destination station

Tap-out time
Only one available %. X
train combination

" Egress time

Step 4: Generate train combinations for a

passenger who has multiple alternatives.

Step 6: Assign the train combination with the
highest choice probability to a passenger.

v

Step 7: Go to step 4 to estimate the next
passenger’s train combination until no remains.

+ Origin station
Step 5: Calculate the choice probability of Tap-in time
each alternative train. X *7‘
v >

Access tm??K__

Choice probability
Routel: 13.5%
Route2: 56.0%
Route3: 85.5%

Transfer station
pre-(Routel): 90%

-8

pra(Routel): 20%
i ¥

Destination station
Tap-out time

pre(Routel): 50% *: L

@z) 80%
» -

pra(Route3): 90%

S
pry(Route2): 70% /" o
Egress time

pre(Route3): 95%

FIGURE 2: Visualized concept of train choice algorithm.

P?’ = Pru * pre * Prtr’

pra=1-|F;(a;,) - Fo(may),

prezl_

e

pry = 1 —|F§,(t1‘

Step 6. Assign the train combination with the highest choice
probability to a passenger.

Among the multiple train combinations, the train
combination with the highest choice probability is assigned
to a passenger. The train choice probability is estimated by
multiplying the probability of each travel time attribute. The
calculation is based on the multiplication rule probability. If
the passenger has an alternative route with transfers, the
choice probability of transfer is multiplied as a transfer
penalty. If not, the train choice probability is estimated with
the choice probability of access time and egress time. The
mathematical expression of estimating the train choice
probability is shown in the following equation:

*

v =,
(21)

st.pr’ = max(prl,prz,pr3, cprt, oL .,prw).

Step 7. Go to Step 4 to estimate the next passenger’s travel
train combination until no remains.

The steps from 4 to 7 operate iteratively until estimating
all passengers’ train choices, since the proposed algorithm
estimates the train choice for each passenger.

Fd(e

(17)

(18)

) — Fe(me)| (19)
») - Fi(mtrl)], forustp, eUformst.p, e M.  (20)

3.4. Performance Measure for Validating Train Choice.
The performance measures, e.g., precision, recall, accuracy,
and F1 score, were used to validate the model performance.
The precision, recall, accuracy, and F1 score are well-known
measures for validating the performance of the model in
each passenger. The values of performance measures were
estimated by comparing the passenger’s explored route from
the assigned train combination and the actual route
recorded in smart card data. Precision is defined as the
accuracy of estimating true positives from the true negatives
and false positives, as in equation (22). The recall is the
number of true positives among the true negatives and false
positives as in equation (23). The accuracy is the number of
true positives and true negatives among all the passengers, as
in equation (24). The F1 score is the trade-off between recall
and precision, and has equal importance as in equation (25):

TP

Precision = —————, (22)
TP + FP
TP
Recall = —— 23
T TP+ EN 23)
TP + TN

A - , 24
Y = b PN + FP + TN 24
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TaBLE 3: Definition of notations.

Choice set generation algorithm

N: the set of the subway station number

p;: the vector of the travel attributes of the passenger i
tin: the tap-in time of the passenger i

tin: the tap-out time of the passenger i

o;: the origin station of the passenger i

d;: the destination station of the passenger i

r: the vector of the attributes of the train combination
&: the train departure time at the origin station

tr{‘n: the arrival time of the train for the previous segment (before transfer) at the transfer station k
trk . the departure time of the train for the next segment (after transfer) at the transfer station k

out*
a: the train arrival time at the destination station

o: the origin station of the train combination
d: the destination station of the train combination

Rop (p;): the set of the alternative train combination for the passenger i

ECDF
fi(x): ECDF of the attribute x

Train choice algorithm
Choice set-related notations

U: the set of the passengers who have only one alternative train combination
M: the set of the passengers who have more than two alternative train combinations

P: the set of the passengers

n(Rpp (p;)): the number of the alternative train combination of passenger i

Travel time attribute-related notations

a;: the access time of passenger i

e;: the egress time of passenger i

tr;: the transfer time of passenger i

af: the access time at the origin station o

e: the egress time at the destination station d

tr¥: the transfer time at the transfer station k

ma?: the mode value of the access time of the passenger u
med: the mode value of the egress time of the passenger u

mtr¥: the mode value of the transfer time at the transfer station k of the passenger u

ECDF-related notations

F°: the ECDF of the access time at the origin station o

F?: the ECDF of the egress time at the destination station d
FX: the ECDF of the access time at the origin station k
Choice probability-related notations

pr: the choice probability of the train combination

pr,: the probability of access time of the alternative train combination

pr.: the probability of egress time of the alternative train combination

pry,: the probability of transfer time of the alternative train combination
v*: the number of the train combination with the highest choice probability

w: the number of the alternative train combination
pr": the choice probability of alternative train combination v

Precision x Recall

F1score = 2 X (25)

Precision + Recall’

where TP is the true positives, FP is the false positives, TN is
the true negatives, and FN is the false negatives.

4. Application

4.1. Validation of the Travel Route Estimation Results. The
results of estimated travel routes and train combinations for
individual passengers are validated with smart card data
obtained from two private lines, i.e., Line 9 and the Shin-
bundang Line. The route information of passengers who get

in or get off the private lines as part of their travel routes
could be easily produced since the private lines facilitate
transfer gates at their transfer stations. The results of the
travel route estimation are compared with the actual route of
trips recorded in smart card data. For example, O-D pair in
Figure 3 was selected to illustrate the process of the train
choice estimation. Figure 3 shows the route of the Seoul
National University of Education (SNUE) Station to
Dangsan Station. There are two alternative routes between
SNEU Station and Dangsan Station: no-transfer route and
one-transfer route. Route 1 directly connects O-D stations
with no transfers, and route 2 contains one transfer at
Express Terminal Station on their route. Route 1 is the no-
transfer route, which is on a single line. Route 2 is a one-
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FIGURE 3: Illustration network with alternative routes from SNUE Station to Dangsan Station.

transfer route, where the Express Terminal Station connects
the two lines. All ECDFs for each direction of origin station,
destination station, and transfer stations were used to select
the appropriate travel train combination. The alternative
routes from SNUE Station to Dangsan Station are shown in
Figure 3.

Figures 4(a) and 4(b) illustrate the cumulative distri-
bution of travel time attributes, which are access time, egress
time, and transfer time of routes 1 and 2.

As a result of the developed distributions, the mean of
the access time of route 1 was estimated to be 135 seconds.
The mode of egress time of route 1 was also estimated to be
38 seconds, and the standard deviation was 102 seconds.
The mean, mode, and standard deviation of the egress time
of route 1 were estimated to be 115, 90, and 48 seconds,
respectively. For route 2, the average of access time, egress
time, and transfer time was estimated to be 221, 132, and
168 seconds, respectively. The mode value of access time,
egress time, and transfer time of route 2 was estimated to be
152, 104, and 64 seconds, respectively. The standard de-
viations of access time, egress time, and transfer time were
estimated to be 123, 50, and 101 seconds, respectively.
Figures 4(c) and 4(d) show the travel time distributions of
the two routes. The grey histogram in Figure 4(c) and the
grey line in Figure 4(d) represent the total travel time
distribution of passengers from SNUE Station to Dangsan
Station. This total travel time distribution is shown as the
mixed distribution of two routes’ travel time. With the
distributions of access time, egress time, and transfer time,
the total travel time distribution was decomposed by two
distributions of respective routes. The results of the
decomposed distributions are colored yellow for route 1
and blue for route 2. The mean of total travel time of OD is
2,170 seconds, and the standard deviation is 372 seconds.
For route 1, the average travel time is estimated to be 2,256
seconds and the standard deviation is 307 seconds. Route 2
has 2,043 seconds for the average travel time and 427
seconds for the standard deviation of travel time. The result

of the travel route estimation from SNUE Station to
Dangsan Station is shown in Figure 4.

The comparison analysis was conducted to evaluate the
performance of the proposed model. Three comparison
models were used to compare with the proposed model.
Three comparison models consist of the Gaussian mixture
model (GMM) [17], maximum route length model (MRL)
[9], and parametric distribution model (PDM) [20]. GMM
decomposed the travel time distribution into the number of
routes, assuming the Gaussian distribution. GMM assigned
the train combination to a passenger with the probability
distribution of each route travel time. MRL assigned the
train combination to a passenger with the maximum route
length (time duration) that fits within the tap-in and tap-out
time of the journey. PDM assigned the train combination to
a passenger based on the travel time attribute distributions,
e.g., access, egress, transfer, and in-vehicle time. The access,
egress, and transfer time were assumed to be gamma dis-
tribution. The waiting time and in-vehicle time were as-
sumed to be the Poisson and uniform distributions,
respectively. Each parameter of distribution was estimated to
explore the passengers’ route choice preference. Overall,
four models, including the proposed model, were compared
to evaluate the model performance.

As a result of the comparison analysis, the choice
probability of route 1 was estimated to be 54.4% to 64.8%.
Among the four models, the proposed model had the
most similar probability at 59.3% compared with the
actual route choice probability. Regarding individual
train combination choice, the F1 scores of GMM, MRL,
PDM, and proposed model were estimated to be 0.688,
0.739, 0.918, and 0.963, respectively. Overall, the pro-
posed model showed the highest performance in both
aggregated probabilities, such as choice probability and
individual choice estimation. PDM also showed good
performance with 0.918 F1 score. However, the F1 score
of PDM was estimated to be lower than that of the
proposed model since the errors due to the assumption of
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FIGURE 4: Estimation results of SNUE Station to Dangsan Station trips. (a) Cumulative distribution for no-transfer route. (b) Cumulative
distributions for one-transfer route. (c) Histogram of travel time. (d) Distribution of travel time.

distribution are involved. Especially, the assumption of
uniform distribution had the greatest influence on the
inaccuracy. These results implied that the proposed
model estimates passengers’ train choice preference
more accurately than the GMM, MRL, and PDM. The
travel route estimation result of the comparison models
is shown in Table 4.

The results of the proposed algorithm are validated using
the trips made through the private lines. As mentioned
before, smart card data from the private lines provide

transfer information and make it possible to identify the
passenger’s travel route.

From smart card data, the number of trips on private lines
was counted as 472,436 trips per day. The numbers of no-
transfer, one-transfer, two-transfer, and three-transfer trips are
counted as 220,239, 241,114, 10,738, and 345, respectively.
Table 5 shows the validation results of the travel route esti-
mation of the proposed algorithm compared with the counted
number of passengers who get in or get out of the private lines,
Line 9 and Shinbundang Line, during their journey. The results
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TaBLE 4: Travel route estimation result of the comparison models.

Journal of Advanced Transportation

TABLE 5: Result of travel route estimation with private subway lines.

Estimated number  Estimated choice

Division of trips probability (%) F1 score
Route 1 Route 2 Route 1l Route 2

Actual 145 108 57.3 42.7 —

GMM 164 89 64.8 35.2 0.688

MRL 138 115 54.5 45.5 0.739

PA 157 96 62.1 37.9 0.918

Proposed 150 103 59.3 40.7 0.963

GMM: Gaussian mixture model. MRL: maximum route length model. PA:
parametric distribution model

of no-transfer trips estimated by the proposed algorithm
showed 99.7% of accuracy. For the one-transfer trips, 223,117
trips of 241,114 trips were estimated correctly, and the accuracy
was estimated to be 92.5%. As a result of the two- and three-
transfer trips, the accuracy was declined to be 81.1% and 71.6%,
respectively. Taken together, the accuracy of the estimation
result for the total trips was estimated to be 95.6%. Since the
number of no-transfer and one-transfer trips accounts for
97.6% of the total validation trip samples, the estimation ac-
curacy of the trips was estimated to be high enough to apply the
proposed algorithm to the Seoul subway networks. The result of
the travel route estimation is shown in Table 5.

4.2. Travel Route Estimation for Subway Network in Seoul.
The travel trains for 6,313,176 daily trips were estimated to
identify the route choice preference using the proposed
algorithm. As results, the numbers of no-transfer, one-
transfer, two-transfer, three-transfer, and four-transfer trips
were estimated to be 3,402,763; 2,382,288; 411,475; 91,554;
and 25,096 trips, respectively. Regarding the trip ratios of
total trips, no-transfer, one-transfer, two-transfer, three-
transfer, and four-transfer trips were estimated to be 53.9%,
37.7%, 6.5%, 1.5%, and 0.4%, respectively. The trip ratios of
peak and nonpeak hours show similar patterns. The results
of the travel route estimation on the whole network in Seoul
are shown in Table 6 and Figure 5.

4.3. Evaluating the Efficiency of Subway Lines in Seoul Using
the Proposed Algorithm. The proposed algorithm was
applied to evaluate the efficiency of 11 subway lines on the
Seoul subway network. The algorithm can produce the
passenger kilometer metric for evaluating the transport
efficiency of 11 lines. The Seoul Transportation Corpo-
ration (STC) has been trying to aggregate link trips using
smart card data since those are the basic statistics to
operate the subway network. STC roughly calculated the
passenger kilometer by assigning the passenger to the
shortest path because smart card data do not provide
travel route information. Regarding this practical need,
the travel route estimation could provide useful statistics
such as passenger kilometer. The results of the travel

Division Precision Recall Accuracy F1 score
No-transfer trips 0.997 1.000 0.997 0.998
One-transfer trips 0.947 0.962 0.925 0.954
Two-transfer trips 0.832 0.946 0.811 0.885
Three-transfer trips 0.789 0.833 0.716 0.811
Total 0.968 0.979 0.956 0.974

route estimation in this study were used to measure the
passenger kilometer of 11 subway lines in Seoul.

The most widely used metric to measure transport ef-
ficiency is the value of passenger kilometer [24, 25]. Pas-
senger kilometer is calculated by multiplying the number of
passengers by the travel distance. The mathematical ex-
pression of the passenger kilometer is shown in the following
equation:

G

pkm = thcg x tdeg, (26)
g

where pkm is the passenger kilometer value, i is the travel
route (G=1,2,3,..., g), tpc is the number of passengers
who traveled with the route g, and tdc is the distance of the
route g (km).

As a result of the passenger kilometer analysis, the
passenger kilometer of STC was estimated to be 78,194
million passenger kilometer, and the passenger kilometer of
the proposed algorithm was estimated to be 88,314 million
passenger kilometer. Since the STC assigned the passenger to
the shortest path, the passenger kilometer of the proposed
algorithm was estimated to be about 13% higher than that of
STC.

The passenger kilometer and the number of passengers
were calculated by 11 subway lines. The result of the
passenger kilometer of Line 2 was estimated to be 27,002
million passenger km, which is the highest value among
the 11 lines. The lowest value was 1,553 million
passenger kilometer, of Line 8. Since Line 2 goes through
the major commercial and business areas of central Seoul,
the passenger kilometer of Line 2 was estimated to be the
highest among the 11 lines. For Line 8, the passenger
kilometer was estimated to be the lowest because there are
only 16 stations along the line and Line 8 serves on the
outskirts of Seoul.

Regarding the passenger kilometer per service distance,
the efficiencies of 11 lines are evaluated in the order of Line
2, Line 3, and Line 7. The efficiency order based on the
number of passengers per service distance is somewhat
different from that of the passenger kilometer unit. The
efficiency of 11 lines based on the number of passenger
units is evaluated in the order of Line 2, Line 5, and Line 7.
The evaluation results of 11 lines based on two metrics are
presented in Table 7.
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TABLE 6: Results of travel route estimation for urban subway network in Seoul.

Peak hour trips (trip ratio, %)

AM (7:00~9:00) PM (18:00~20:00)

Nonpeak hour trips (trip ratio, %)

Division Total trips (trip ratio, %)
No-transfer trips 3,402,763 (53.9)
One-transfer trips 2,382,288 (37.7)
Two-transfer trips 411,475 (6.5)
Three-transfer trips 91,554 (1.5)
Four-transfer trips 25,096 (0.4)

Total 6,313,176 (100.0)

563,952 (54.1)
386,933 (37.1)

513,662 (55.6)
337,247 (36.5)

1,042,711 (100.0)

2,325,149 (53.5)
1,658,108 (38.2)
283,079 (6.5)
63,244 (1.5)

Number of trips

16,602 (0.4)
924,283 (100.0) 4,346,182 (100.0)
Standardized value
of trips (peak A.M.)
0.1
0.3
0.5
0 0.7
1.0

Standardized value
of trips (peak P.M.)

0.1

0.3

0.5

0.7

FIGURE 5: Visualization of estimated link trips of subway network in Seoul. (a) The number of link trips for a day. (b) Link trip density at peak

AM. (c) Link trip density at peak P.M.
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TABLE 7: Results of passenger kilometer for subway lines in Seoul.

Service distance
. (km)
Subway lines

Distance (A) Rank Total (B)

Number of passengers (trips)

Trips/service dist.

Passenger kilometer (million km)

Rank Total (C) Passenger kilometer/service dist. (C/A) Rank

(B/A)
Line 1 195 1 7,754,053 39,764 9 12,237 63 10
Line 2 57 3 23,686,939 415,560 1 27,002 474 1
Line 3 55 5 8,027,244 145,950 4 9,523 173 2
Line 4 68 2 5,783,969 85,058 7 6,813 100 8
Line 5 50 8 7,989,509 159,790 2 8,105 162 4
Line 6 34 9 4,269,248 125,566 5 3,780 111 5
Line 7 56 4 8,714,031 155,608 3 9,531 170 3
Line 8 17 11 1,477,962 86,939 6 1,553 91 9
Line 9 51 7 3,650,051 71,570 8 5,152 101 7
Bundang Line 53 6 1,451,587 50,055 11 2,900 100 11
Shinbundang Line 31 10 1,015,097 35,003 10 3,168 109 6

Total trips of the Seoul subway network: 6,313,176 trips/day. Estimated passenger kilometer of Seoul network: STC, 78,194 m-pkm (100%); proposed

algorithm, 88,314 m-pkm (113%).

5. Conclusion

This study proposed the travel route estimation algorithm
using smart card data and train log data. The process of
travel route estimation consisted of three stages: (1) gen-
eration of the train choice combinations, (2) calculation of
passenger travel time attributes, and (3) development of
ECDFs. The algorithm was proposed to estimate train choice
for an individual subway passenger. The alternative train
choice combination was generated using the passenger tap-
in time and tap-out time of smart card data, and train arrival
time of train log data. The travel time attributes of the
passenger were calculated by each alternative train combi-
nation. The ECDFs of each type of travel time, i.e., access
time, egress time, transfer time, were developed with the trip
information that could only be traveled by a single train set.
These developed ECDFs were used to estimate the travel
route for passengers who have several alternative train
combinations. The travel route was deduced by an estimated
train combination with the highest probability among the
alternative train combinations. The analysis is performed in
two stages, i.e., validation with private subway lines and
application to the entire subway network in Seoul. For the
first stage, the smart card data of the private subway lines
were employed to validate the results of the estimated travel
train combination, since it has the exact information about
the travel route transaction. For the second stage, the
proposed algorithm is then applied to estimate the travel
train combinations of all subway passengers on the entire
subway network in Seoul.

As a result of the comparison analysis, the F1 scores of
GMM, MRL, PA, and proposed model were estimated to be
0.688, 0.739, 0.918, and 0.963, respectively. This result im-
plied that the proposed model based on ECDF estimated
passengers’ choice behavior more accurately than the
parametric, nonparametric, and rule-based models. In
particular, the proposed model could have strengths in
complex subway networks such as many lines, stations, and
short headways. As a result of the validation, the accuracy for

the no-transfer trips, one-transfer trips, two-transfer trips,
and three-transfer trips is estimated to be 99.7%, 95.1%,
84.2%, and 71.2%, respectively. The result of total trips is
about 96.9%, which is reasonable to analyze the whole
subway network. As a result of the travel route estimation of
the whole network in Seoul, the trip ratio for no-transfer,
one-transfer, two-transfer, three-transfer, and four-transfer
trips was estimated to be 53.9%, 37.7%, 6.5%, 1.5%, and
0.4%, respectively. Regarding the practical application, the
passenger kilometers by lines were estimated with the travel
route estimation of the whole network. As a result of the
passenger kilometer calculation, the passenger kilometer of
the proposed algorithm was estimated to be 88,314 million
passenger kilometer. Since the STC assigned the passenger to
the shortest path, the passenger kilometer of the proposed
algorithm was estimated to be about 13% higher than that of
STC. Among the 11 subway lines, the passenger kilometer of
Line 2 showed the highest value of 27,002 million passenger
kilometer.

There are three main contributions to this study. First,
the empirical distributions of the travel time attributes, i.e.,
access time, egress time, transfer time, and in-vehicle time,
were developed using smart card data and train log data.
Specifically, the subway station’s walking characteristics
were reflected on access time and egress time without as-
suming a specific distribution form, i.e., the Poisson and
uniform distribution. Second, the real data of passengers’
travel routes were used to validate the proposed method.
This revealed route information (transfer gate) data pro-
vided that the proposed method showed notable accuracy in
estimating the travel route of subway passengers. Third, the
practical application was performed by estimating whole
passengers’ travel routes. The results of the efficiency eval-
uation of each subway line implied that passengers do not
always prefer the shortest route.

The results of this paper help subway operators manage
in-train and route congestion. The results also contribute to
an in-depth investigation of route choice behaviors by
quantifying the penalty factors on routes: transfer time and
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distance, access time and distance, waiting time, the number
of stairs, and the congestion rate on the platform. Although
we estimated the traveled trains and routes using ECDFs of
time attributes, some issues remain. First, the impact of
crowding and potentially being left behind needs to be
considered. Second, it is required to decompose the walking
time and the waiting time distribution for the access time
and the transfer time. In addition, information on station
amenities, such as restrooms and convenience stores, needs
to be considered. Hence, our future work will incorporate
crowding and facility factors to estimate the travel route of
the subway passengers.
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